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ABSTRACT
Cumulative advantage (CA) refers to the notion that ac-
cumulated resources foster the accumulation of further re-
sources in competitions, a phenomenon that has been em-
pirically observed in various contexts. The oldest and ar-
guably simplest mathematical model that embodies this gen-
eral principle is the Pólya urn process, which finds applica-
tions in a myriad of problems. The original model captures
the dynamics of competitions between two equally fit agents
under linear CA effects, which can be readily generalized to
incorporate different fitnesses and nonlinear CA effects. We
study two statistics of competitions under the generalized
model, namely duration (i.e., time of the last tie) and inten-
sity (i.e., number of ties). We give rigorous mathematical
characterizations of the tail distributions of both duration
and intensity under the various regimes for fitness and non-
linearity, which reveal very interesting behaviors. For exam-
ple, fitness superiority induces much shorter competitions in
the sublinear regime while much longer competitions in the
superlinear regime. Our findings can shed light on the ap-
plication of Pólya urn processes in more general contexts
where fitness and nonlinearity may be present.

Keywords
Competition; Cumulative advantage; Fitness; Nonlinearity;
Pólya urn; Duration; Intensity

1. INTRODUCTION
Cumulative advantage (CA) is a ubiquitous phenomenon

observed in various systems where agents compete for re-
sources. CA alludes to the capacity that accumulated re-
sources have to foster accumulation of more resources, a
principle that appears in the literature under various names
such as cumulative advantage [5], preferential attachment [2],
“the rich get richer”, Matthew effect [6, 17], path-dependent
increasing returns [1], and processes with feedback [7, 20].

The oldest and arguably simplest model that embodies
CA is the Pólya urn process, which has been widely studied
and applied [8, 16, 21]. In particular, one can find appli-
cations of Pólya urn model in problems that arise in most

areas of science, including biology, physics, economics, and
of course, computer science, with a recent example described
in Section 2.3. In its simplest form, a Pólya urn has balls
with two colors. At each round a ball is chosen uniformly
at random from the urn and returned to the urn with an-
other ball of the same color, increasing the number of balls
in the urn by one. Note that drawing balls of a given color
increases the chance of drawing more balls of the same color,
thus embodying the CA phenomenon.

Beyond CA, an observed and recognized characteristics in
competitions is fitness, which refers to the inherent ability
of an agent to accumulate resources that does not depend
on the amount of resources already accumulated. A second
and more recent consideration, which has also been observed
in some contexts, is that the feedback induced by accumu-
lated resources may not be linear as in the simple Pólya urn
model. In particular, the propensity to accumulate further
resources can be nonlinear in the amount of resources al-
ready accumulated. These two generalizations can be easily
accommodated in the Pólya urn model by assigning a fixed
fitness to each color and by selecting balls not uniformly at
random from the urn. Such a model is the object under
consideration in this paper (formal definition in Section 2).

Two fundamental characteristics of competitions are their
duration and intensity [13]. Duration can be measured as
the time required for an agent to take the lead forever, while
intensity as the number of times agents tie for the leader-
ship. These two metrics have recently been studied for lin-
ear Pólya urn processes with fitness in [13]. The question
that we ask here is: What is the impact of introducing non-
linearity in the CA feedback of a Pólya urn process? We
address this question by providing a rigorous theoretical un-
derstanding of the implications of fitness and nonlinear CA
on duration and intensity, along with numerical simulations
to illustrate and support the findings. A summary of our
main results is given in Section 2.2.

The rest of this paper is organized as follows. Section 2
formally introduces the nonlinear Pólya urn process with
fitness, discusses some related work, and briefly presents a
recent application in computer science. Section 3 presents
some stochastic ordering results for the metrics investigated.
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Sections 4 and 5 present the main results on the distributions
of duration and intensity, respectively. Section 6 concludes
the paper with further discussions.

2. NONLINEAR PÓLYA URN PROCESS
In accordance with the jargon of the Pólya urn model,

we will refer to the agents that engage in a competition as
colors. Consider two colors, labelled 1 and 2. Each color
is associated with a positive fitness value that reflects its
intrinsic competitiveness. Let fi denote the fitness of color
i, i = 1, 2, and r = f1/f2 the fitness ratio. Without loss of
generality, we assume that f1 ≥ f2 and hence r ≥ 1.

