Apriori
e How to generate candidates?
e Step 1: self-joining Lk
e Step 2: pruning
e Example of Candidate-generation
1. Lz ={abc, abd, acd, ace, bcd}

2. Self-joining Lz ® Ls: abcd from abc and abd; acde from acd
and ace

3. Pruning: acde is removed because ade is not in L3

4. C4 = {abcd}

Aprior

10 A C D
20 B,C E
30 | AAB,CE
40 B, E

min_sup =2

C1

>

scan database

{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2
join andl
prune

{B, C, E} | scan database

candidate

Lo

<
compare

candidate

for count of each

support count

with min_sup

Cs/Ls

>

(A} 2

1B}

3

{1C}

IREEERNN <.orort count

{E}

3

(B,C | 2
B,E | 3
ey | 2

‘{B,C,E}‘ 2 \

L {AY 2
> (B 3
compare
candidate G 3
{E} 3
with min_sup *join and
prune
Co {A B}
{A, C}
scan database {A, E}
for count of {B, C}
each candidate {B, E}
{C, E}

Apriori

Ck: Candidate itemset of size k
Lk: Frequent itemset of size k

L1 = {1-frequent items};
for (k =1; L« '=@; k++) do begin
Ck+1 = candidates generated from L;
for each transaction t in database do
increment the count of all candidates in Ck.1 that are
contained in t
end
Lk+1 = candidates in Ck+1 with min_sup
end
return Uk Lk;

Apriori
e How to count supports of each candidate?
e The total number of candidates can be huge
e One transaction may contain many candidates
e Support Counting Method:
e store candidate itemsets in a hash-tree

e |eaf node of hash-tree contains a list of itemsets and counts

e interior node contains a hash table

Apriori

Transaction, t
12356

123
135 235
125 136 156 536 256 356
126
Level 3 Subsets of 3 items

Prefix structure enumerating 3-itemset in Transaction t

Figures from https://www-users.cs.umn.edu/~kumar001/dmbook/ch6.pdf

Apriori

Hash function
h(p)=pmod3

147 NS

2,5,8

Transaction: 12356

142356 _

13+56 b

345 356 307

v
\1‘36 357 368
v 689

457 125 159
458

Improving the Efficiency of Apriori

e Challenges:
e Multiple scans of transaction database
e Huge number of candidates
e Support counting for candidates
e |mproving the Efficiency of Apriori
e Reduce passes of transaction database scans
e Shrink number of candidates

e Facilitate support counting of candidates

Improving the Efficiency of Apriori

e Partition (reduce scans): partition data to find candidate itemsets

e Any itemset that is potentially frequent (relative support >

min_sup) must be frequent (relative support in the partition >
min_sup) in at least one of the partition

e Scan 1: partition database and find local frequent patterns

e Scan 2: assess the actual support of each candidate to
determine the global frequent itemsets

DB

Improving the Efficiency of Apriori

e Dynamic itemset counting (reduce ABCD
scans): adding candidate itemsets /_
at different points during a scan ABC | ABD ACD BCD '

* new candidate itemsets can be
added at any start point (rather
than determined only before scan)

Transactions

] -itemsets
o 2-1temsets
Apriori " once both A and D are
' determined frequent, the
1-itemsets \ counting of AD begins
2-items -
bpic T 3-itetns * Once all length 2 subsets of

___ BCD are determined frequent,
the counting of BCD begins

Improving the Efficiency of Apriori

e Hash-based Technique (shrink number of candidates): hashing
itemsets into corresponding buckets

e A k-itemset whose corresponding hashing bucket count is below
min_sup cannot be frequent

min_sup =3

H,
bucket address y y 2 7 y 5 6
Create hash table H, bucket count 4 2 4 4
using hash function bucket contents ly. 14y {1If, 15}|{12, 13} % 14) {IflS] (11, 12} {11, 13}
h(x, y)= ((order of x) X 10 (@3, IS} {1, IS}|{12, I3} |¥12, 14} ({2, IS} {11, I2}|{I1, I3}
+ (order of y)) mod 7 (12, 13) (11, 12} {11, 13)

