
On the Complexity of Optimal Routing and Content
Caching in Heterogeneous Networks

Mostafa Dehghan1, Anand Seetharam2, Bo Jiang1, Ting He3, Theodoros Salonidis3,
Jim Kurose1, Don Towsley1, and Ramesh Sitaraman1,4

1University of Massachusetts Amherst, 2California State University Monterey Bay,
3IBM T.J. Watson Research Center, 4Akamai Technologies Inc

{mdehghan, bjiang, kurose, towsley, ramesh}@cs.umass.edu,
aseetharam@csumb.edu, {the, tsaloni}@us.ibm.com

Abstract—We investigate the problem of optimal request rout-
ing and content caching in a heterogeneous network supporting
in-network content caching with the goal of minimizing average
content access delay. Here, content can either be accessed directly
from a back-end server (where content resides permanently)
or be obtained from one of multiple in-network caches. To
access a piece of content, a user must decide whether to route
its request to a cache or to the back-end server. Additionally,
caches must decide which content to cache. We investigate the
problem complexity of two problem formulations, where the
direct path to the back-end server is modeled as i) a congestion-
sensitive or ii) a congestion-insensitive path, reflecting whether
or not the delay of the uncached path to the back-end server
depends on the user request load, respectively. We show that the
problem is NP-complete in both cases. We prove that under the
congestion-insensitive model the problem can be solved optimally
in polynomial time if each piece of content is requested by only
one user, or when there are at most two caches in the network. We
also identify a structural property of the user-cache graph that
potentially makes the problem NP-complete. For the congestion-
sensitive model, we prove that the problem remains NP-complete
even if there is only one cache in the network and each content is
requested by only one user. We show that approximate solutions
can be found for both models within a (1 − 1/e) factor of
the optimal solution, and demonstrate a greedy algorithm that
is found to be within 1% of optimal for small problem sizes.
Through trace-driven simulations we evaluate the performance
of our greedy algorithms, which show up to a 50% reduction in
average delay over solutions based on LRU content caching.

I. INTRODUCTION

In-network content caching has received considerable atten-
tion in recent years as a means to address the explosive growth
in data access seen in today’s networks. Its main premise is
to store content at the network’s edge – close to the end users
– to reduce user content access delay and network bandwidth
usage. The benefits of in-network content caching have been
demonstrated in the context of CDN [1]–[3] as well as hybrid

This work was supported in part by the U.S. Army Research Laboratory
and the U.K. Ministry of Defence under Agreement Number W911NF-06-
3-0001 and the National Science Foundation under Grant No. CNS-1413998
and CNS-1117764. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the sponsors. The US and
UK Governments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation hereon.

networks comprised of cellular and MANETs or femto-cell
networks [4]–[6].

In this paper, we investigate a joint problem of in-network
content caching and request routing in a hybrid network where
stored content can be accessed through multiple heterogeneous
network paths. We consider a scenario in which users send
requests for content that is always available at a remote back-
end server located in the network core but may also be
present at multiple in-network caches. Access to the back-end
server employs a potentially costly, congested, and/or slower
uncached path, while the in-network caches may be reached
through cheaper and faster network paths. This scenario
arises in various hybrid network contexts where content can
be accessed through multiple heterogeneous paths, including
core/edge CDNs, macro/femto cell networks, cellular/MANET
networks (e.g., where the path to the network core is over
cellular infrastructure and in-network caches are accessible via
MANET paths), and cloud/edge cellular networks with edge
storage at the cellular base stations. If a request is routed to an
in-network cache that has the requested content, the request
is served immediately. Otherwise, the cache must download
the content from the back-end server before serving it to the
user, incurring additional delay. Additionally, the cache must
decide whether or not to store the downloaded content.

We address the following question: how should users route
their requests among the paths to in-network caches and
the back-end server, and what in-network cache management
policy should be adopted to minimize the average content
access delay across all users? We consider two variants of
the problem. First, we consider a congestion-insensitive delay
model (termed CI-model), assuming that delays are indepen-
dent of the traffic load on all paths. Second, we consider a
congestion-sensitive delay model (termed CS-model), assum-
ing that the delay to the back-end server (i.e., the uncached
path) depends on the traffic load. In a hybrid cellular/MANET
network, the uncached path in the CI-model corresponds to
GBR (guaranteed bit rate) 3GPP bearer service, while in the
CS-model it corresponds to Non-GBR Aggregate Maximum
Bit Rate (AMBR) bearer service [7].

Our goal in this paper is two-pronged. First, we seek a
principled understanding of the computational complexity of

1

the joint caching and routing problem: i) Can the general
problem be solved optimally in polynomial time? ii) If not,
are there problem instances that are tractable and which of the
above modeling aspects make the general problem intractable?
Second, we seek efficient approximate solutions to the joint
routing/caching problem, with approximation guarantees, that
work well in practice.

Toward our first goal, we provide a unified optimization
formulation of the joint caching and routing problem for
both models and show this problem is NP-complete in the
general case. Then, we investigate which factors contribute
to the problem complexity. For the CI-model, we prove that
the optimal solution can be found in polynomial time in two
special cases: a) when each user requests a single piece of
content, or b) when there are at most two in-network caches.
We also identify a condition which is potentially the root
cause of the complexity of the problem in the general case
− cycles with an odd number of users and caches in a graph
that represents the network. For the CS-model, we prove that
the problem is “harder”: it remains NP-complete even if there
is a single cache and each user accesses a single distinct
content. These results provide valuable insights on the problem
complexity.