The resource that the agents compete for, which is mea-
sured in discrete units, will be generically referred to as balls.
The competition starts at time t = 0 with color i having x0i
balls, i = 1, 2. We consider a discrete-time process. At
each time step, one ball of one of the colors is added to the
system. Denote by Xi(t) the number of balls with color
i at time t and X(t) = (X1(t), X2(t)). The trajectory of
the competition X = {X(t)}t∈N then forms a discrete-time
discrete-space stochastic process. The state space is the first
quadrant of the integral lattice N2. The initial condition is
X(0) = x0 ≜ (x01, x02).

In a nonlinear Pólya urn process with fitness, the ball
added at time t+ 1 has color i with probability

pi(t) =
fiXi(t)

β

f1X1(t)β + f2X2(t)β
.

Here β ≥ 0 reflects the strength of the feedback by cumu-
lative advantage. Note that the larger β is, the stronger
the feedback. When β = 0, there is no feedback and the
process falls back to a random walk (where the transition
probabilities do not depend on X(t)).

More formally, the trajectory {X(t)}t∈N forms a Markov
chain with initial condition X(0) = x0 and stationary tran-
sition probabilities P[X(t+ 1) = x′ | X(t) = x] given by

Q(x,x′;β, r) =



rxβ1
rxβ1 + xβ2

, if x′ = x+ (1, 0);

xβ2
rxβ1 + xβ2

, if x′ = x+ (0, 1);

0, otherwise.

(1)

We will call such a process a (β, r,x0)-urn process.
The duration and intensity of a competition have been

defined through events of ties in [13]. We follow the same
definitions here. Given a 2D process X = {X(t)}t∈N, not
necessarily an urn process introduced above, we say that a
tie occurs at time t if X1(t) = X2(t). For n ≥ 0, let Tn(X)
be the time of the n-th tie, defined recursively by

Tn(X) = inf{t > Tn−1(X) : X1(t) = X2(t)}, n ≥ 1,

where T0(X) = −1 by convention. The duration T (X) of a
competition is defined to be the time of the last tie, i.e.,

T (X) = sup{Tn(X) : n ≥ 0, Tn(X) < +∞}.

Note that T (X) marks the end of the competition in the
sense that there are no more ties after this point in time,
hence leaving one of the colors in the lead forever.

Let Nt be the number of ties up to time t, i.e.

Nt(X) =
t∑

j=0

1 {X1(j) = X2(j)} ,

where 1 {A} is the indicator of event A. The intensity N(X)
of a competition is the total number of ties throughout the
competition, i.e.,

N(X) = lim
t→∞

Nt(X) =
∞∑
t=0

1 {X1(t) = X2(t)} ,

This measures the intensity of the competition in the sense
that it counts the number of potential changes in leadership.

When there is no confusion, we will also write T for T (X),
and similarly for Tn, Nt andN . Note thatN = NT , T = TN ,
and that T < +∞ if and only if N < +∞. With an abuse
of notation, we will use T (β, r,x) = T (β, r, x1, x2) to denote
T (X) for any (β, r,x)-urn process X, and similarly for Tn,
Nt and N . Throughout the rest of the paper, a boldfaced
letter always has two components, e.g. x = (x1, x2) and
Y = (Y1, Y2). The notations such as g(x) = g(x1, x2) will
be understood without mention.

2.1 Related Work
Given the 90 years since the Pólya urn process was first

introduced [8], it is not surprising that many different prop-
erties of this process have been characterized through rig-
orous mathematical treatment as well as simulations. Most
work focuses on the so-called market share, i.e. the fraction
of balls in each color, for which convergence results and limit
distributions have been established for different regimes of
fitness or feedback strength, but rarely for both [7, 19, 20,
26, 25]. Other properties that have been studied more re-
cently include the probability of ever taking the lead and the
onset of monopoly [20, 25]. When the feedback is superlinear
(β > 1), the winning color receives all but a finite number of
balls, a phenomenon knowns as monopoly, various aspects
of which have been studied [19, 20]. The metrics under in-
vestigation in this paper, duration and intensity, have been
studied in [13] for linear Pólya urn process with fitness.

The Poissonization [16] and the exponential embeddding
[4] are two major technical tools used in the study of Pólya
urn processes. Other methods are surveyed in [21, 26]. We
will mainly follow the exponential embedding approach in
the present work. We extend existing works by considering
the effect of nonlinear CA on duration and intensity. The
theoretical findings deepen our understanding of the inter-
action between fitness and feedback strength in CA compe-
titions, which in turn sheds light on understanding applica-
tions that employ such models.

2.2 Overview of Results
Table 1 summarizes our main results on the tail distri-

butions of duration and intensity, which will be detailed in
Sections 4 and 5. We have used the standard notations of
O, Θ, and Ω in the table. In later sections, we will also use
other standard notations such as o and ∼ without further
mention, where g(x) ∼ h(x) means limx g(x)/h(x) = 1 in
the limiting process under consideration.

