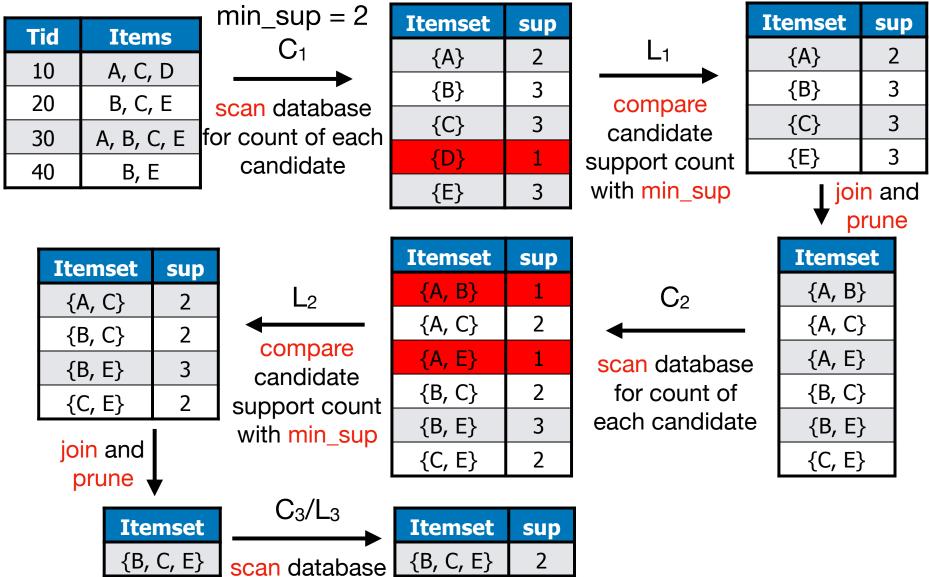
- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - 1. $L_3 = \{abc, abd, acd, ace, bcd\}$
 - 2. Self-joining $L_3 \otimes L_3$: abcd from abc and abd; acde from acd and ace
 - 3. Pruning: acde is removed because ade is not in L_3
 - 4. $C_4 = \{abcd\}$



C_k: Candidate itemset of size k L_k: Frequent itemset of size k

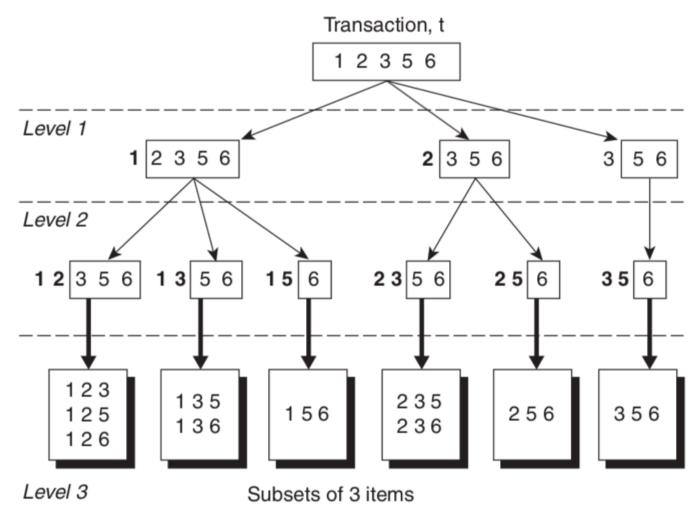
 $\begin{array}{l} L_1 = \{ 1 \text{-frequent items} \}; \\ \text{for } (k = 1; \ L_k \ ! = \varnothing; \ k + +) \ \text{do begin} \\ C_{k+1} = \text{candidates generated from } L_k; \\ \text{for each transaction t in database do} \\ \text{increment the count of all candidates in } C_{k+1} \ \text{that are} \\ \text{contained in t} \\ \text{end} \end{array}$

