
Apriori
• How to generate candidates?


• Step 1: self-joining Lk


• Step 2: pruning


• Example of Candidate-generation


1. L3 = {abc, abd, acd, ace, bcd}


2. Self-joining L3 ⨂ L3: abcd from abc and abd; acde from acd 
and ace 


3. Pruning: acde is removed because ade is not in L3 


4. C4 = {abcd}



Apriori
Tid Items
10 A, C, D
20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup
{A} 2
{B} 3

{C} 3

{D} 1

{E} 3

min_sup = 2

C1

scan database 
for count of each 

candidate

Itemset sup
{A} 2
{B} 3

{C} 3

{E} 3

Itemset
{A, B}
{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup
{A, B} 1
{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2

{B, E} 3

{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

C2

scan database 
for count of 

each candidate
join and 

prune

scan database

C3/L3

join and 

prune

L1

compare 
candidate 

support count 
with min_sup

L2

compare 
candidate 

support count 
with min_sup



Apriori
Ck: Candidate itemset of size k

Lk: Frequent itemset of size k


L1 = {1-frequent items};

for (k = 1; Lk !=∅; k++) do begin

    Ck+1 = candidates generated from Lk;

    for each transaction t in database do


  increment the count of all candidates in Ck+1 that are 
contained in t


    end 
    Lk+1  = candidates in Ck+1 with min_sup

end

return ⋃k Lk;




Apriori
• How to count supports of each candidate?


• The total number of candidates can be huge


• One transaction may contain many candidates


• Support Counting Method:


• store candidate itemsets in a hash-tree


• leaf node of hash-tree contains a list of itemsets and counts


• interior node contains a hash table



Apriori

Prefix structure enumerating 3-itemset in Transaction t
Figures from https://www-users.cs.umn.edu/~kumar001/dmbook/ch6.pdf



Apriori

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

Transaction: 1 2 3 5 6

1 + 2 3 5 6

1 3 + 5 6

1 2 + 3 5 6

1,4,7
2,5,8

3,6,9

Hash function

h ( p ) = p mod 3

1 5 + 6



Improving the Efficiency of Apriori
• Challenges:


• Multiple scans of transaction database


• Huge number of candidates


• Support counting for candidates


• Improving the Efficiency of Apriori


• Reduce passes of transaction database scans


• Shrink number of candidates


• Facilitate support counting of candidates



Improving the Efficiency of Apriori
• Partition (reduce scans): partition data to find candidate itemsets


• Any itemset that is potentially frequent (relative support ≥ 
min_sup) must be frequent (relative support in the partition ≥ 
min_sup) in at least one of the partition


• Scan 1: partition database and find local frequent patterns


• Scan 2: assess the actual support of each candidate to 
determine the global frequent itemsets

DB1 DB2 DBk+ + + = DB



Improving the Efficiency of Apriori
• Dynamic itemset counting (reduce 

scans): adding candidate itemsets 
at different points during a scan


• new candidate itemsets can be 
added at any start point (rather 
than determined only before scan)

ABCD

ABC ABD ACD BCD

AB AC BC AD BD CD

A B C D

{}1-itemsets
2-itemsets

…

1-itemsets
2-items

3-items

Transactions

Apriori

DIC

• once both A and D are 
determined frequent, the 
counting of AD begins


• Once all length 2 subsets of 
BCD are determined frequent, 
the counting of BCD begins



Improving the Efficiency of Apriori
• Hash-based Technique (shrink number of candidates): hashing 

itemsets into corresponding buckets


• A k-itemset whose corresponding hashing bucket count is below 
min_sup cannot be frequent

h(1, 4) = 1 * 10 + 4 = 0 mod 7

h(3, 5) = 3 * 10 + 5 = 0 mod 7

min_sup  = 3



Improving the Efficiency of Apriori
• Sampling: mining on a subset of the given data


• Trade off some degree of accuracy against efficiency


• Select sample S of original database, mine frequent patterns 
within S (a lower support threshold) instead of the entire 
database —> the set of frequent itemsets local to S = LS


• Scan the rest of database once to compute the actual 
frequencies of each itemset in LS


• If LS  actually contains all the frequent itemsets, stop; otherwise


• Scan database again for possible missing frequent itemsets



A Frequent-Pattern Growth Approach
• Bottlenecks of Apriori


• Breadth-first (i.e., level-wise) search


• Candidate generation and test, often generates a huge number of 
candidates


• FP-Growth


• Depth-first search


• Avoid explicit candidate generation


• Grow long patterns from short ones using local frequent items


• “abc” is a frequent pattern


• Get all transactions having “abc,” i.e., project database D on abc: D | 
abc


• “d” is a local frequent item in D | abc —> abcd is a frequent pattern



A Frequent-Pattern Growth Approach

1. Scan database once, find 
frequent 1-itemset


2. Sort frequent items in 
frequency descending order 
—> F-list

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

min_sup = 3

F-list = f-c-a-b-m-p

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3



A Frequent-Pattern Growth Approach

1. Scan database once, find 
frequent 1-itemset


2. Sort frequent items in frequency 
descending order —> F-list


3. Scan database again, construct 
FP-tree


4. Mine FP-tree

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

min_sup = 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

F-list = f-c-a-b-m-p



How to Construct FP-tree?

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

FP-tree: a compressed representation of database.

