
Apriori
• How to generate candidates?

• Step 1: self-joining Lk

• Step 2: pruning

• Example of Candidate-generation

1. L3 = {abc, abd, acd, ace, bcd}

2. Self-joining L3 ⨂ L3: abcd from abc and abd; acde from acd
and ace

3. Pruning: acde is removed because ade is not in L3

4. C4 = {abcd}

Apriori
Tid Items
10 A, C, D
20 B, C, E

30 A, B, C, E

40 B, E

Itemset sup
{A} 2
{B} 3

{C} 3

{D} 1

{E} 3

min_sup = 2

C1

scan database
for count of each

candidate

Itemset sup
{A} 2
{B} 3

{C} 3

{E} 3

Itemset
{A, B}
{A, C}

{A, E}

{B, C}

{B, E}

{C, E}

Itemset sup
{A, B} 1
{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2

{B, E} 3

{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

C2

scan database
for count of

each candidate
join and

prune

scan database

C3/L3

join and

prune

L1

compare
candidate

support count
with min_sup

L2

compare
candidate

support count
with min_sup

Apriori
Ck: Candidate itemset of size k

Lk: Frequent itemset of size k

L1 = {1-frequent items};

for (k = 1; Lk !=∅; k++) do begin

 Ck+1 = candidates generated from Lk;

 for each transaction t in database do

 increment the count of all candidates in Ck+1 that are
contained in t

 end
 Lk+1 = candidates in Ck+1 with min_sup

end

return ⋃k Lk;

Apriori
• How to count supports of each candidate?

• The total number of candidates can be huge

• One transaction may contain many candidates

• Support Counting Method:

• store candidate itemsets in a hash-tree

• leaf node of hash-tree contains a list of itemsets and counts

• interior node contains a hash table

Apriori

Prefix structure enumerating 3-itemset in Transaction t
Figures from https://www-users.cs.umn.edu/~kumar001/dmbook/ch6.pdf

Apriori

2 3 4
5 6 7

1 4 5 1 3 6

1 2 4
4 5 7 1 2 5

4 5 8
1 5 9

3 4 5 3 5 6
3 5 7
6 8 9

3 6 7
3 6 8

Transaction: 1 2 3 5 6

1 + 2 3 5 6

1 3 + 5 6

1 2 + 3 5 6

1,4,7
2,5,8

3,6,9

Hash function

h (p) = p mod 3

1 5 + 6

Improving the Efficiency of Apriori
• Challenges:

• Multiple scans of transaction database

• Huge number of candidates

• Support counting for candidates

• Improving the Efficiency of Apriori

• Reduce passes of transaction database scans

• Shrink number of candidates

• Facilitate support counting of candidates

Improving the Efficiency of Apriori
• Partition (reduce scans): partition data to find candidate itemsets

• Any itemset that is potentially frequent (relative support ≥
min_sup) must be frequent (relative support in the partition ≥
min_sup) in at least one of the partition

• Scan 1: partition database and find local frequent patterns

• Scan 2: assess the actual support of each candidate to
determine the global frequent itemsets

DB1 DB2 DBk+ + + = DB

Improving the Efficiency of Apriori
• Dynamic itemset counting (reduce

scans): adding candidate itemsets
at different points during a scan

• new candidate itemsets can be
added at any start point (rather
than determined only before scan)

ABCD

ABC ABD ACD BCD

AB AC BC AD BD CD

A B C D

{}1-itemsets
2-itemsets

…

1-itemsets
2-items

3-items

Transactions

Apriori

DIC

• once both A and D are
determined frequent, the
counting of AD begins

• Once all length 2 subsets of
BCD are determined frequent,
the counting of BCD begins

Improving the Efficiency of Apriori
• Hash-based Technique (shrink number of candidates): hashing

itemsets into corresponding buckets

• A k-itemset whose corresponding hashing bucket count is below
min_sup cannot be frequent

h(1, 4) = 1 * 10 + 4 = 0 mod 7

h(3, 5) = 3 * 10 + 5 = 0 mod 7

min_sup = 3

Improving the Efficiency of Apriori
• Sampling: mining on a subset of the given data