Toward our second goal, we show that the problem of
optimal joint caching and routing for both the CI-model
and the CS-model can be formulated as maximization of a
monotone submodular function subject to matroid constraints.
This enables us to devise two greedy algorithms. The first one
has a higher complexity but can produce solutions within a
(1−1/e) factor of the optimal solution for both the CI-model
and CS-model. The second algorithm has a lower complexity
but does not have known approximation guarantees. We eval-
uate the performance of these algorithms through numerical
evaluations and trace-driven simulations on a large dataset of
approximately 9 million requests for 3 million content items.
The results show that both algorithms are within 1% of the
optimal for small problem sizes where computing the optimal
solution is feasible and that significant reductions (up to 50%)
in content access delay can be achieved over traditional LRU-
based content caching schemes.

Our contributions can be summarized as follows:
• We provide a unified optimization formulation for the

joint caching and routing problem for the CI-model and
the CS-model and prove that the problem is NP-complete
in both cases.

• We derive insights into problem complexity by consid-
ering several special cases, some of which are shown to
admit efficient solutions, while others remain computa-
tionally hard.

• We develop a greedy caching and routing algorithm that
achieves an average delay within a (1−1/e) factor of the
optimal solution and a second greedy algorithm of lower
complexity.

• We evaluate the performance of these algorithms through
numerical evaluations and trace-driven simulations. Nu-
merical results show that the greedy algorithms perform

Fig. 1: Hybrid network with in-network caching

close to the optimal solution when computing the optimal
solution is feasible. Our results from trace-driven simu-
lations show that the greedy algorithms yield significant
performance improvement compared to solutions based
on traditional LRU caching policy.

II. NETWORK MODEL

In this section, we consider the network shown in Figure 1
with N users generating requests for a set of K unique files
F = {f1, f2, . . . , fK} of unit size. Throughout this paper, we
will use the terms content and file interchangeably. We assume
that these files reside permanently at the back-end server. As
shown in Figure 1, there are M caches in the network that
can serve user requests.

All files are available at the back-end server and users are
directly connected to this server via a cellular infrastructure.
We refer to the cellular path between the user and the back-
end server as the uncached path. Each user can also access a
subset of the M in-network caches where the content might
be cached. We refer to the connection between the user and a
cache as a cached path.

Let Cm denote the storage capacity of the m-th cache
measured by the maximum number of files it can store. If
user i requests file j and it is present in the cache, then the
request is served immediately. We refer to this event as a cache
hit. However, if content j is not present in the cache, the cache
then forwards the request to the back-end server, downloads
file j from the back-end server and forwards it to the user. We
refer to this event as a cache miss, since it was necessary to
download content from the back-end server in order to satisfy
the request. Note that in case of a cache miss, the cache can
decide whether to keep the downloaded content.

User i generates requests for the files in F with aggregate
rate λi. Aggregate request rate of all users is λ. We denote
by qij the probability that user i generates a request for file j
(referred to as the file popularity). The popularity of the same
file can vary from one user to another.

Let A = [aim] denote the connections between users and
caches, with aim = 1 if user i is connected to cache m,
and aim = 0, otherwise. For the user-cache connections, let
dhim and dmim denote the average delays incurred by user i
in the event of a cache hit or miss at cache m, respectively.
We assume without loss of generality that dmim > dhim, i.e.,
cache misses always incur greater delays than cache hits. We
consider two models for the delay over the path from users to

2

the back-end server. The first one is a congestion-insensitive
model where the average delay experienced for a request by
user i sent over the uncached path is dbi . The second model is
a congestion-sensitive delay model where delays experienced
over the uncached path depend on the traffic load. In the
congestion-sensitive case, we assume the back-end server has
service rate µ, and model the connections to the back-end
server as an M/M/1 queue. The delay experienced over the
uncached path then consists of an initial access delay with
average dbi and a queuing (waiting plus service) delay with
average 1/(µ − λq), assuming λq is the request rate on the
queue.

III. PROBLEM FORMULATION

In this work, we consider a joint caching and routing
problem with the goal of minimizing average content access
delay over the requests of all users for all files. The solution to
this problem requires addressing two closely-related questions
1) How should cache contents be managed − which files
should be kept in the caches, and what cache replacement
strategy should be used? and 2) How should users route their
requests between the cached and uncached paths?

For our routing policy, we define the decision variable pijm
that denotes the fraction of the requests of user i for content
j sent to cache m. User i sends the remaining 1−

∑
m pijm

fraction of her requests for content j to the back-end server
through the uncached path.

It is shown in [8] for a single cache that given a routing
policy, static caching achieves minimum expected delay. With
static caching, a set of files is stored in the cache, and the cache
content does not change in the event of a cache hit or miss. The
argument in [8] was extended in [9] to a network of caches
to show that static caching achieves minimum delay under
a fixed routing policy. Hence, we define the binary variables
xjm ∈ {0, 1} to denote the content placement in caches, where
xjm = 1 indicates file j is stored in cache m and xjm = 0
indicates otherwise.

We denote by D(x,p) the expected delay obtained by
content placement strategy x = [xjm], and routing strategy
p = [pijm]. The optimal solution to the problem of joint
caching and routing is therefore obtained by solving the
following Mixed-Integer Program (MIP):

minimize D(x,p)

such that
∑
m

pijm ≤ 1 ∀i, j∑
j

xjm ≤ Cm ∀m (1)

xjm ∈ {0, 1} ∀j,m
0 ≤ pijm ≤ aim ∀i, j,m

In the next two sections, we express the delay function
D(x,p) for the cases of i) congestion-insensitive and ii)
congestion-sensitive uncached path delay models, and discuss
why the joint caching and routing problem is NP-complete.