> T (12, 13) (11, 12} {11, 13)

h(1,4)=1"10+4=0mod 7
h(3,5=3*"10+5=0mod 7

Improving the Efficiency of Apriori

Sampling: mining on a subset of the given data
e Trade off some degree of accuracy against efficiency

e Select sample S of original database, mine frequent patterns
within S (a lower support threshold) instead of the entire
database —> the set of frequent itemsets localto S = Ls

e Scan the rest of database once to compute the actual
frequencies of each itemset in Ls

e [f Ls actually contains all the frequent itemsets, stop; otherwise

e Scan database again for possible missing frequent itemsets

A Frequent-Pattern Growth Approach

* Bottlenecks of Apriori
» Breadth-first (i.e., level-wise) search

e (Candidate generation and test, often generates a huge number of
candidates

 FP-Growth
* Depth-first search
* Avoid explicit candidate generation
e Grow long patterns from short ones using local frequent items
e “abc” is a frequent pattern

e Get all transactions having “abc,” i.e., project database D on abc: D |
abc

e “d”is alocal frequent item in D | abc —> abcd is a frequent pattern

A Frequent-Pattern Growth Approach

TID __ Items bought (ordered) frequent items

100 facdg i mp; ¢ a,m, p; min_sup = 3
200 {a, b, ¢, f, I, m, 0} {f, ¢, a, b, m}
300 {b, f, h, j, 0, w} {f, b} F-list = f-c-a-b-m-p
400 {b, ¢, k, s, p} {c, b, p}
500 {a, 1, ¢, e, I, p, m, n} {f, ¢, a, m, p}
Header Table

1. Scan database once, find

frequent 1-itemset Item frequency head

/

2. Sort frequent items in Z
frequency descending order b
—> F-list m

p

w w W w N RN

A Frequent-Pattern Growth Approach

TID __ Items bought (ordered) frequent items

100 {f, a, ¢, d, g, i, m, p}
200 {a, b, ¢, f, I, m, 0}
300 {b, f, h, j, 0, w}

400 {b, ¢, k, s, p}

500 {a, 1, ¢, e, I, p, m, n}

1. Scan database once, find
frequent 1-itemset

2. Sort frequent items in frequency
descending order —> F-list

3. Scan database again, construct
FP-tree

4. Mine FP-tree

{f, ¢, a, m, p}
{f, ¢, a, b, m}
i, b}

{¢ b, p}

{f, ¢, a, m, p}

min_sup = 3

F-list = f-c-a-b-m-p

Header Table

Item frequency head

LW W w W N KN

/
c
a
b
m
pP

{
44| el
N I
3/ b:14| b:1
]
N L p:l
N | 7
m:2 b1l
=
Np: 2 Nm:l

How to Construct FP-tree?

FP-tree: a compressed representation of database.
It retains the itemset association information.

To facilitate (1| root
tree traversal, |Header Table
each item
points to its f
occurrence in |c
the tree via a

node-link 51

increment counts of
existing nodes

Item frequency head

create new nodes
_—

LW w W WA KN

p
ltems in each two branches share

transaction are the common prefix:

processed in F-list T \ f,c,a
order 1st branch is created 2nd branch is c?reated
for transaction: for transaction:

f.c,a,m,p f,c,a,b,m

How to Mine FP-tree?

1. Start from each frequent length-1 pattern (suffix pattern, usually
the last item in F-list) to construct its conditional pattern base
(prefix paths co-occurring with the suffix)

Header Table Conditional pattern bases

el item cond. pattern base

Item frequency head 114 .

A BRIy irey ’ 13

c 4 ——t-s{ 34| b 14 b: .

g 3 - | A | a fe:3

b 3 —~l a3 | p:l b fea:1, f:1, c:1

N |

" J | r7 m fea:2, feab:1

p 3 \ m:2{Th:11|
\ — = p feam:2, cb:1
\ —

How to Mine FP-tree?

1. Start from each frequent length-1 pattern (suffix pattern, usually
the last item in F-list) to construct its conditional pattern base

2. Construct the conditional FP-tree based on the conditional
pattern base

i}\ m-conditional pattern base:
Header Table fea:2, fcab:1
7em frezuencv head 4 |7 el o
c 4 B c.;3’/ b.’/\] 7 b.;] |
a 3 o ' L 13
b 3 _ \t%/flj’ ,| 13/1] |3
\ ST c:
Zl g ™ ‘->mi'2 \l>b.;]’//// I
= — a:3

m-conditional FP-tree

How to Mine FP-tree?

. Start from each frequent length-1 pattern (suffix pattern, usually
the last item in F-list) to construct its conditional pattern base
2. Construct the conditional FP-tree based on the conditional
pattern base
3. Mining recursively on each conditional FP-tree until the resulting
FP-tree is empty, or it contains only a single path — which will
generate frequent patterns out of all combinations of its sub-

paths 3 U
m-conditional pattern base: | ,l 3
fea:2, feab:1 f:3 %

{} All frequent | cm-conditional FP-tree

| patterns ¢:3 |3
£3 relating to m: am-conditional FP-tree

_'3 m, fm, cm, am, fe:3 {|}
C'l fcm, fam, cam, 3
a:3 fcam

cam-conditional FP-tree

)3

m-conditional FP-tree

Single Prefix Path in FP-tree

e Suppose a (conditional) FP-tree has a shared single prefix-path
e Mining can be decomposed into two parts
e Reduction of the single prefix path into one node

e (Concatenation of the mining results of the two parts

{|}

a,'n;
|

a,.n, |

I
i /N
. a'n
ds- N3 * I, = |] : + b;:my Croky
/\ a,n, / \
b].'mj /C]<1 az:n; Cz.’kz C3.'k3

C 2.'/(0 C 3.'/(3

Scaling FP-Growth

e What if FP-tree cannot fit into memory?