To the best of our knowledge, all results related to non-
linear CA (β ̸= 1) are new, with the exception of the case
β ≤ 1/2 and r = 1. The linear case (β = 1) is given in [13],
and included here for completeness and comparison.
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P[T (β, r,x0) ≥ t] P[N(β, r,x0) ≥ n]

r = 1 r > 1 r = 1 r > 1

0 ≤ β ≤ 1
2

1 e−Ω(t1−β) 1 O(an)

1
2
< β < 1 Θ(t

1
2
−β) e−Ω(t1−β) Ω(n−β) O(an)

β = 1 Θ(t−
1
2 ) Ω(t(1−r)x01) Θ(n−1) O(an)

β > 1 Θ(t
1
2
−β) Θ(t1−β) O(n−β) O(an)

Table 1: Tail distributions of duration and intensity.
Here a = 2/(r + 1).

The results are revealing and worth exploring. In the
equal fitness case r = 1, we observe a phase transition at
β = 1/2. For β ≤ 1/2, competitions never end [14]. For
β > 1/2, competitions always end, but can be very long and
intense, as both duration and intensity have power-law tails.

The picture is dramatically different in the case of different
fitnesses. In this case, if β ≤ 1 then the fittest agent is bound
to win the competition (i.e., take the lead forever)1. If β > 1,
then there is a nonzero probability that the less fit wins (it
actually becomes the monopoly) [4]. In the sublinear regime,
the fittest color wins relatively quickly with the distribution
of duration upper bounded by a Weibull tail. Thus fitness
superiority brings a clear advantage in this regime, in sharp
contrast to the superlinear regime. Note that not only may
the competition duration increase when moving from the
linear to superlinear regime depending on r and x0, but the
fittest may even lose the competition! Thus the fittest may
have to struggle much more under superlinear CA.

Also observe that moving from equal to non-equal fitness
induces longer competitions under superlinear CA. However,
there is an advantage in becoming fitter since the chance
of winning is greater than under equal fitness (where the
chance is 50% if x01 = x02), but at the expense of engaging
in potentially longer competitions. In a nutshell, superlinear
CA may exacerbate the strugle of the fittest!

Finally, in the case of different fitnesses, competition in-
tensity is always small, exhibiting an exponential tail. This
phenomenon of long (duration) but mild (intensity) compe-
titions has been observed in [13]. We observe here that this
phenomenon persists in the presence of nonlinear CA.

2.3 Recent Application to Social Tagging
In this section we briefly describe an example of the ap-

plications of Pólya urns in computer science. Such applica-
tions could potentially leverage a more general model that
incorporates nonlinear CA and fitness. By providing a the-
oretical understanding of duration and intensity we prepare
the ground for the application of more general models.

Social or collaborative tagging refers to the increasingly
common process where users tag resources within online ser-
vices [11, 24]. For example, users can bookmark a URL on
Delicious2, annotate pictures on Flickr2, and use hashtag
to mark tweets on Twitter2. An important consideration
in this context is the dynamics behind tag generation and

1For β = 1, see [16] for a proof. For β < 1, see the remark
at the end of Section 4.3.3.
2delicious.com, www.flickr.com, www.twitter.com

tag accumulation by the various resources such as URLs,
pictures and tweets. In particular, a cumulative advantage
effect (i.e., preferential attachment) has been empirically ob-
served in social tagging in the sense that, as resources accu-
mulate more tags, they tend to accumulate even more tags.
In order to capture this phenomenon, models that embody
cumulative advantage such as Pólya urn and Yule-Simon
process have been used to represent how objects accumulate
tags [3, 10]. Models that also capture the inherent difference
between tags, which can be interpreted as tag fitness [12],
and models that leverage tag ranking to assess tag dynamics
[24] have also been proposed.

To illustrate such modeling within our framework, con-
sider two URLs competing for bookmarks by users on De-
licious, as presented and evaluated in [10]. For i = 1, 2, let
fi denote the intrinsic fitness of URLi, and Xi(t) the num-
ber of bookmarks that it has received by time t. When the
CA feedback has strength β > 0, how will the two URLs
accumulate bookmarks? Will the fittest URL emerge as the
unchallenged winner? How many bookmarks will they have
accumulated together when this occurs?