 L_{k+1} = candidates in C_{k+1} with min_sup

end

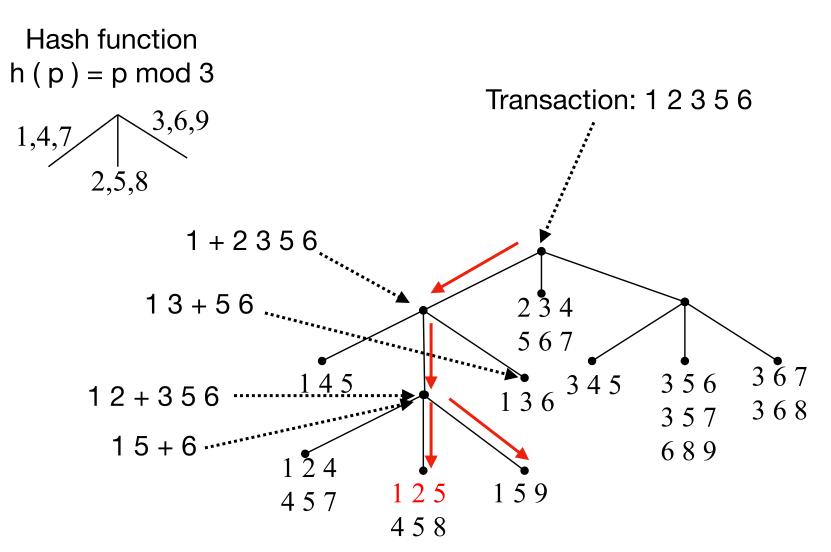
return ∪_k L_k;

- How to count supports of each candidate?
 - The total number of candidates can be huge
 - One transaction may contain many candidates
 - Support Counting Method:
 - store candidate itemsets in a hash-tree
 - leaf node of hash-tree contains a list of itemsets and counts
 - interior node contains a hash table



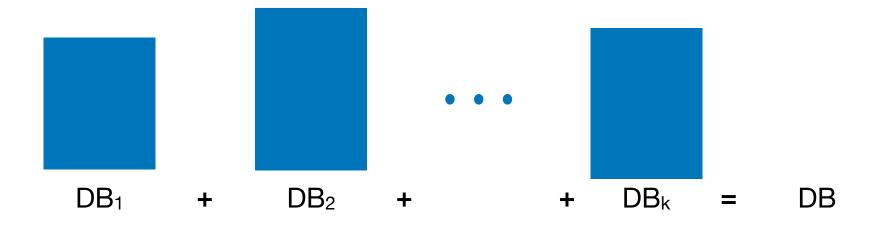
Prefix structure enumerating 3-itemset in Transaction t

Figures from https://www-users.cs.umn.edu/~kumar001/dmbook/ch6.pdf

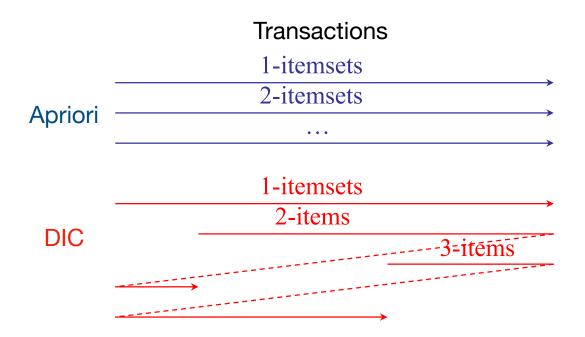


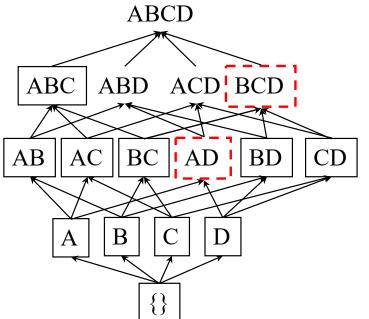
- Challenges:
 - Multiple scans of transaction database
 - Huge number of candidates
 - Support counting for candidates
- Improving the Efficiency of Apriori
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

- Partition (reduce scans): partition data to find candidate itemsets
 - Any itemset that is potentially frequent (relative support ≥ min_sup) must be frequent (relative support in the partition ≥ min_sup) in at least one of the partition
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: assess the actual support of each candidate to determine the global frequent itemsets



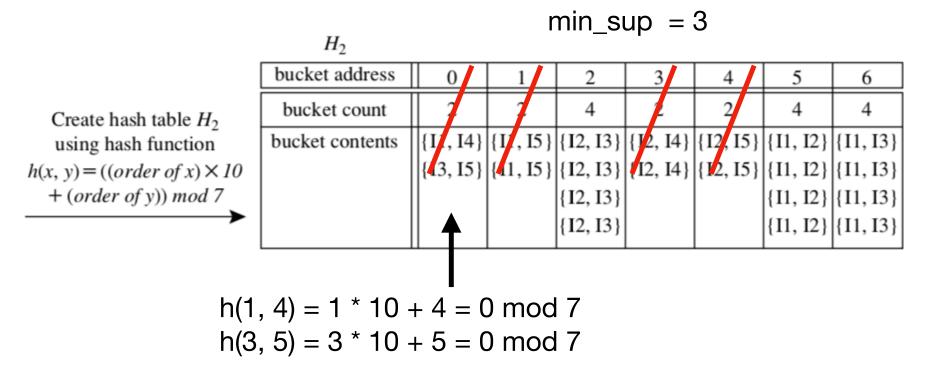
- Dynamic itemset counting (reduce scans): adding candidate itemsets at different points during a scan
- new candidate itemsets can be added at any start point (rather than determined only before scan)