It retains the itemset association information.

root

Items in each 
transaction are 

processed in F-list 
order 2nd branch is created 

for transaction: 
f,c,a,b,m

1st branch is created 
for transaction: 

f,c,a,m,p

two branches share 
the common prefix:  

f,c,a

increment counts of 
existing nodes

create new nodes

To facilitate 
tree traversal, 

each item 
points to its 

occurrence in 
the tree via 
node-link



How to Mine FP-tree?

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3

Conditional pattern bases
item cond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

1. Start from each frequent length-1 pattern (suffix pattern, usually 
the last item in F-list) to construct its conditional pattern base 
(prefix paths co-occurring with the suffix) 



How to Mine FP-tree?
1. Start from each frequent length-1 pattern (suffix pattern, usually 

the last item in F-list) to construct its conditional pattern base

2. Construct the conditional FP-tree based on the conditional 

pattern base

{}

f:3

c:3

a:3
m-conditional FP-tree

m-conditional pattern base:
fca:2, fcab:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item  frequency  head 
f 4
c 4
a 3
b 3
m 3
p 3



How to Mine FP-tree?
1. Start from each frequent length-1 pattern (suffix pattern, usually 

the last item in F-list) to construct its conditional pattern base

2. Construct the conditional FP-tree based on the conditional 

pattern base

3. Mining recursively on each conditional FP-tree until the resulting 

FP-tree is empty, or it contains only a single path — which will 
generate frequent patterns out of all combinations of its sub-
paths

{}

f:3

c:3

a:3
m-conditional FP-tree

m-conditional pattern base:
fca:2, fcab:1

{}

f:3

c:3
am-conditional FP-tree

fc: 3

{}

f:3
cm-conditional FP-tree

f: 3

{}

f:3
cam-conditional FP-tree

f: 3

All frequent 
patterns 

relating to m: 
m, fm, cm, am, 
fcm, fam, cam, 

fcam



Single Prefix Path in FP-tree
• Suppose a (conditional) FP-tree has a shared single prefix-path 


• Mining can be decomposed into two parts


• Reduction of the single prefix path into one node


• Concatenation of the mining results of the two parts

a2:n2

a3:n3

a1:n1

{}

b1:m1 C1:k1

C2:k2 C3:k3

a2:n2

a3:n3

a1:n1

{}

r1 = b1:m1 C1:k1

C2:k2 C3:k3

r1

+



Scaling FP-Growth
• What if FP-tree cannot fit into memory?


• Database projection: partition a database into a set of projected 
databases, then construct and mine FP-tree for each projected 
database


• Parallel projection:


• project the database in parallel for each frequent item


• all partitions are processed in parallel


• space costly


• Partition projection:


• project a transaction to a frequent item x if there is no any other item 
after x in the list of frequent items appearing in the transaction


• a transaction is projected to only one projected database



Benefits of FP-tree
• Completeness


• Preserve complete information for frequent pattern mining


• Never break a long pattern of any transaction


• Compactness


• Reduce irrelevant info — infrequent items are gone


• Items in frequency descending order: occurs more frequently, the 
more likely to be shared


• Never be larger than the original database (not including node-
links and the count fields)



Benefits of FP-Growth
• Divide-and-conquer:


• Decompose both the mining task and database according to the 
frequent patterns obtained so far


• Lead to focused search of smaller databases


• Other factors:


• No candidate generation, no candidate test


• Compressed database: FP-tree


• No repeated scan of the entire database


• Basic operations: count local frequent items and build sub FP-
tree, no pattern search and matching



Performance of FP-Growth in Large 
Datasets
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ECLAT: Frequent Pattern Mining with Vertical 
Data Format
• Vertical data format: itemset — transID_set


• transID_set: a set of transaction IDs containing the itemset


• Derive frequent patterns based on the intersections of transID_set



ECLAT: Frequent Pattern Mining with Vertical 
Data Format
• Vertical data format: itemset — transID_set


• transID_set: a set of transaction IDs containing the itemset


• Derive frequent patterns based on the intersections of transID_set


• Use diffset to reduce the cost of storing long transID_set


• {I1} = {T100, T400, T500, T700, T800, T900}


• {I1, I2} = {T100, T400, T800, T900}


• diffset( {I1}, {I1, I2} ) = {T500, T700}



Summary

• Frequent itemset mining methods:


• Apriori: candidate generation-and-test


• Improving efficiency of Apriori: partition, dynamic item counting, 
hash-based technique, sampling


• FP-Growth: depth-first search


• Scaling of FP-Growth: database projection


• Frequent pattern mining with vertical data format



Outline

• Basic Concepts in Frequent Pattern Mining


• Frequent Itemset Mining Methods


• Pattern Evaluation Methods



Pattern Evaluation Methods: Correlations
• play basketball ⇒ eat cereal [40%, 66.7%] is misleading


• the overall % of students eating cereal is 75% > 66.7%


• play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate


• Lift: a measure of dependent/correlated event

Basketball Not 
basketball

Sum 
(row)Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000

lift(Basketball, Cereal) =
2000/5000

(3000/5000)⇥ (3750/5000)
= 0.89

lift(Basketball, Notcereal) =
1000/5000

(3000/5000)⇥ (1250/5000)
= 1.33

< 1, negatively

 correlated

lift =
P (A [B)

P (A)P (B)
=

P (B|A)

P (B)



Other Pattern Evaluation Methods

•       measure, all_confidence measure, max_confidence measure, 
Kulczynski measure, …
�2