An important consideration is the effectiveness of social
tagging in describing and assessing online resources [24]. For
example, can poor quality URLs be overridden by late com-
ing higher quality URLs in the bookmark competition? The
answer to such questions depends fundamentally on the na-
ture of the competition, as defined by the fitnesses f1,2 and
the feedback strength β. Our work provides a solid theoret-
ical ground for understanding such behaviors. For example,
we now know that under superlinear CA much longer com-
petitions can occur (in comparison to linear CA), as well as
the fittest losing the competition. Such findings may put
into question the effectiveness of social tagging.

3. STOCHASTIC ORDERING RESULTS
In this section, we will show that some of the metrics intro-

duced in Section 2 can be ordered stochastically according to
the feedback strength β. We recall the following definition
of stochastic dominance.

Definition 1 (Stochastic dominance). A random
variable Z1 stochastically dominates a random variable Z2,
if P[Z1 ≥ z] ≥ P[Z2 ≥ z] for all z. This is denoted by
Z1 ≥st Z2 or Z2 ≤st Z1.

3.1 Equal Fitness
The following theorem shows that in the equal fitness

case, stronger feedback, i.e. larger β, leads to stochastically
shorter and less intense competitions.

Theorem 1. Let β ≥ β′ ≥ 0. The following hold,

(i) Nt(β, 1,x0) ≤st Nt(β
′, 1,x0) for all t;

(ii) N(β, 1,x0) ≤st N(β′, 1,x0);

(iii) Tn(β, 1,x0) ≥st Tn(β
′, 1,x0) for all n;

(iv) T (β, 1,x0) ≤st T (β
′, 1,x0).

Proof. Let X be a (β, 1,x0)-urn process and let X′ be a
(β′, 1,x0)-urn process. Define a new process Y by Y1(t) =
min{X1(t), X2(t)} and Y2(t) = max{X1(t), X2(t)}. Simi-
larly, define Y′ by Y ′

1 (t) = min{X ′
1(t), X

′
2(t)} and Y ′

2 (t) =
max{X ′

1(t), X
′
2(t)}.
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Let {ηj}j∈N be a sequence of independent random vari-
ables uniformly distributed on [0, 1]. Define {Z(t)}t∈N re-
cursively by Z1(0) = min{x01, x02}, Z2(0) = max{x01, x02},
and

Z1(t+ 1) = Z1(t) + 1

{
Z1(t) < Z2(t), ηt ≤

Z1(t)
β

Z1(t)β + Z2(t)β

}
,

Z2(t+ 1) = Z1(t) + Z2(t) + 1− Z1(t+ 1),

Define {Z′(t)}t∈N by the same equations but with β replaced

by β′. Note that Y
d
= Z and Y′ d

= Z′, where
d
= means“equal

in distribution”. It is also clear that Z1(t) ≤ Z2(t) for all t.
We now show that Z1(t) ≤ Z′

1(t) by induction on t. The
base case t = 0 holds trivially. Assume it holds for t and
consider t + 1. Note that Z1(t) + Z2(t) = Z′

1(t) + Z′
2(t) =

x01+x02+t and hence Z′
2(t) ≤ Z2(t). There are three cases.

• Z′
2(t) = Z′

1(t) = Z1(t). In this case, Z2(t) = Z1(t),
and hence Z1(t+ 1) = Z1(t) ≤ Z′

1(t) = Z′
1(t+ 1)

• Z′
2(t) = Z′

1(t) ≥ Z1(t) + 1. In this case, Z1(t + 1) ≤
Z1(t) + 1 ≤ Z′

1(t) = Z′
1(t+ 1)

• Z′
2(t) > Z′

1(t). In this case, Z2(t) ≥ Z′
2(t) > Z′

1(t) ≥
Z1(t). Thus

Z1(t)
βZ′

2(t)
β′

Z2(t)βZ′
1(t)

β′ =

(
Z1(t)

Z2(t)

)β−β′ (
Z1(t)

Z′
1(t)

· Z
′
2(t)

Z2(t)

)β′

≤ 1,

and hence

Z1(t)
β

Z1(t)β + Z2(t)β
≤ Z′

1(t)
β′

Z′
1(t)

β′ + Z′
2(t)

β′ .

It follows that

Z1(t+ 1) = Z1(t) + 1

{
ηt ≤

Z1(t)
β

Z1(t)β + Z2(t)β

}
≤ X ′

1(t) + 1

{
ηt ≤

Z′
1(t)

β′

Z′
1(t)

β′ + Z′
2(t)

β′

}
= Z′

1(t+ 1).

In all cases, we have Z1(t+1) ≤ Z′
1(t+1), which completes

the induction. As a consequence,

Z2(t)− Z1(t) ≥ Z′
2(t)− Z′

1(t) ≥ 0, ∀t ≥ 0.