• Trade off some degree of accuracy against efficiency

• Select sample S of original database, mine frequent patterns
within S (a lower support threshold) instead of the entire
database —> the set of frequent itemsets local to S = LS

• Scan the rest of database once to compute the actual
frequencies of each itemset in LS

• If LS actually contains all the frequent itemsets, stop; otherwise

• Scan database again for possible missing frequent itemsets

A Frequent-Pattern Growth Approach
• Bottlenecks of Apriori

• Breadth-first (i.e., level-wise) search

• Candidate generation and test, often generates a huge number of
candidates

• FP-Growth

• Depth-first search

• Avoid explicit candidate generation

• Grow long patterns from short ones using local frequent items

• “abc” is a frequent pattern

• Get all transactions having “abc,” i.e., project database D on abc: D |
abc

• “d” is a local frequent item in D | abc —> abcd is a frequent pattern

A Frequent-Pattern Growth Approach

1. Scan database once, find
frequent 1-itemset

2. Sort frequent items in
frequency descending order
—> F-list

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

min_sup = 3

F-list = f-c-a-b-m-p

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

A Frequent-Pattern Growth Approach

1. Scan database once, find
frequent 1-itemset

2. Sort frequent items in frequency
descending order —> F-list

3. Scan database again, construct
FP-tree

4. Mine FP-tree

TID Items bought (ordered) frequent items
100 {f, a, c, d, g, i, m, p} {f, c, a, m, p}
200 {a, b, c, f, l, m, o} {f, c, a, b, m}
300 {b, f, h, j, o, w} {f, b}
400 {b, c, k, s, p} {c, b, p}
500 {a, f, c, e, l, p, m, n} {f, c, a, m, p}

min_sup = 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

F-list = f-c-a-b-m-p

How to Construct FP-tree?

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

FP-tree: a compressed representation of database.

It retains the itemset association information.

root

Items in each
transaction are

processed in F-list
order 2nd branch is created

for transaction:
f,c,a,b,m

1st branch is created
for transaction:

f,c,a,m,p

two branches share
the common prefix:

f,c,a

increment counts of
existing nodes

create new nodes

To facilitate
tree traversal,

each item
points to its

occurrence in
the tree via
node-link

How to Mine FP-tree?

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table

Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

Conditional pattern bases
item cond. pattern base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

1. Start from each frequent length-1 pattern (suffix pattern, usually
the last item in F-list) to construct its conditional pattern base
(prefix paths co-occurring with the suffix)

How to Mine FP-tree?
1. Start from each frequent length-1 pattern (suffix pattern, usually

the last item in F-list) to construct its conditional pattern base

2. Construct the conditional FP-tree based on the conditional

pattern base

{}

f:3

c:3

a:3
m-conditional FP-tree

m-conditional pattern base:
fca:2, fcab:1

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Header Table
Item frequency head
f 4
c 4
a 3
b 3
m 3
p 3

How to Mine FP-tree?
1. Start from each frequent length-1 pattern (suffix pattern, usually

the last item in F-list) to construct its conditional pattern base

2. Construct the conditional FP-tree based on the conditional

pattern base

3. Mining recursively on each conditional FP-tree until the resulting

FP-tree is empty, or it contains only a single path — which will
generate frequent patterns out of all combinations of its sub-
paths

{}

f:3

c:3

a:3
m-conditional FP-tree

m-conditional pattern base:
fca:2, fcab:1

{}

f:3

c:3
am-conditional FP-tree

fc: 3

{}

f:3
cm-conditional FP-tree

f: 3

{}

f:3
cam-conditional FP-tree

f: 3

All frequent
patterns

relating to m:
m, fm, cm, am,
fcm, fam, cam,

fcam

Single Prefix Path in FP-tree
• Suppose a (conditional) FP-tree has a shared single prefix-path

• Mining can be decomposed into two parts

• Reduction of the single prefix path into one node

• Concatenation of the mining results of the two parts

a2:n2

a3:n3

a1:n1

{}

b1:m1 C1:k1

C2:k2 C3:k3

a2:n2

a3:n3

a1:n1

{}

r1 = b1:m1 C1:k1

C2:k2 C3:k3

r1

+

Scaling FP-Growth
• What if FP-tree cannot fit into memory?