IV. CONGESTION-INSENSITIVE UNCACHED PATH

First, we consider the case where delays on the uncached
path, dbi , do not depend on the traffic load on the back-end
server. For a given content placement x and routing policy p,
the average delay can be written as

D(x,p) =
1

λ

∑
i

∑
j

λiqij

(∑
m

pijmxjmd
h
im

+
∑
m

pijm(1− xjm)dmim +
(

1−
∑
m

pijm

)
dbi

)
(2)

Without loss of generality, we assume that
dhim < dbi < dmim whenever user i is connected to
cache m, i.e., aim = 1. Note that if dbi ≥ dmim,∀i, users
connected to cache m will never use the uncached path. Also,
if dbi ≤ dhim,∀i, none of the users will actually use cache m.

It is easy to see that with the congestion-insensitive model,
given a content placement, the average minimum delay is
obtained by routing requests for the cached content to caches,
and routing the remaining requests to the uncached path.
Note that under this routing policy no cache misses occur.
Therefore, the solution to the problem of joint caching and
routing in the case of congestion-insensitive uncached path
delays are obtained by solving the following binary linear
program:

minimize
1

λ

∑
i

λi
∑
j

qij

[∑
m

pijmd
h
im + (1−

∑
m

pijm)dbi

]
such that

∑
m

pijm ≤ 1∑
j

xjm ≤ Cm (3)

0 ≤ pijm ≤ xjm · aim
xjm ∈ {0, 1}.

Note that D(x,p) is a linear function of the routing variables.
Also note the additional constraint pijm ≤ xjm · aim, which
is due to the fact that only requests for cached content are
routed to caches. Since dhim < dbi and dbi < dmim, users have
no incentive to split the traffic for any content between the
cached and uncached paths, and hence there will be no routing
variable, pijm, with a fractional value in the optimal solution,
i.e., pijm ∈ {0, 1}.

A. Hardness of General Case

The above formulation of the joint caching and routing
problem is a generalization of the Helper Decision Problem
(HDP) proved to be NP-complete in [10]. Our formulation is
more general as we consider non-homogeneous delays for the
cached and uncached paths. HDP reduces to the optimization
problem in (3) by setting dbi = 1, dhim = 0, and Cm = C,
where C is the cache size at all caches in HDP.

Although the problem is NP-complete in general, we will
show that the joint caching and routing problem can be solved
in polynomial time for several special cases, and discuss what

3

makes the problem “hard” in general. We first consider a
restrictive setting where each user is interested in only one file
and each file is requested by only one user. Next, we consider a
network with two caches (but each user may be interested in an
arbitrary number of files). We present polynomial time solution
algorithms for both cases. Finally, we present an example
that demonstrates what we conjecture to be the source of the
complexity of this problem.

B. Special Case: One File per User

Consider the network illustrated in Figure 1, but assume
each user is interested in only one file, i.e., qii = 1, and qij = 0
for i 6= j. In this case, the optimal solution to the joint caching
and routing problem can be found in polynomial time based
on a solution to the maximum weighted matching problem.

Note that in this case, the number of files equals the number
of users, i.e., N = K. To avoid triviality, we assume that the
number of users is larger than the capacity of each cache in
the network, i.e., Cm < N, ∀m. The assumption that each user
is interested in only one file allows us to re-write the objective
function in (3) as

D(x,p) =
1

λ

∑
i

(∑
m

λipiimd
h
im + λi(1−

∑
m

piim)dbi

)
=

1

λ

(N∑
i=1

λid
b
i −

∑
i

∑
m

λipiim(dbi − dhim)
)
.

Since
∑N

i=1 λid
b
i is a constant independent of the decision

variables, minimizing the above objective function is equiv-
alent to maximizing

∑
i

∑
m λipiim(dbi − dhim). Note that

λi(d
b
i−dhim) can be interpreted as the gain obtained by having

file i in cache m. This problem can then be naturally seen as
matching files to caches with the goal of maximizing the sum
of individual gains. In what follows, we map this problem to
the maximum weighted matching problem.

For each cache of size Cm, we introduce Cm nodes
{v1m, v2m, . . . , vCm

m } representing unit size micro-caches that
form cache m. Let V = {v11 , v21 , . . . , v

C1
1 , . . . , v1M , . . . , v

CM

M }
denote the set of all such nodes, and let
U = {u1, u2, . . . , uN} denote the set of all files. We
define the bipartite graph G(U, V,E) with λi(d

b
i − dhim)

as the weight of each edge connecting node ui to nodes
vsm,∀s ∈ {1, 2, . . . , Cm}. Figure 2 demonstrates a bipartite
graph with user/file nodes u and the micro-cache nodes v
with the edge weights shown for some of the edges. Note
that the bipartite graph consists of |U |+ |V | = N +

∑
m Cm

vertices and |E| = O(N
∑

m Cm) edges.
The optimal solution to the joint content placement and rout-

ing problem corresponds to the maximum weighted matching
for graph G. The edges selected in the maximum matching
determine what content should be placed in which cache.
Users then route to caches for cached content, and to the
uncached path for the remaining files.

The maximum weighted matching problem for bipartite
graphs can be solved in O(|V |2|E|) using the Hungarian
algorithm [11]. In our context, the complexity is O(M3N4).

Note that
∑

m Cm = O(MN) as we assumed Cm < N,∀m.
Therefore, we can solve the joint caching and routing problem
in polynomial time when users are interested in one file only.

Fig. 2: Modeling content placement as maximum weighted matching problem

C. Special Case: Network with Two Caches

Next, we show that the optimal solution for the joint caching
and routing problem can be found in polynomial time when
there are only two caches in the network. Specifically, we
prove that the solution to the integer program (3) can be found
in polynomial time when there are two caches in the network.
In the remainder of this section, we assume that xjm take real
values.