Thus Z ties at t only if Z′ also ties at t, which implies
Nt(Z) ≤ Nt(Z

′), N(Z) ≤ N(Z′), Tn(Z) ≥ Tn(Z
′), and

T (Z) ≤ T (Z′).

Note thatNt(X) = Nt(Y)
d
= Nt(Z) andNt(X

′) = Nt(Y
′)

d
= Nt(Z

′), from which (i) follows. The same argument also
proves (ii), (iii) and (iv). Alternatively, (ii) follows from (i)
by letting t→ ∞, while (iii) follows from (i) by the identity
{Tn ≥ t} = {Nt ≤ n}.

3.2 Different Fitnesses
In the case of different fitnesses, there are no such nice

ordering results as in Section 3.1, as we will see in Figure 2(b)
of Section 4.3. However, we have some partial results, which
will be useful later in characterizing the tail distributions of
duration and intensity. Note that the results apply to the
equal fitness case as well.

The following theorem shows that the time of first tie
can be ordered stochastically. The proof uses a coupling
argument similar to the one in the proof of Theorem 1 and
is found in Appendix A.

Theorem 2. Let β ≥ β′ ≥ 0. T1(β, r,x0) ≥st T1(β
′, r′,x′

0),
if either of the following conditions holds,

(i) r ≥ r′ and x01 ≥ x′01 ≥ x′02 ≥ x02;

(ii) r = r′ and x01 ≤ x′01 ≤ x′02 ≤ x02.

In particular, T1(β, r,x0) ≥st T1(β
′, r,x0).

When competition starts out with a tie, T1(β, r, x0, x0) =
T1(β

′, r, x0, x0) = 0 trivially. What is more interesting in
this case is the time of the first return to a tie, which can
also be ordered as shown by the next corollary.

Corollary 1. T2(β, r, x0, x0) ≥st T2(β
′, r, x0, x0), if β ≥

β′. In particular, the probability of ever tying again satisfies

P[T2(β, r, x0, x0) <∞] ≤ P[T2(0, r, 0, 0) <∞] =
2

r + 1
.

Proof. Let pr = r/(r + 1) and qr = 1/(r + 1). By
considering the first transition and applying Theorem 2, we
obtain

P[T2(β, r, x0, x0) ≥ t]

= prP[T1(β, r, x0 + 1, x0) ≥ t] + qrP[T1(β, r, x0, x0 + 1) ≥ t]

≥ prP[T1(β
′, r, x0 + 1, x0) ≥ t] + qrP[T1(β

′, r, x0, x0 + 1) ≥ t]

= P[T2(β
′, r, x0, x0) ≥ t].

which means T2(β, r, x0, x0) ≥st T2(β
′, r, x0, x0). In partic-

ular,

P[T2(β, r, x0, x0) <∞] ≤ P[T2(0, r, x0, x0) <∞]

= P[T2(0, r, 0, 0) <∞] =
2

r + 1
,

where we have used the translation invariance of random
walks and the well-known formula for the probability of no
return to the origin (see e.g. Section XI.3.c of [9]).

The next corollary shows that feedback, regardless of its
strength β, does not increase competition intensity. In par-
ticular, competition always ends if r > 1.

Corollary 2. N(β, r,x0) ≤st N(0, r,x0) for any β ≥ 0.

Proof. Let X be a (β, r,x0)-urn process. Let Fn(z) =
P[X1(Tn(X)) = z | Tn(X) < ∞]. Note that Tn(X) is a
stopping time of X for n ≥ 1. The strong Markov property
and Corollary 1 yield

P[Tn+1(X) <∞ | Tn(X) <∞]

=
∑
z

Fn(z)P[T2(β, r, z, z) <∞]

≤
∑
z

Fn(z)P[T2(0, r, 0, 0) <∞] = P[T2(0, r, 0, 0) <∞].

Therefore,

P[N(β, r,x0) ≥ n] = P[Tn(X) <∞]

= P[T1(X) <∞]

n−1∏
j=1

P[Tj+1(X) <∞ | Tj(X) <∞]

≤ P[T1(0, r,x0) <∞] (P[T2(0, r, 0, 0) <∞])n−1

= P[N(0, r,x0) ≥ n],

which means N(β, r,x0) ≤st N(0, r,x0).
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4. TAIL DISTRIBUTION OF DURATION
In this section, we characterize the tail distribution of du-

ration T . The analysis relies on Rubin’s exponential embed-
ding that appeared in the appendix of [4]. We first review
the exponential embedding in Section 4.1. We then present
the tail distribution of T for the case r = 1 in Section 4.2
and that for the case r > 1 in Section 4.3.

