Apriori
e How to generate candidates?
e Step 1: self-joining Lk
e Step 2: pruning
e Example of Candidate-generation
1. Lz ={abc, abd, acd, ace, bcd}

2. Self-joining Lz ® Ls: abcd from abc and abd; acde from acd
and ace

3. Pruning: acde is removed because ade is not in L3

4. C4 = {abcd}
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Apriori

Ck: Candidate itemset of size k
Lk: Frequent itemset of size k

L1 = {1-frequent items};
for (k =1; L« '=@; k++) do begin
Ck+1 = candidates generated from L;
for each transaction t in database do
increment the count of all candidates in Ck.1 that are
contained in t
end
Lk+1 = candidates in Ck+1 with min_sup
end
return Uk Lk;



Apriori
e How to count supports of each candidate?
e The total number of candidates can be huge
e One transaction may contain many candidates
e Support Counting Method:
e store candidate itemsets in a hash-tree

e |eaf node of hash-tree contains a list of itemsets and counts

e interior node contains a hash table



Apriori
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Prefix structure enumerating 3-itemset in Transaction t

Figures from https://www-users.cs.umn.edu/~kumar001/dmbook/ch6.pdf




Apriori
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Improving the Efficiency of Apriori

e Challenges:
e Multiple scans of transaction database
e Huge number of candidates
e Support counting for candidates
e |mproving the Efficiency of Apriori
e Reduce passes of transaction database scans
e Shrink number of candidates

e Facilitate support counting of candidates



Improving the Efficiency of Apriori

e Partition (reduce scans): partition data to find candidate itemsets

e Any itemset that is potentially frequent (relative support >

min_sup) must be frequent (relative support in the partition >
min_sup) in at least one of the partition

e Scan 1: partition database and find local frequent patterns

e Scan 2: assess the actual support of each candidate to
determine the global frequent itemsets

DB



Improving the Efficiency of Apriori

e Dynamic itemset counting (reduce ABCD
scans): adding candidate itemsets /\_
at different points during a scan ABC | ABD ACD BCD '

* new candidate itemsets can be
added at any start point (rather
than determined only before scan)

Transactions

] -itemsets
o 2-1temsets
Apriori " once both A and D are
' determined frequent, the
1-itemsets \ counting of AD begins
2-items -
bpic T 3-itetns * Once all length 2 subsets of

_________________________________________ BCD are determined frequent,
the counting of BCD begins




Improving the Efficiency of Apriori

e Hash-based Technique (shrink number of candidates): hashing
itemsets into corresponding buckets

e A k-itemset whose corresponding hashing bucket count is below
min_sup cannot be frequent

min_sup =3

H,
bucket address y y 2 7 y 5 6
Create hash table H, bucket count 4 2 4 4
using hash function bucket contents ly. 14y {1If, 15}|{12, 13} % 14) {IflS] (11, 12} {11, 13}
h(x, y)= ((order of x) X 10 (@3, IS} {1, IS}|{12, I3} |¥12, 14} ({2, IS} {11, I2}|{I1, I3}
+ (order of y)) mod 7 (12, 13) (11, 12} {11, 13)

> T (12, 13) (11, 12} {11, 13)

h(1,4)=1"10+4=0mod 7
h(3,5=3*"10+5=0mod 7



Improving the Efficiency of Apriori

Sampling: mining on a subset of the given data
e Trade off some degree of accuracy against efficiency

e Select sample S of original database, mine frequent patterns
within S (a lower support threshold) instead of the entire
database —> the set of frequent itemsets localto S = Ls

e Scan the rest of database once to compute the actual
frequencies of each itemset in Ls

e [f Ls actually contains all the frequent itemsets, stop; otherwise

e Scan database again for possible missing frequent itemsets



A Frequent-Pattern Growth Approach

* Bottlenecks of Apriori
» Breadth-first (i.e., level-wise) search

e (Candidate generation and test, often generates a huge number of
candidates

 FP-Growth
* Depth-first search
* Avoid explicit candidate generation
e Grow long patterns from short ones using local frequent items
e “abc” is a frequent pattern

e Get all transactions having “abc,” i.e., project database D on abc: D |
abc

e “d”is alocal frequent item in D | abc —> abcd is a frequent pattern



A Frequent-Pattern Growth Approach

TID __ Items bought (ordered) frequent items

100 facdg i mp; ¢ a,m, p; min_sup = 3
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A Frequent-Pattern Growth Approach

TID __ Items bought (ordered) frequent items

100 {f, a, ¢, d, g, i, m, p}
200 {a, b, ¢, f, I, m, 0}
300 {b, f, h, j, 0, w}

400 {b, ¢, k, s, p}

500 {a, 1, ¢, e, I, p, m, n}

1. Scan database once, find
frequent 1-itemset

2. Sort frequent items in frequency
descending order —> F-list

3. Scan database again, construct
FP-tree

4. Mine FP-tree
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How to Construct FP-tree?

FP-tree: a compressed representation of database.
It retains the itemset association information.

To facilitate (1| root
tree traversal, |Header Table
each item
points to its f
occurrence in |c
the tree via a

node-link 51

increment counts of
existing nodes

Item frequency head

create new nodes
_—
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transaction are the common prefix:

processed in F-list T \ f,c,a
order 1st branch is created 2nd branch is c?reated
for transaction: for transaction:

f.c,a,m,p f,c,a,b,m




How to Mine FP-tree?