Before delving into the proof we introduce some definitions
and results from [12]:

Definition 1. A square integer matrix is called unimodular if
it has determinant +1 or −1.

Definition 2. An m×n integral matrix A is totally unimodular
if the determinant of every square submatrix is 0, 1, or −1.

Proposition 1. If for a linear program {max cTx : Ax ≤ b},
A is totally unimodular and b is integral, then there is an
optimal solution to the linear program that is integral.

Note that the three sets of constraints in the optimization
problem in (3), namely, i)

∑
m pijm ≤ 1, ii)

∑
j xjm ≤ Cm,

and iii) pijm − xjm · aim ≤ 0 can be written in the form
Az ≤ b where the entries of A and b are all integers, and
z consists of the xjm and pijm entries. From Proposition 1,
then, it suffices to show that the matrix A is totally unimodular
for a network with two caches to prove that optimization (3)
can be solved in polynomial time. To prove that the matrix A
is totally unimodular we use the following result from [13]:

Proposition 2. A matrix is totally unimodular if and only if
for every subset R of rows, there is an assignment s : R→ ±1
of signs to rows so that the signed sum

∑
r∈R s(r)r (which

is a row vector of the same width as the matrix) has all its
entries in {0,±1}.

In [14], we give a constructive proof showing that for any
subset R of rows of A we can find an assignment s that
satisfies Proposition 2. Therefore, problem instances with at
most two caches can be solved optimally in polynomial time.

4

(a) (b) (c)

Fig. 3: (a) A network with three users and three caches. User-cache connec-
tions form a cycle. (b) Optimal content placement according to binary content
placement, i.e., xjm ∈ {0, 1}. (c) Optimal content placement assuming
fractions of files can be stored in caches, i.e., 0 ≤ xjm ≤ 1.

D. Complexity Discussion

By relaxing the integer constraints on content placement
variables, xjm, and allowing them to take real values, i.e.,
0 ≤ xjm ≤ 1, we obtain another problem that is generally
referred to as the “relaxation” of problem (3). Since the
objective function in (3) is convex, the solution to the relaxed
problem can be found in polynomial time for all instances
of the problem. By comparing the solutions to the integer
and the relaxed problems for a large number of instances
of the optimization problem in (3) we observe that for most
instances of the problem, solutions to problem (3) match those
of the relaxed problem. Those instances that result in different
solutions to the two problems exhibit a certain structure that
we explain here.

Consider a network with three users and three caches as
depicted in Figure 3a. With each user connected to two of the
caches, the user-cache connections can be seen to form a cycle
as demonstrated in Figure 3a. Assume all paths from users to
caches have equal hit and miss delays. Also, assume that each
cache has the capacity of storing one file, and that all three
users are interested in two files, noted here as green and red.

We show, in [14], that for all networks that consist of cycles
formed by odd number of users and odd number of caches
there are instances for which solutions of the original and
relaxed problems differ. A detailed explanation is provided
in [14]. Moreover, we conjecture that these cycles are the
source of complexity in the problem of joint caching and
routing, and for networks that do not have any such cycles
the solution to the optimization problem (3) matches that of
the relaxed problem. More specifically:

Conjecture 1. The optimal solution to the problem of joint
caching and routing can be found in polynomial time if there
are no cycles of length 4k + 2, k ≥ 1 in the bipartite graph
corresponding to the user-cache connections.

V. CONGESTION-SENSITIVE UNCACHED PATH

Next, we consider the case where delays on the uncached
path depend on the traffic load on the back-end server. We
model the uncached path as an M/M/1 queue with service
rate µ. In addition to the queuing delay, we assume that user i
observes an initial access delay to uncached path with average
dbi , i = 1, . . . , N . Here, we make no assumptions regarding dbi
and dhim. Note that if dhim ≤ dbi and the needed object is in
the cache user i will direct all her requests for that object to

cache. If dhim > dbi , however, even if the needed content is
in cache m, the user may prefer to use the uncached path,
depending on the service rate and the load on the back-end
server. For a given content placement x and routing policy p,
the average delay can be written as

D(x,p) =
1

λ

[∑
i

∑
j

λiqij

(∑
m

pijmxjmd
h
im

+
∑
m

(1− xjm)pijmd
m
im + (1−

∑
m

pijm)dbi

)

+

∑
i

∑
j λiqij(1−

∑
m pijm)

µ−
∑

i

∑
j λiqij(1−

∑
m pijm)

]
. (4)

A. Hardness of General Case
Note that we can consider the congestion-insensitive delay

model as a special case of the congestion-sensitive model
where µ = +∞. This explains why this problem is NP-
complete in general. In the remainder of this section, however,
we will prove that the problem of joint caching and routing
in the case of a congestion-sensitive delay model remains NP-
complete even if there is only one cache in the network and
each content is of interest to no more than one user.

B. Hardness of Single-Cache Case
Modifying the delay function D(x,p) in (4) for the case of

one cache, i.e., M = 1, and assuming each user is interested
in only one file, i.e., qii = 1,∀i, and qij = 0 for i 6= j, we
can re-write the optimization problem as

minimize
1

λ

[
N∑
i=1

λixipid
h
i +

N∑
i=1

λi(1− xi)pidmi

+

N∑
i=1

λi(1− pi)dbi +

∑N
i=1 λi(1− pi)

µ−
∑N

i=1 λi(1− pi)

]

such that
N∑
i=1

xi ≤ C (5)

0 ≤ pi ≤ ai
xi ∈ {0, 1},

where pi = pii1 denotes the fraction of user i requests routed
to the cache. Also, ai denotes whether user i is connected to
the cache.