4.1 The Exponential Embedding
Rubin’s exponential embedding is a specific representation

of an urn process. Let {ξkj : k ∈ {1, 2}, j ∈ N} be a set
of independent exponential random variables with Eξkj =
f−1
k j−β , where fk is the fitness of color k. Let

Sk(x, y) =

y−1∑
j=x

ξkj ,

where by convention the sum is zero if y ≤ x. Given x0,
order {Sk(x0k, xk) : xk > x0k, k ∈ {1, 2}} in increasing order
and let τ1 < τ2 < . . . be the resulting sequence. Let

Xk(t) = sup{x ∈ N : Sk(x0k, x) ≤ τt}. (2)

Note that Sk(x0k, x) can be considered as the time when
color k gets its x-th ball, and Xk(t) is the number of balls
with color k when the total number of new balls arriving
after time zero is t. The following theorem asserts that the
process X constructed above is a (β, r,x0)-urn process.

Theorem 3 (Rubin). The process {X(t)}t∈N defined by
(2) is a (β, r,x0)-urn process, where r = f1/f2.

We will use this representation throughout the rest of Sec-
tion 4. Without further mention, {ξkj} will always denote
the set of independent random variables in this representa-
tion and Sk the associated partial sums. We will also use
the following notation,

∆(x,y) = ∆(x1, x2, y1, y2) = S1(x1, y1)− S2(x2, y2). (3)

When fk = 1, the characteristic function of Sk(x, y) is
given by

Ψ(s;β, x, y) =

y−1∏
j=x

(
1− is

jβ

)−1

. (4)

The quantity K(β, 1,x0) defined in the following lemma
will be used in the statements of the main results of the next
two sections. Its proof is found in Appendix B.

Lemma 1. If either (i) β > 1, or (ii) β > 1/2 and r = 1,
then

Ψ̃(s;β, r,x0) ≜ lim
x→∞

Ψ(s;β, x01, x)Ψ
∗(rs;β, x02, x) (5)

exists, and

K(β, r,x0) ≜
1

2π

∫ ∞

−∞
Ψ̃(s;β, r,x0)ds (6)

is a strictly positive real number.

4.2 Equal Fitness
We consider the equal fitness case in this section. Since

the transition probability in (1) depends only on r, we as-
sume without loss of generality that f1 = f2 = 1 throughout
this section. The main result is presented in Section 4.2.1.
Section 4.2.2 reviews the invariance principle, a key ingredi-
ent of the proof, which is given in Section 4.2.3.
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Figure 1: Tail distribution for duration of r = 1 and
various values of β. Dots (marks) are simulation
results. The solid lines have slopes 1/2− β.

4.2.1 Main Result
The following result was proved in [14] (see also Theorem

1 in [19]), from which it follows that P[T (β, 1,∞) ≥ t] = 1
for all finite t and β ∈ [0, 1/2].

Theorem 4 ([14]). With probability one, T (β, 1,x0) is
finite if and only if β > 1/2.

Our focus of this section is thus the regime β > 1/2. The
following theorem shows that T (β, 1,x0) has a power-law
tail with exponent β − 1/2 in this case, irrespective of the
initial condition x0.

Theorem 5. For β > 1/2,

P[T (β, 1,x0) ≥ t] ∼ 2β−1/2√
(2β − 1)π

K(β, 1,x0)t
1
2
−β . (7)

The result is illustrated in Figure 1, which shows the em-
pirical tail distributions of duration from simulations. Each
curve is obtained from 105 independent runs of L = 107

time steps each. The same simulation setup is used for all
later plots and will not be repeated. Strictly speaking, what
are plotted here are the tail distributions of the last tie be-
fore the simulation cutoff time L, which are good approxi-
mations to the true tail distributions P[T (β, 1,x0) ≥ t] for
t ≪ L. Similar comments apply to later plots. We observe
the stochastic ordering asserted by Theorem 1. Figure 1 also
superimposes straight lines with slopes 1/2 − β, which are
parallel to the asymptotes of (7). Since we do not have a
closed form formula for K(β, 1,x0), we have arbitrarily cho-
sen the intercepts of these lines to ease comparison of their
slopes with those of the simulated curves. Note the good
agreement between the corresponding slopes. Note also that
for β ≤ 1/2, the simulated tail distribution approaches the
distribution P[T (β, 1,x0) ≥ t] = 1, and dominates all curves
for β > 1/2. In fact, this stochastic dominance result can
be established by the same coupling argument used in the
proof of Theorem 1.