• Database projection: partition a database into a set of projected
databases, then construct and mine FP-tree for each projected
database

• Parallel projection:

• project the database in parallel for each frequent item

• all partitions are processed in parallel

• space costly

• Partition projection:

• project a transaction to a frequent item x if there is no any other item
after x in the list of frequent items appearing in the transaction

• a transaction is projected to only one projected database

Benefits of FP-tree
• Completeness

• Preserve complete information for frequent pattern mining

• Never break a long pattern of any transaction

• Compactness

• Reduce irrelevant info — infrequent items are gone

• Items in frequency descending order: occurs more frequently, the
more likely to be shared

• Never be larger than the original database (not including node-
links and the count fields)

Benefits of FP-Growth
• Divide-and-conquer:

• Decompose both the mining task and database according to the
frequent patterns obtained so far

• Lead to focused search of smaller databases

• Other factors:

• No candidate generation, no candidate test

• Compressed database: FP-tree

• No repeated scan of the entire database

• Basic operations: count local frequent items and build sub FP-
tree, no pattern search and matching

Performance of FP-Growth in Large
Datasets

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

Ru
n

tim
e(

se
c.

)
D1 FP-grow th runtime

D1 Apriori runtime

FP-Growth vs. Apriori

ECLAT: Frequent Pattern Mining with Vertical
Data Format
• Vertical data format: itemset — transID_set

• transID_set: a set of transaction IDs containing the itemset

• Derive frequent patterns based on the intersections of transID_set

ECLAT: Frequent Pattern Mining with Vertical
Data Format
• Vertical data format: itemset — transID_set

• transID_set: a set of transaction IDs containing the itemset

• Derive frequent patterns based on the intersections of transID_set

• Use diffset to reduce the cost of storing long transID_set

• {I1} = {T100, T400, T500, T700, T800, T900}

• {I1, I2} = {T100, T400, T800, T900}

• diffset({I1}, {I1, I2}) = {T500, T700}

Summary

• Frequent itemset mining methods:

• Apriori: candidate generation-and-test

• Improving efficiency of Apriori: partition, dynamic item counting,
hash-based technique, sampling

• FP-Growth: depth-first search

• Scaling of FP-Growth: database projection

• Frequent pattern mining with vertical data format

Outline

• Basic Concepts in Frequent Pattern Mining

• Frequent Itemset Mining Methods

• Pattern Evaluation Methods

Pattern Evaluation Methods: Correlations
• play basketball ⇒ eat cereal [40%, 66.7%] is misleading

• the overall % of students eating cereal is 75% > 66.7%

• play basketball ⇒ not eat cereal [20%, 33.3%] is more accurate

• Lift: a measure of dependent/correlated event

Basketball Not
basketball

Sum
(row)Cereal 2000 1750 3750

Not cereal 1000 250 1250

Sum(col.) 3000 2000 5000

lift(Basketball, Cereal) =
2000/5000

(3000/5000)⇥ (3750/5000)
= 0.89

lift(Basketball, Notcereal) =
1000/5000

(3000/5000)⇥ (1250/5000)
= 1.33

< 1, negatively

 correlated

lift =
P (A [B)

P (A)P (B)
=

P (B|A)

P (B)

Other Pattern Evaluation Methods

• measure, all_confidence measure, max_confidence measure,
Kulczynski measure, …
�2