To show that the above optimization problem is NP-
complete, we consider the corresponding decision problem,
Congestion Sensitive Delay Decision Problem (CSDDP).

Problem 1. (Congestion Sensitive Delay Decision Problem)
Let Λ = [λ1, λ2, . . . , λN] denote the request rates of users,
and let dh = [dhi], dm = [dmi] and db = [dbi] denote the
hit delay, miss delay and initial access delay of the uncached
path, respectively. Also, let µ be the service rate of the back-
end server, and C be the cache capacity.
We are asking the following question: given the parameters
(µ,Λ,dh,dm,db, C) and a real number d, is there any
assignment of x = [xi] and p = [pi] such that D(x,p) ≤ d.

5

It is clear that for any given content placement x and routing
policy p the answer to CSDDP can be verified in polynomial
time, and hence CSDDP is in class NP. To prove that CSDDP
is NP-hard, we use the fact that the following problem is NP-
hard.

Problem 2. (Equal Cardinality Partition) Given a set A of n
numbers, can A be partitioned into two disjoint subsets A1

and A2 such that A = A1∪A2, the sum of the numbers in A1

equals the sum of the numbers in A2 and that |A1| = |A2|?

Lemma 1. ECP is NP-hard.

Proof. A proof of NP-hardness of a more general form of ECP
is given in [15]. Here, we give a simpler proof by a reduction
from the Partition problem.

Problem 3. (Partition) Given a set A of n positive integers,
can A be partitioned into two disjoint subsets A1 and A2 such
that A = A1 ∪ A2 and the sum of the numbers in A1 equals
the sum of the numbers in A2?

For each instance of Partition with input A = {a1, . . . , an}
create an instance A′ = {a1, . . . , an, 0, . . . , 0} by adding n
zeros to A. It is easy to see that A′ can be partitioned into
two subsets with equal cardinality if and only if A can be
partitioned. Therefore, Partition ≤P ECP, and ECP is NP-hard.

Lemma 2. CSDDP is NP-complete.

Proof. A detailed proof of this lemma is given in [14], where
we show ECP reduces to CSDDP.

Although this problem is NP-complete even in a very
restrictive case with one cache and each user requesting one
file, in the next section we show that a greedy algorithm can
find approximate solutions with guaranteed performance.

VI. APPROXIMATION ALGORITHMS

In this section, we show that the problem of joint caching
and routing (for both congestion-insensitive and congestion-
sensitive delay models) can be formulated as the maximization
of a monotone submodular function subject to matroid con-
straints. This enables us to devise algorithms with provable
approximation guarantees.

Let Xm denote the set of files stored in cache m, and define
X = X1 ∪ X2 ∪ . . . ∪ XM to be the set of files stored in
the M caches. X is the set equivalent of the binary content
placement x defined in (1). Note that |Xm| ≤ Cm

Let Sm = {s1m, s2m, . . . , sKm} denote the set of all
possible files that could be placed in cache m where sjm
denotes the storage of file j in cache m. The set element
sjm corresponds to the binary variable xjm defined in the
optimization problem (1) such that xjm = 1 if and only if the
element sjm ∈ X . Define the super set S = S1∪S2∪. . .∪SM

as the set of all possible content placements in the M caches.
We have the following lemma.

Lemma 3. The constraints in (1) form a matroid on S.

Proof. For a given content placement x, the optimal rout-
ing policy can be computed in polynomial time since
D(p) = D(p; x) is a convex function. With that in
mind, we can write the average delay as a function of the
content placement X ⊆ S. Thus, the constraints on the
capacities of the caches can be expressed as X ⊆ I where
I = {X ⊆ S : |X ∩ Sm| ≤ Cm,∀m = 1, . . . ,M}. Note that
(S, I) defines a matroid.

Let dij(x) denote the minimum average delay for user i
accessing file j through a cached path, given content placement
x. We have dij(x) = minm dijm, where dijm denotes the
average delay of accessing content j from cache m, defined
as (xjm indicates that file j is in cache m)

dijm = dhimxjm + dmim(1− xjm).

Given the content placement in the caches, let pij denote the
fraction of the traffic for which user i uses the cached paths
to access content j. We can re-write the delay functions (2)
and (4) for the congestion-insensitive and the congestion-
sensitive models as

D(p; x) =
1

λ

∑
i,j

λiqijpijdij(x) +
∑
i,j

λiqij(1− pij)dbi

 ,

and

D(p; x) =
1

λ

∑
i,j

λiqijpijdij(x) +
∑
i,j

λiqij(1− pij)dbi

+
µ

µ−
∑

i,j λiqij(1− pij)
− 1

]
,

respectively. The optimal routing policy for a given content
placement x, then, is one that maximizes −D(p; x).

Let xX be the equivalent binary representation of the con-
tent placement set X . We have the following lemma for both
congestion-insensitive and congestion-sensitive delay models:

Lemma 4. Let P denote all routing policies. For X ⊆ S,
the function F (X) = maxp∈P −D(p; xX) is a monotone
increasing and submodular function.

Proof. A detailed proof is given in [14].

A direct consequence of Lemma 4 is that minimizing the
objective function in (2) or (4) is equivalent to maximizing
a monotone submodular function. Therefore, the approximate
solution obtained by the greedy algorithm in Algorithm 1 is
within a (1− 1/e) factor of the optimal solution (see [16]).

Algorithm 1 starts with empty caches and at each step
greedily adds a file to the cache that maximizes function F .
This process continues until all caches are filled to capacity.
Optimal routing is then determined based on the content
placement.

