EE226 Big Data Mining Lecture 3

Basic Data Mining Algorithms

Liyao Xiang <u>http://xiangliyao.cn/</u> Shanghai Jiao Tong University

http://jhc.sjtu.edu.cn/public/courses/EE226/

Notice

• There will be a quiz in the next week's class. Please take a piece of paper and pens.

Reference and Acknowledgement

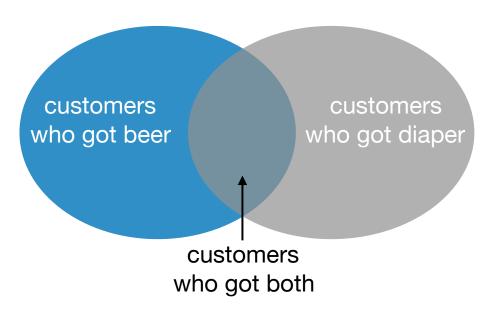
 Most of the slides are credited to Prof. Jiawei Han's book "Data Mining: Concepts and Techniques."

Outline

- Basic Concepts in Frequent Pattern Mining
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods

Outline

- Basic Concepts in Frequent Pattern Mining
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods


• Frequent pattern: a pattern (a set of items, subsequences, substructures ...) that appear frequently in a database

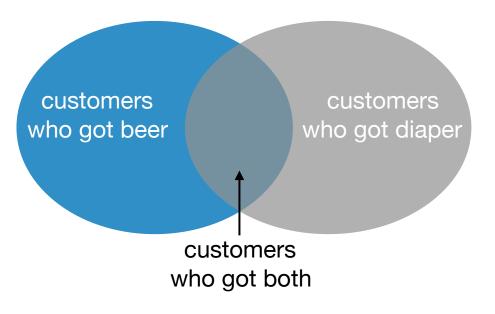
	••••••••••••••••••••••••••••••••••••
a alamy stock photo	TC# 3680 8362 6229 1132 7028

- Finding frequent patterns is key to mining associations, correlations, clustering, classification and other relationships among data.
- Applications: basket data analysis, cross-marketing, catalog design ...

- itemset: a set of one or more items
- k-itemset: $X = \{x_1, ..., x_k\}$
- (absolute) support, or support count of X: frequency or occurrence of an itemset X
- (relative) support: the fraction of transactions that contains X over all transaction
- An itemset X is frequent if X's support is no less than a defined threshold min_sup

TID	Items Purchased
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

support: probability that a transaction contains XUY


 $support(X \Rightarrow Y) = P(X \cup Y)$

 confidence: conditional prob. that a transaction having X also contains Y

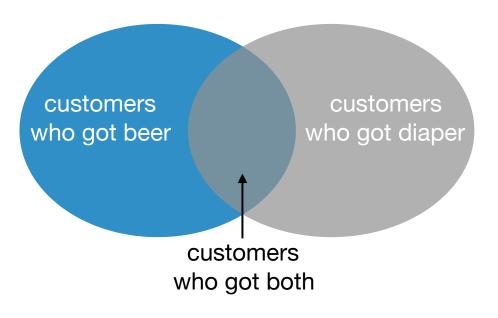
 $confidence(X \Rightarrow Y) = P(Y|X)$

$$P(Y|X) = \frac{\operatorname{support}(X \cup Y)}{\operatorname{support}(X)}$$

TID	Items Purchased
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- min_sup: minimum support threshold
- min_conf: minimum support confidence threshold
- e.g., find all rules X ⇒ Y with min_sup and min_conf

let min_sup = 50%, min_conf = 50%


frequent pattern: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3, {Beer, Diaper}: 3

• Association rules:

Beer⇒Diaper (60%, 100%)

Diaper⇒Beer (60%, 75%)

TID	Items Purchased
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Association rule mining includes:
 - 1. Find all frequent itemsets: frequency of itemsets ≥ min_sup
 - 2. Generate strong association rules from the frequent itemsets
- 1 is the major step, but challenging in that there may be a huge number of itemsets satisfying min_sup
- An itemset is frequent \Rightarrow each of its subsets is frequent
- Solution: mine closed frequent itemset and maximal frequent itemset
- closed frequent itemset X: X is frequent and there is no super-itemset Y ⊃ X with the same support count as X
 - closed frequent itemset is a lossless compression of frequent itemset
- maximal frequent itemset X: X is frequent and there is no super-itemset Y
 X which is frequent

- e.g., {< a_1 , ..., a_{100} >, < a_1 , ..., a_{50} >}, min_sup = 1
- What is the set of closed frequent itemset?
 - $<a_1, ..., a_{100}>: 1, < a_1, ..., a_{50}>: 2$
- What is the set of maximal frequent itemset?
 - <a₁, ..., a₁₀₀>: **1**
- We can assert <a₂, a₄₅> is frequent since a₂, a₄₅ ∈ < a₁, ..., a₅₀> but cannot assert their actual support count
- How many itemsets are potentially to be generated in the worst case?
 - When min_sup is low, there exist potentially an exponential number of frequent itemsets
 - Worst case: M^N where M = # distinct items, N = max length of transactions

Summary

- frequent pattern
- k-itemset
- (absolute) support, support count, relative support
- min_sup, confidence
- closed frequent itemset, maximal frequent itemset

Outline

- Basic Concepts in Frequent Pattern Mining
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods

Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FP-Growth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format

Apriori

- Downward Closure Property: any subset of a frequent itemset must be frequent
 - e.g., if {beer, diaper, nuts} is frequent, so is {beer, diaper} since every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Apriori employs a level-wise search where k-itemsets are used to explore (k + 1)-itemsets. Steps:
 - 1. Scan database once to get frequent 1-itemsets L₁
 - 2. Join the k-frequent itemsets L_k to generate length (k+1) candidate itemsets C'_{k+1}
 - 3. Prune C'_{k+1} against the database to get C_{k+1}
 - 4. Scan (Test) database for the count of each candidate in C_{k+1} , obtain L_{k+1}
 - 5. Terminate when no frequent or candidate set can be generated