1. Start from each frequent length-1 pattern (suffix pattern, usually
the last item in F-list) to construct its conditional pattern base
(prefix paths co-occurring with the suffix)

Header Table Conditional pattern bases
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How to Mine FP-tree?

1. Start from each frequent length-1 pattern (suffix pattern, usually
the last item in F-list) to construct its conditional pattern base

2. Construct the conditional FP-tree based on the conditional
pattern base

i}\ m-conditional pattern base:
Header Table fea:2, fcab:1
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How to Mine FP-tree?

. Start from each frequent length-1 pattern (suffix pattern, usually
the last item in F-list) to construct its conditional pattern base
2. Construct the conditional FP-tree based on the conditional
pattern base
3. Mining recursively on each conditional FP-tree until the resulting
FP-tree is empty, or it contains only a single path — which will
generate frequent patterns out of all combinations of its sub-

paths 3 U
m-conditional pattern base: | ,l 3
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{} All frequent | cm-conditional FP-tree

| patterns ¢:3 |3
£3 relating to m: am-conditional FP-tree
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a:3 fcam

cam-conditional FP-tree

)3

m-conditional FP-tree



Single Prefix Path in FP-tree

e Suppose a (conditional) FP-tree has a shared single prefix-path
e Mining can be decomposed into two parts
e Reduction of the single prefix path into one node

e (Concatenation of the mining results of the two parts
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Scaling FP-Growth

e What if FP-tree cannot fit into memory?

Database projection: partition a database into a set of projected
databases, then construct and mine FP-tree for each projected
database

Parallel projection:

e project the database in parallel for each frequent item
e all partitions are processed in parallel

e space costly

Partition projection:

* project a transaction to a frequent item x if there is no any other item
after x in the list of frequent items appearing in the transaction

* atransaction is projected to only one projected database



Benefits of FP-tree

e Completeness
e Preserve complete information for frequent pattern mining
 Never break a long pattern of any transaction

e Compactness
e Reduce irrelevant info — infrequent items are gone

e [tems in frequency descending order: occurs more frequently, the
more likely to be shared

e Never be larger than the original database (not including node-
links and the count fields)



Benefits of FP-Growth

e Divide-and-conquer:

e Decompose both the mining task and database according to the
frequent patterns obtained so far

e |ead to focused search of smaller databases
e Other factors:

 No candidate generation, no candidate test

e Compressed database: FP-tree

 No repeated scan of the entire database

e Basic operations: count local frequent items and build sub FP-
tree, no pattern search and matching



Performance of FP-Growth in Large
Datasets
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ECLAT: Frequent Pattern Mining with Vertical

Data Format

e \lertical data format: itemset — transiD _ set

e translD_set: a set of transaction IDs containing the itemset

e Derive frequent patterns based on the intersections of transID_set

itemset TID set

I1

{T100, T400, T500, T700, T800, T900}

itemset

TID _set

{11,
{11,

12 {T100, T200, T300, T400, T600, T800, T900} (11,
I3 (T300, T500, T600, T700, T800, T900} == {IL,
14 {T200, T400}
I5 {T100, T800}

itemset TID set

{11, 12, 13}
{11, 12, I5}

(12,
(12,
(12,

12}
13}
14}
I5}
13}
14}
I5}
I5}

{T100, T400, T800, T900}
{T500, T700, T800, T900}
{T400)

(T100, T800)

{T300, T600, T800, T900)
{T200, T400)

{T100, T800)

{T800)

(13,
(T800, T900] €

{T100, T800)




ECLAT: Frequent Pattern Mining with Vertical
Data Format

e Vertical data format: itemset — translID_set

e translD_set: a set of transaction IDs containing the itemset
e Derive frequent patterns based on the intersections of transID_set
e Use diffset to reduce the cost of storing long transiD_set

e {I1} ={T100, T400, T500, T700, T800O, T900}

e {I1,12} ={T100, T400, T80O0, T900}

e diffset({lI1}, {1, 12}) = {T500, T700}



Summary

Frequent itemset mining methods:
e Apriori: candidate generation-and-test

e [mproving efficiency of Apriori: partition, dynamic item counting,
hash-based technique, sampling

e FP-Growth: depth-first search
e Scaling of FP-Growth: database projection

e Frequent pattern mining with vertical data format



Outline

e Basic Concepts in Frequent Pattern Mining
 Frequent ltemset Mining Methods

o Pattern Evaluation Methods



Pattern Evaluation Methods: Correlations

e play basketball = eat cereal [40%, 66.7%] is misleading

e the overall % of students eating cereal is 75% > 66.7%

e play basketball = not eat cereal [20%, 33.3%] is more accurate

e Lift: a measure of dependent/correlated event

Basketball | Not Sum
P(AUB)  P(B|A) Cereal 2000 1750 3750
lift = P(A)P(B) _ P(B) Not cereal 1000 250 1250
Sum(col.) 3000 2000 5000
- 2000,/5000 < 1, negatively
li ft(Basketball, C [) = = 0.89 ’
ifH(Basketball, Cereal) = 2056756007 » (3750,/5000) correlated
li ft(Basketball, Notcereal) = 1000/5000 =1.33

(3000/5000) x (1250/5000)



Other Pattern Evaluation Methods

e ?measure, all_confidence measure, max_confidence measure,
Kulczynski measure, ...