4.2.2 The Invariance Principle
In this section, we review a key ingredient of the proof of

Theorem 5, i.e. the invariance principle, which asserts that
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an appropriately scaled random walk converges to a Wiener
process in distribution. This has been exploited in the study
of nonlinear Pólya urn processes in [19]. We will follow a sim-
ilar approach, but for our purpose, we will need not only the
convergence result but also the rate of convergence, which
is provided by the following result of Sakhanenko.

Let θ1, θ2, . . . be a sequence of independent random vari-
ables with Eθj = 0 and Eθ2j <∞ for all j. Define a random
process Ξθ with piecewise linear continuous sample paths by

Ξθ(t) =

ℓ∑
j=1

θj+
t− σ2

ℓ

Eθ2ℓ+1

θℓ+1, for t ∈ [σ2
ℓ , σ

2
ℓ+1], ℓ = 0, 1, . . . ,

where σ2
ℓ =

∑ℓ
j=1 Eθ

2
j . Note that Ξθ(σ

2
ℓ ) =

∑ℓ
j=1 θj .

The following theorem, which is a special case of Theorem
1 of [23], bounds the error incurred by approximating Ξθ by
a Wiener process.

Theorem 6 (Sakhanenko). Let Ξθ be defined as above.
For α ≥ 2, there exists a constant κ and a Wiener process
W =Wα such that for any y > 0,

P

[
sup

0≤t<L2
θ

|Ξθ(t)−W (t)| ≥ 2καy

]
≤ Lα

θ

yα
, (8)

where Lα
θ =

∑∞
j=1 E|θj |

α.

We now apply Theorem 6 to prove the following lemma,
which is a key step in the proof of Theorem 5.

Lemma 2. Assume β > 1/2, c > 0 and ϵ ∈ (0, c). If
xm ∼ m and qm = Ω(

√
m), then for all large enough m,

P
[
sup

y≥xm

∆(xm, xm, y, y) >
cqm
mβ

]
≤ 2Φ̄

(
c−qm√
2m

)
+O(m−β),

(9)
and

P
[
sup

y≥xm

∆(xm, xm, y, y) >
cqm
mβ

]
≥ 2Φ̄

(
c+qm√
2m

)
−O(m−β),

(10)
where ∆ is defined in (3),

c± = (c± ϵ)
√

2β − 1,

and Φ̄ is the CCDF of the standard normal distribution,

Φ̄(z) =
1√
2π

∫ ∞

z

e−u2/2du.

Proof. Let θj = ξ1(j+xm−1) − ξ2(j+xm−1) for j ≥ 1. De-
fine Ξθ and Lα

θ as in Theorem 6. Note that

sup
y≥xm

∆(xm, xm, y, y) = sup
ℓ≥0

ℓ∑
j=1

θj = sup
0≤t<L2

θ

Ξθ(t).

Thus

E ≜
{

sup
y≥xm

∆(xm, xm, y, y) >
cqm
mβ

}
=

{
sup

0≤t<L2
θ

Ξθ(t) >
cqm
mβ

}
.

Let W be the Wiener process in Theorem 6, and

E0 =

{
sup

0≤t<L2
θ

|Ξθ(t)−W (t)| > ϵqm
2mβ

}
,

E± =

{
sup

0≤t<L2
θ

W (t) >

(
c± 1

2
ϵ

)
qm
mβ

}
.

Since E+ ⊂ E ∪ E0 and E ⊂ E− ∪ E0, we have

P[E+]− P[E0] ≤ P[E] ≤ P[E−] + P[E0]. (11)

We first show that P[E0] = O(m−β). Theorem 6 yields

P[E0] ≤ Lα
θ

(
4ακ

ϵ

)α

mαβq−α
m ≤ Lα

θ

(
4ακ

λϵ

)α

mαβ−α/2,

where we have used qm ≥ λ
√
m for some λ > 0 in the last

step. Note that

|ξ1j − ξ2j |α ≤ max{ξα1j , ξα2j} ≤ ξα1j + ξα2j ,

and Eξα1j = Eξα2j = Γ(α+ 1)j−αβ , where Γ(·) is the gamma

function. Thus for α > β−1,

Lα
θ =

∞∑
j=1

E|θj |α ≤ 2
∞∑

j=xm

Eξα1j = 2Γ(α+ 1)

∞∑
j=xm

j−αβ

∼ 2Γ(α+ 1)

∫ ∞

m

z−αβdz =
2Γ(α+ 1)

αβ − 1
m1−αβ .