- once both A and D are determined frequent, the counting of AD begins
- Once all length 2 subsets of BCD are determined frequent, the counting of BCD begins

- Hash-based Technique (shrink number of candidates): hashing itemsets into corresponding buckets
 - A k-itemset whose corresponding hashing bucket count is below min_sup cannot be frequent



- Sampling: mining on a subset of the given data
 - Trade off some degree of accuracy against efficiency
 - Select sample S of original database, mine frequent patterns within S (a lower support threshold) instead of the entire database —> the set of frequent itemsets local to S = L_S
 - Scan the rest of database once to compute the actual frequencies of each itemset in L_S
 - If L_S actually contains all the frequent itemsets, stop; otherwise
 - Scan database again for possible missing frequent itemsets

A Frequent-Pattern Growth Approach

- Bottlenecks of Apriori
 - Breadth-first (i.e., level-wise) search
 - Candidate generation and test, often generates a huge number of candidates
- FP-Growth
 - Depth-first search
 - Avoid explicit candidate generation
 - Grow long patterns from short ones using local frequent items
 - "abc" is a frequent pattern
 - Get all transactions having "abc," i.e., project database D on abc: D | abc
 - "d" is a local frequent item in D | abc -> abcd is a frequent pattern

A Frequent-Pattern Growth Approach

TID	Items bought	(ordered) frequent items	
100	{f, a, c, d, g, i, m, p	$\{f, c, a, m, p\}$	min_sup = 3
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	F-list = f-c-a-b-m-p
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	{a, f, c, e, l, p, m, n	$\{f, c, a, m, p\}$	

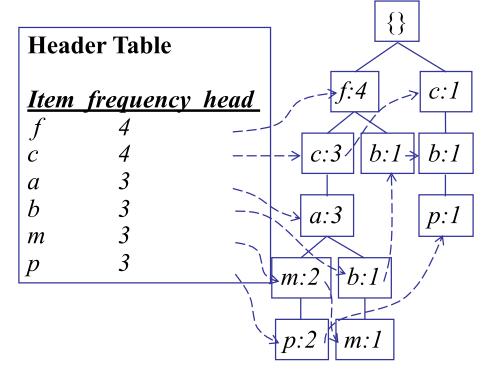
- 1. Scan database once, find frequent 1-itemset
- Sort frequent items in frequency descending order —> F-list

Header Table				
Item	frequency head			
f	4			
C	4			
a	3			
b	3			
m	3			
p	3			

A Frequent-Pattern Growth Approach

<u>TID</u>	Items bought	<u>(ordered) frequent items</u>	
100	{f, a, c, d, g, i, m, p	$\{f, c, a, m, p\}$	min_sup = 3
200	{ <i>a</i> , <i>b</i> , <i>c</i> , <i>f</i> , <i>l</i> , <i>m</i> , <i>o</i> }	$\{f, c, a, b, m\}$	
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$	F-list = f-c-a-b-m-p
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$	
500	$\{a, f, c, e, \hat{l}, p, m, n\}$	$\{f, c, a, m, p\}$	

- 1. Scan database once, find frequent 1-itemset
- 2. Sort frequent items in frequency descending order -> F-list
- 3. Scan database again, construct FP-tree
- 4. Mine FP-tree



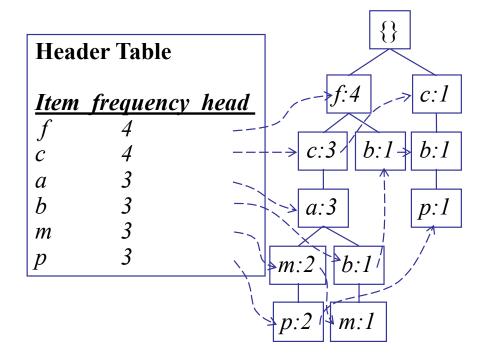
How to Construct FP-tree?

FP-tree: a compressed representation of database. It retains the itemset association information.