Database projection: partition a database into a set of projected
databases, then construct and mine FP-tree for each projected
database

Parallel projection:

e project the database in parallel for each frequent item
e all partitions are processed in parallel

e space costly

Partition projection:

* project a transaction to a frequent item x if there is no any other item
after x in the list of frequent items appearing in the transaction

* atransaction is projected to only one projected database

Benefits of FP-tree

e Completeness
e Preserve complete information for frequent pattern mining
 Never break a long pattern of any transaction

e Compactness
e Reduce irrelevant info — infrequent items are gone

e [tems in frequency descending order: occurs more frequently, the
more likely to be shared

e Never be larger than the original database (not including node-
links and the count fields)

Benefits of FP-Growth

e Divide-and-conquer:

e Decompose both the mining task and database according to the
frequent patterns obtained so far

e |ead to focused search of smaller databases
e Other factors:

 No candidate generation, no candidate test

e Compressed database: FP-tree

 No repeated scan of the entire database

e Basic operations: count local frequent items and build sub FP-
tree, no pattern search and matching

Performance of FP-Growth in Large
Datasets

100 - I
90 -

—— D1 FP-grow th runtime

— —x— — D1 Apriori runtime

80 -
70 -
60 -
50 -
40 -

Run time(sec.)

30 -
20 A

10 4

AN
AN
=

0 0.5 1 1.5 2 2.5 3
Support threshold(%)

1

FP-Growth vs. Apriori

ECLAT: Frequent Pattern Mining with Vertical

Data Format

e \lertical data format: itemset — transiD _ set

e translD_set: a set of transaction IDs containing the itemset

e Derive frequent patterns based on the intersections of transID_set

itemset TID set

I1

{T100, T400, T500, T700, T800, T900}

itemset

TID _set

{11,
{11,

12 {T100, T200, T300, T400, T600, T800, T900} (11,
I3 (T300, T500, T600, T700, T800, T900} == {IL,
14 {T200, T400}
I5 {T100, T800}

itemset TID set

{11, 12, 13}
{11, 12, I5}

(12,
(12,
(12,

12}
13}
14}
I5}
13}
14}
I5}
I5}

{T100, T400, T800, T900}
{T500, T700, T800, T900}
{T400)

(T100, T800)

{T300, T600, T800, T900)
{T200, T400)

{T100, T800)

{T800)

(13,
(T800, T900] €

{T100, T800)

ECLAT: Frequent Pattern Mining with Vertical
Data Format

e Vertical data format: itemset — translID_set

e translD_set: a set of transaction IDs containing the itemset
e Derive frequent patterns based on the intersections of transID_set
e Use diffset to reduce the cost of storing long transiD_set

e {I1} ={T100, T400, T500, T700, T800O, T900}

e {I1,12} ={T100, T400, T80O0, T900}

e diffset({lI1}, {1, 12}) = {T500, T700}

Summary

Frequent itemset mining methods:
e Apriori: candidate generation-and-test

e [mproving efficiency of Apriori: partition, dynamic item counting,
hash-based technique, sampling

e FP-Growth: depth-first search
e Scaling of FP-Growth: database projection

e Frequent pattern mining with vertical data format

Outline

e Basic Concepts in Frequent Pattern Mining
 Frequent ltemset Mining Methods

o Pattern Evaluation Methods

Pattern Evaluation Methods: Correlations

e play basketball = eat cereal [40%, 66.7%] is misleading

e the overall % of students eating cereal is 75% > 66.7%

e play basketball = not eat cereal [20%, 33.3%] is more accurate

e Lift: a measure of dependent/correlated event

Basketball | Not Sum
P(AUB) P(B|A) Cereal 2000 1750 3750
lift = P(A)P(B) _ P(B) Not cereal 1000 250 1250
Sum(col.) 3000 2000 5000
- 2000,/5000 < 1, negatively
li ft(Basketball, C [) = = 0.89 ’
ifH(Basketball, Cereal) = 2056756007 » (3750,/5000) correlated
li ft(Basketball, Notcereal) = 1000/5000 =1.33

(3000/5000) x (1250/5000)

Other Pattern Evaluation Methods

e ?measure, all_confidence measure, max_confidence measure,
Kulczynski measure, ...