Although the greedy algorithm in Algorithm 1 is guaranteed
to find solutions within a (1 − 1/e) factor of the optimal
solution, its complexity is high, O(M2N2K2 log (NK)). We

6

Algorithm 1 GreedyWG: A greedy approximation with per-
formance guarantees.

1: S ← {sjm : 1 ≤ j ≤ K, 1 ≤ m ≤M}
2: Xm ← Ø,∀m
3: X ← Ø
4: for c← 1 to

∑
m Cm do

5: sj∗m∗ ← arg maxsjm∈S F (X ∪ {sjm})
6: Xm∗ ← Xm∗ ∪ {sj∗m∗}
7: X ← X ∪ {sj∗m∗}
8: if |Xm∗ | = Cm∗ then
9: S ← S\sjm∗ ,∀j

10: else
11: S ← S\sj∗m∗

12: Content placement is done according to X .
13: Determine routing as p∗ ← arg minpD(p; xX).

Algorithm 2 Greedy: A greedy approximation without known
performance guarantees.

1: Xm ← Ø,∀m
2: X ← Ø
3: dij ← minc{dmic},∀i, j
4: for c← 1 to

∑
m Cm do

5: Gjm ← [0]K×M
6: for m← 1 to M do
7: if |Xm| < Cm then
8: for j ← 1 to K do
9: Gjm ←

∑
i λiqij(dij −min{dij , dhim})

10: [j∗,m∗]← arg maxj,mGjm

11: Xm∗ ← Xm∗ ∪ {sj∗m∗}
12: X ← X ∪ {sj∗m∗}
13: dij∗ ← min{dij∗ , dhim∗},∀i
14: Content placement is done according to X .
15: Determine routing as p∗ ← arg minpD(p; xX)

devise a second, computationally more efficient, greedy al-
gorithm in Algorithm 2 with time complexity O(M3NK).
We do not have accuracy guarantees for Algorithm 2, but in
the next section, we will show that it performs very well in
practice.

Algorithm 2 is based on the following ideas. It starts
with empty caches and initializes the cache access delays
for users as the miss delays to their closest caches. Then
at each step a file is greedily selected to be placed in a
cache that maximizes the change in the user access delays,∑

i λiqij(dij −min{dij , dhim}). This process continues until
the caches are filled. Finally, similar to Algorithm 1, a routing
policy that minimizes D(p; x) is determined.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the approxi-
mate algorithms. Our goal is to evaluate 1) how well solutions
of the greedy algorithms compare to the optimal solution
(when computing the optimal solution is feasible), and 2) how

well solutions from the greedy algorithms compare to those
produced by a baseline. Due to lack of space, we only consider
the more general case of congestion-sensitive delay model. For
our baseline, we compare the approximate algorithms to the
delay obtained by the following algorithm we will refer to as
p-LRU.

A. p-LRU

The cache replacement policy at all caches is Least Recently
Used (LRU). For the routing policy, we assume that users that
are not connected to any caches forward all their requests to
the back-end server. The remaining users, for each request, use
a cached path with probability p and with probability 1 − p
forward the request to the uncached path. If user i decides to
use a cached path, she chooses uniformly at random one of
the ni caches she is connected to. The value of p is the same
for all users that have access to a cache, and is optimized
to minimize the average delay as explained in [14]. We use
the characteristic time approximation [17], shown to be an
accurate approximation, to compute the average cache access
delays.

B. Network Setup

We consider a network with users uniformly distributed in a
square field. We consider two architectures. First, we assume
there is only one large cache at the center of the network
as in Figure 4a. Second, we consider a network with five
small caches with equal storage capacity as in Figure 4b.
Figure 4 also shows the communication range of the caches in
each case. In the single-cache network, the cache has a larger
communication range and five times the capacity of each of
the caches in the multi-cache network.

Users that are not in the communication range of any caches
can only use the uncached path to the back-end server. The
hit delay for each user is linearly proportional to the distance
from the cache and has the maximum value of 12.5 time units
and 5.5 time units for the single and multi-cache systems,
respectively. For a cache miss, an additional delay of 25 time
units is added to the hit delay. The initial access delay of
the uncached path is set to 5 time units for each user, and
the service rate is proportional to the aggregate request rate,
where the scaling factor will be specified later.

(a) (b)

Fig. 4: A network with (a) one cache, and (b) five caches.

C. Numerical Evaluation

1) GreedyWG vs. Optimal: First, we compare the solution
of GreedyWG, the approximate algorithm in Algorithm 1, to
the optimal solution. Due to the exponential complexity of
finding the optimal solution, we are only able to compute
the optimal solution for small problem instances. Here, we

7

consider a network with five users and a single cache. User
request rates are arbitrarily set to satisfy

∑
i λi = 5 requests

per time unit. We assume users are interested in 15 files,
and that the aggregate user request popularities follow a Zipf
distribution with skewness parameter 0.6. The service rate of
the back-end server equals µ = 1.

Figure 5 shows the average delay and the 95% confidence
interval over 100 runs of each algorithm. It is clear that
GreedyWG performs very close to Optimal. In fact, we
observe that GreedyWG differs from the optimal solution in
less than 20% of the time, and the relative inaccuracy is never
more than 1%.

1 5 10 15 20
0

5

10

15

20

25

Cache budget

A
v
er

ag
e

d
el

ay

p−LRU

GreedyWG

Optimal

Fig. 5: Evaluation of GreedyWG against Optimal and p-LRU.

2) GreedyWG vs. Greedy: Next, we compare the solutions
of GreedyWG against those of Greedy, the approximate algo-
rithm in Algorithm 2 that has lower computational complexity
but no performance guarantees. We consider a network with
five caches and 100 users uniformly distributed in a 10 × 10
field.