How to Mine FP-tree?

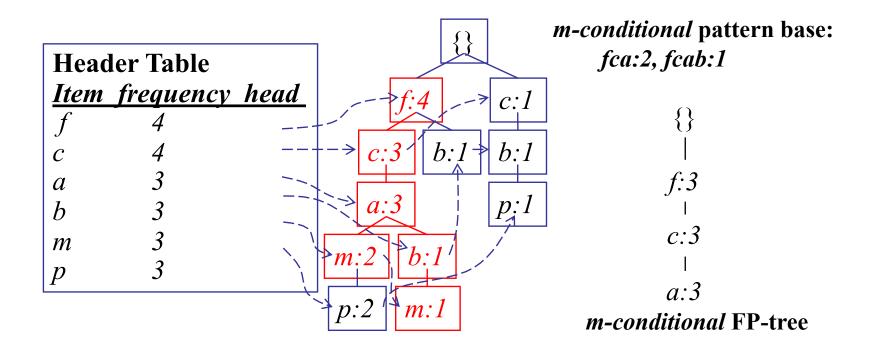
 Start from each frequent length-1 pattern (suffix pattern, usually the last item in F-list) to construct its conditional pattern base (prefix paths co-occurring with the suffix)



Conditional pattern bases				
item	cond. pattern base			
С	<i>f</i> :3			
a	fc:3			
b	fca:1, f:1, c:1			
т	fca:2, fcab:1			
р	fcam:2, cb:1			

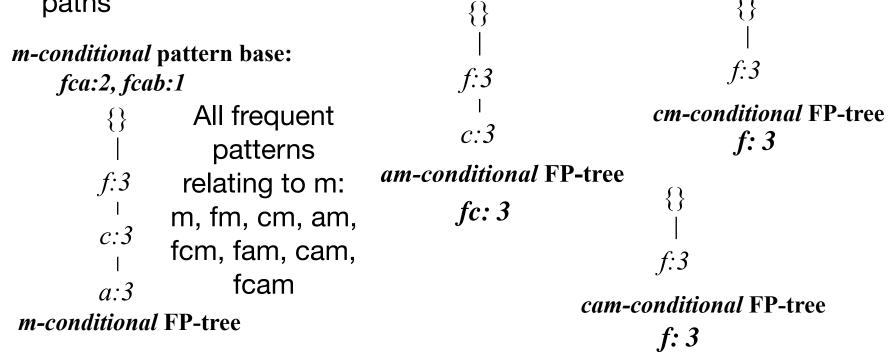
How to Mine FP-tree?

- 1. Start from each frequent length-1 pattern (suffix pattern, usually the last item in F-list) to construct its conditional pattern base
- 2. Construct the conditional FP-tree based on the conditional pattern base



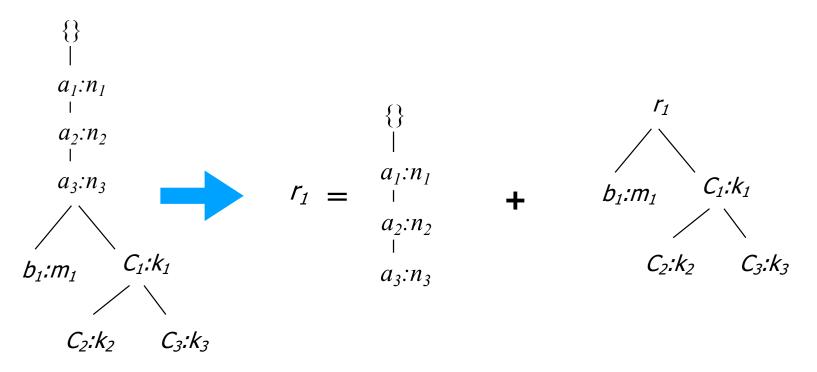
How to Mine FP-tree?