Figure 6a shows the average delay and the 95% confi-
dence interval for different values of available cache budget.
Greedy (red curve) is barely distinguishable from GreedyWG
(black curve), meaning that Greedy performs very close to
GreedyWG.

We also evaluate these algorithms over different values of
the service rate at the back-end server. Figure 6b shows the
average delay when the ratio of service rate to the total request
rate changes from 0.4 to 2, with the aggregate traffic rate set
to λ = 5. Similar to Figure 6a, Greedy performs very close to
GreedyWG, and is always within 1% of GreedyWG.

D. Trace-driven Simulation

Here, we present trace-driven evaluation results where we
use traces for web accesses collected from an industrial
research lab. The trace consists of approximately 9 million
requests generated from 142,000 distinct IP addresses for more
than 3 million distinct files. We only consider Greedy, the

5 10 25 50 100 250
4

6

8

10

12

14

16

18

20

Cache budget

A
v
er

ag
e

d
el

ay

p−LRU

Greedy

GreedyWG

(a)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4

6

8

10

12

14

16

Ratio of serivce rate to traffic load (µ/λ)

A
v
er

ag
e

d
el

ay

p−LRU

Greedy

GreedyWG

(b)
Fig. 6: Numerical evaluation of the two greedy approximations. Aggregate
user request rate is λ = 5. (a) Service rate of the back-end server equals 2.5.
(b) Cache budget is set to 125.

10
0

10
1

10
2

10
3

10
4

10
5

5

6

7

8

9

10

11

12

13

Cache budget

A
v
er

ag
e

d
el

ay

p−LRU (S)

p−LRU (M)

Greedy (S)

Greedy (M)

(a)

0.6 0.7 0.8 0.9 1 1.1 1.2
4

6

8

10

12

14

16

Ratio of serivce rate to traffic load (µ/λ)

A
v
er

ag
e

d
el

ay

p−LRU (S)

p−LRU (M)

Greedy (S)

Greedy (M)

(b)
Fig. 7: Trace-driven evaluation of the Greedy and p-LRU for the single-cache
(S) and multi-cache (M) network setups. (a) The service rate is set to be 0.8
times the aggregate traffic rate. (b) Cache budget is 10,000.

greedy algorithm presented in Algorithm 2, since it performs
close to Algorithm 1, and has lower complexity.

To evaluate the Greedy algorithm using the trace data, we
first divide the trace into smaller segments of approximately
120,000 requests. Each segment includes requests for approxi-
mately 40,000 distinct files, generated by approximately 2500
distinct IP addresses. For every two consecutive segments, we
use the first one as learning dataset from which we compute
the file popularities and determine the optimal value of p for
the p-LRU scheme as well as content placement and routing
based on the Greedy algorithm. We use the second segment
to compute the average delays under the p-LRU and Greedy
algorithms.

Figure 7a compares the average delays for different cache
budgets for the p-LRU and the Greedy algorithm for the
single-cache (S) and multi-cache (M) networks. Significant
reductions in average delay of up to 50% are observed for both
single-cache and multi-cache networks when using Greedy
over p-LRU. While p-LRU yields similar performance in both
single-cache and multi-cache architectures, Greedy shows the
advantage of one architecture over the other depending on the
cache budget. When the cache budget is small, it is better to
have a single cache with larger cache size and coverage so
that more users can access popular files from the cache; when
the cache budget is large, it is better to have multiple caches,
each with smaller size and coverage, so that users can access
files from nearby caches with smaller hit delays.

We also evaluate the algorithms for different values of the
service rate of the uncached path assuming the cache budget is
fixed at 10, 000. Figure 7b shows the average delay when the
ratio of service rate to the total request rate changes from 0.6
to 1.2. Similar to Figure 7a, Greedy significantly reduces the
average content access delay. Again, the cache architecture
makes little difference for p-LRU but significant effect to
performance of the Greedy algorithm. Moreover, the difference
decreases as the service rate on the uncached path increases,
as more traffic is offloaded to the uncached path.

VIII. RELATED WORK

In this paper, we have considered the joint routing and
cache-content management problems. Numerous past research
efforts have considered these problems separately. The prob-
lem of content placement in caches, has received significant
attention in the context of Internet, hybrid networks such
as those considered in this paper, and sensor networks [3],
[5], [6], [18]–[21]. Baev et al. [19] prove that the problem

8

of content placement with the objective of minimizing the
access delay is NP-complete, and present approximate algo-
rithms. The problem of efficient routing in cache networks
has also been explored separately in the literature [22]–[24].
Rosensweig et al. [22] propose Breadcrumbs – a simple, best-
effort routing policy for locating cached content. Cache-aware
routing schemes that calculate paths with minimum transporta-
tion costs based on given caching policies and request demands
have been proposed in [25].

The joint caching and routing problem, with the objective
of minimizing content access delay, has recently been studied
in [5], [6], where the authors consider a hybrid network
consisting of multiple femto-cell caches and a cellular in-
frastructure. Both papers assume that users greedily choose
the minimum delay path to access content, i.e., requests for
cached content are routed to caches (where content is know to
reside), whereas remaining requests are routed to the back-end
server via the cellular network. They assume that the delays
between users and caches are homogeneous and independent
of the request rate.

Our work differs from the previous research by considering
a joint caching and routing problem, where we determine
the optimal routes users should take for accessing content as
well as the optimal caching policy. Our research differs from
[5], [6] in that we consider heterogeneous delays between
users and caches, consider a congestion-insensitive delay
model for the uncached path as well as a congestion-sensitive
model, investigate the problem’s time complexity, and propose
bounded approximate solutions for both congestion-insensitive
and congestion-sensitive scenarios. We identify scenarios for
which the optimal solution can be found in polynomial time
for the congestion-insensitive delay model, and ascertain the
root cause of the “hardness” of the general problem.