- 1. Start from each frequent length-1 pattern (suffix pattern, usually the last item in F-list) to construct its conditional pattern base
- 2. Construct the conditional FP-tree based on the conditional pattern base
- 3. Mining recursively on each conditional FP-tree until the resulting FP-tree is empty, or it contains only a single path which will generate frequent patterns out of all combinations of its subpaths



Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree has a shared single prefix-path
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts



Scaling FP-Growth

- What if FP-tree cannot fit into memory?
 - Database projection: partition a database into a set of projected databases, then construct and mine FP-tree for each projected database
 - Parallel projection:
 - project the database in parallel for each frequent item
 - all partitions are processed in parallel
 - space costly
 - Partition projection:
 - project a transaction to a frequent item x if there is no any other item after x in the list of frequent items appearing in the transaction
 - a transaction is projected to only one projected database

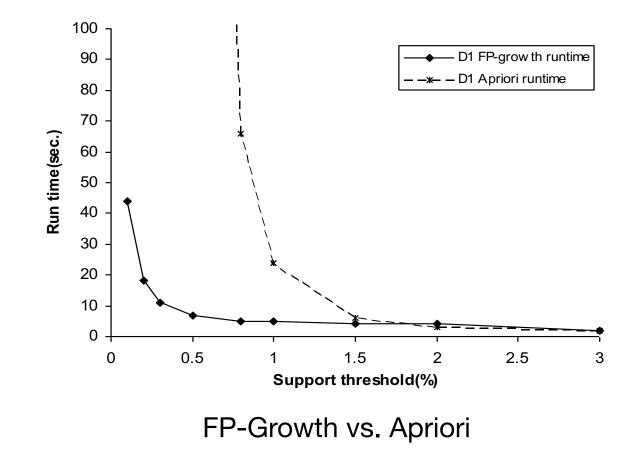
Benefits of FP-tree

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info infrequent items are gone
 - Items in frequency descending order: occurs more frequently, the more likely to be shared
 - Never be larger than the original database (not including nodelinks and the count fields)

Benefits of FP-Growth

- Divide-and-conquer:
 - Decompose both the mining task and database according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases
- Other factors:
 - No candidate generation, no candidate test
 - Compressed database: FP-tree
 - No repeated scan of the entire database
 - Basic operations: count local frequent items and build sub FPtree, no pattern search and matching

Performance of FP-Growth in Large Datasets



ECLAT: Frequent Pattern Mining with Vertical Data Format

- Vertical data format: itemset transID_set
 - transID_set: a set of transaction IDs containing the itemset
- Derive frequent patterns based on the intersections of transID_set

itemset	TID_set			
I1	{T100, T400, T500,	T700, T800, T900}	itemset	TID_set
I2		T400, T600, T800, T900}	{I1, I2}	{T100, T400, T800, T900}
I3	• • • • •	T700, T800, T900}	{I1, I3} {I1, I4}	{T500, T700, T800, T900} {T400} {T100, T800}
I4	{T200, T400}	_, , , _ <i>,</i> ,		
15	{T100, T800}		{I1, I5}	
	()		{I2, I3}	{T300, T600, T800, T900}
			{I2, I4}	{T200, T400}
		TID and	{I2, I5}	{T100, T800}
	itemset	TID_set	{I3, I5}	{T800}
	{I1, I2, I3}	{T800, T900}		
	{I1, I2, I5}	{T100, T800}		

ECLAT: Frequent Pattern Mining with Vertical Data Format

- Vertical data format: itemset transID_set
 - transID_set: a set of transaction IDs containing the itemset
- Derive frequent patterns based on the intersections of transID_set
- Use diffset to reduce the cost of storing long transID_set
 - {I1} = {T100, T400, T500, T700, T800, T900}
 - {I1, I2} = {T100, T400, T800, T900}
 - diffset({I1}, {I1, I2}) = {T500, T700}

Summary

- Frequent itemset mining methods:
 - Apriori: candidate generation-and-test
 - Improving efficiency of Apriori: partition, dynamic item counting, hash-based technique, sampling
 - FP-Growth: depth-first search
 - Scaling of FP-Growth: database projection
 - Frequent pattern mining with vertical data format

Outline

- Basic Concepts in Frequent Pattern Mining
- Frequent Itemset Mining Methods
- Pattern Evaluation Methods

Pattern Evaluation Methods: Correlations

- play basketball \Rightarrow eat cereal [40%, 66.7%] is misleading
 - the overall % of students eating cereal is 75% > 66.7%
- play basketball \Rightarrow not eat cereal [20%, 33.3%] is more accurate
- Lift: a measure of dependent/correlated event

$$lift = \frac{P(A \cup B)}{P(A)P(B)} = \frac{P(B|A)}{P(B)} \qquad \frac{|A| + |B|}{|A|} = \frac{P(B|A)}{P(B)} \qquad \frac{|A| + |B|}{|A|} = \frac{|A| + |A|}{|A|} = \frac{|A| + |A|}{|A|}$$

Other Pattern Evaluation Methods

• χ^2 measure, all_confidence measure, max_confidence measure, Kulczynski measure, ...