IX. CONCLUSION

In this paper, we have considered the problem of joint
content placement and routing in heterogeneous networks
that support in-network caching but also provide a separate,
single-hop (uncached) path to a back-end content server; we
considered cases in which this uncached path was modeled as a
congestion-insensitive, constant-delay path, and a congestion-
sensitive path modeled as an M/M/1 queue. We provided
fundamental complexity results showing that the problem
of joint caching and routing is NP-complete in both cases,
developed a greedy algorithm with guaranteed performance
of (1 − 1/e) of the optimal solution as well as a lower
complexity heuristic that was empirically found to provide
average delay performance that was within 1% of optimal (for
small instances of the problem) and that significantly reduce
the average content access delay over the case of optimized
traditional LRU caching. Our investigation of special-case
scenarios − the congestion-insensitive two-cache case (where
we demonstrated an optimal polynomial time solution) and the
congestion-sensitive, single-cache, single-file-of-interest case
(which we demonstrated remained NP-complete) − helped
illuminate what makes the problem “hard” in general. Our

future work is aimed at developing a distributed algorithm for
content placement and routing, and on developing solutions
for the case of time-varying content popularity.

REFERENCES

[1] C. Huang, A. Wang, J. Li, and K. W. Ross, “Understanding hybrid cdn-
p2p: Why limelight needs its own red swoosh,” in NOSSDAV, 2008.

[2] A. Sharma, A. Venkataramani, and R. K. Sitaraman, “Distributing
content simplifies isp traffic engineering,” in SIGMETRICS, June 2013,
pp. 229–242.

[3] E. Nygren, R. Sitaraman, and J. Sun, “The akamai network: a platform
for high-performance internet application,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 3, 2010.

[4] B. Azimdoost, C. Westphal, and H. Sadjadpour, “On the throughput
capacity of information-centric networks,” in International Teletraffic
Congress (ITC), September 2013, pp. 1–9.

[5] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless content delivery through distributed caching
helpers,” IEEE Transactions on Information Theory, vol. 59, no. 12, pp.
8402–8413, December 2013.

[6] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation caching
and routing algorithms for massive mobile data delivery,” in Globecom,
2013.

[7] IXIA White paper, “Quality of service (qos) and policy management in
mobile data networks,” 915-2731-01 Rev. D, December 2013.

[8] Z. Liu, N. Nain, P Niclausse, and D. Towsley, “Static caching of web
servers,” in Multimedia Computing and Networking Conference, 1998.

[9] M. Dehghan, A. Seetharamz, T. He, T. Salonidis, J. Kurose, and
D. Towsley, “Optimal caching and routing in hybrid networks,” in IEEE
MILCOM 2014, October 2014, pp. 1072–1078.

[10] N. Golrezaei, K. Shanmugam, A. Dimakis, A. Molisch, and G. Caire,
“Femtocaching: Wireless video content delivery through distributed
caching helpers,” in INFOCOM, 2012.

[11] D. B. West, Introduction to graph theory (2nd ed.). Chapter 3, Prentice
Hall, 2001.

[12] A. J. Hoffman and J. B. Kruskal, “Integral boundary points of convex
polyhedra,” in 50 Years of Integer Programming 1958-2008. Springer,
2010, pp. 49–76.

[13] A. Schrijver, Combinatorial optimization: polyhedra and efficiency.
Springer, 2003, vol. 24.

[14] M. Dehghan, A. Seetharamz, B. Jiang, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman. On the complexity of optimal routing
and content caching in heterogeneous networks. [Online]. Available:
http://arxiv.org/pdf/1501.00216v1.pdf

[15] S. E. A. P. Cieliebak, Mark and K. Schlude, “On the complexity of
variations of equal sum subsets,” Nordic Journal of Computing, vol. 14,
no. 3, pp. 151–172, 2008.

[16] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
submodular set function subject to a matroid constraint (extended
abstract),” in IPCO, 2007, pp. 182–196.

[17] H. Che, Z. Wang, and Y. Tung, “Analysis and design of hierarchical
web caching systems,” in INFOCOM, 2001.

[18] B. Tang and H. Gupta, “Cache placement in sensor networks under an
update cost constraint,” Journal of Discrete Algorithms, vol. 5, no. 3,
pp. 422–435, 2007.

[19] I. Baev, R. Rajaraman, and C. Swamy, “Approximation algorithms for
data placement problems,” SIAM Journal on Computing, vol. 38, no. 4,
pp. 1411–1429, 2008.

[20] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in INFOCOM, March 2010, pp. 1–9.

[21] V. Sourlas, L. Gkatzikis, P. Flegkas, and L. Tassiulas, “Distributed cache
management in information-centric networks,” IEEE Transactions on
Network and Service Management, vol. 10, no. 3, 2013.

[22] E. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-effort con-
tent location in cache networks,” in IEEE INFOCOM, 2009.

[23] W. Chai, D. He, I. Psaras, and G. Pavlou, “Cache less for more in
information-centric networks,” in IFIP Networking, 2012.

[24] I. Psaras, W. Chai, and G. Pavlou, “Coordinating in-network caching in
content-centric networks: Model and analysis,” in In ACM SIGCOMM
Workshop on Information-Centric Networking, 2012.

[25] V. Sourlas, P. Flegkas, and L. Tassiulas, “Cache-aware routing in
information-centric networks,” in IFIP/IEEE International Symposium
on Integrated Network Management, 2013.

9