Set α = 2 + 2β, which satisfies α > β−1 for β > 1/2. It
follows that for all large enough m,

P[E0] = O(m1−α/2) = O(m−β). (12)

Now we compute P[E±]. The well-known formula for the
distribution of the maximum of a Wiener process (see (6.5.3)
of [22]) yields

P[E±] = 2Φ̄

(
(c± ϵ/2)qmm

−β√
L2

θ

)
= 2Φ̄

(
c±mqm√
2m

)
, (13)

where

c±m =
(c± ϵ/2)

√
2m1/2−β√
L2

θ

.

Note that Eθ2j = 2Var[ξ1(j+xm−1)] = 2(j+xm − 1)−β . Thus

L2
θ =

∞∑
j=1

Eθ2j = 2

∞∑
j=xm

j−2β ∼ 2

∫ ∞

m

z−2βdz =
2

2β − 1
m1−2β ,

from which it follows that

c+m →
(
c+

1

2
ϵ

)√
2β − 1 < c+,

and hence c+m < c+ for large m. Similarly, c−m > c−. There-
fore, (9) and (10) follow from (11), (12), (13), and the mono-
tonicity of Φ̄.

Together with some large deviation results, Lemma 2 im-
mediately yields the following bounds on the probability of
ever having a tie, which is what will be used directly in the
proof of Theorem 5. The proof of Lemma 3 is found in
Appendix C.

Lemma 3. Suppose |ρ(x)| = Ω(1), where

ρ(x) =
x1 − x2√

∥x∥1
=

x1 − x2√
x1 + x2

. (14)

For β > 1/2 and ϵ > 0, the following inequalities hold,

P[T1(β, 1,x) <∞] ≤ 2Φ̄ (c1|ρ(x)|) +O(∥x∥−β
1 ),

P[T1(β, 1,x) <∞] ≥ 2Φ̄ (c2|ρ(x)|)−O(∥x∥−β
1 ),

where c1 = (1− ϵ)
√
2β − 1 and c2 =

√
2β − 1.
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4.2.3 Proof of Theorem 5
LetAt be the set of states reachable at time t by a (β, 1,x0)-

urn process, i.e.

At = {x ∈ N2 : ∥x∥1 = ∥x0∥1 + t, xk ≥ x0k for k = 1, 2}.

We will need the following lemma in the proof of Theorem 5.

Lemma 4. Let X be a (β, 1,x0)-urn process and At(δ) =
{x ∈ At : |ρ(x)| ≤ δ}, where ρ(x) is defined in (14). For
β > 1/2 and γ < β ∧ 1 − 1/2, where a ∧ b = min{a, b}, we
have, as t→ ∞,

tβP[X(t) = x] → 2β+1K(β, 1,x0),

uniformly for x ∈ At(t
γ), where K(β, 1,x0) is given by (6).

Proof. Note that X(t) = x if and only if color 1 gets
its x1-th ball before color 2 gets its (x2 + 1)-st ball and
at the same time color 2 gets its x2-th before color 1 gets
its (x1 + 1)-st ball. Using the exponential embedding, this
probability is given by

P[X(t) = x] = P[−ξ1x1 < ∆(x0,x) < ξ2x2 ],

where ∆ is defined in (3). Let ψ(s;x) denote the character-
istic function of ∆(x0,x), i.e.

ψ(s;x) = Ψ(s;β, x01, x1)Ψ
∗(s;β, x02, x2),

where Ψ is given by (4). By the inversion formula,

P[−ξ1x1 < ∆(x0,x) < ξ2x2 | ξ1x1 , ξ2x2 ]

=
1

2π

∫ ∞

−∞
ψ(s;x)

eisξ1x1 − e−isξ2x2

is
ds.

Deconditioning and interchanging the order of integrations
by Fubini’s theorem, we obtain

P[−ξ1x1 < ∆(x0,x) < ξ2x2 ]

=
1

2π

∫ ∞

−∞
ψ(s;x)

E
[
eisξ1x1

]
− E

[
e−isξ1x2

]
is

ds

=
1

2π

∫ ∞

−∞
ψ(s;x)

1

is

[(
1− is

xβ1

)−1

−

(
1 +

is

xβ2

)−1]
ds

=
x−β
1 + x−β

2

2π

∫ ∞

−∞
ψ(s;x1 + 1, x2 + 1)ds.

The rest of the proof is relegated to Appendix D. We only
sketch it here. For x ∈ At(t

γ), we have x1 + x2 = ∥x∥1 =

∥x0∥1 + t ∼ t, and |x2 − x1| = |ρ(x)|
√

∥x∥1 = O(tγ+1/2) =

o(t1∧β). It follows that as t→ ∞,

x1
t

→ 1

2
,
x2
t

→ 1

2
,

and

ψ(s;x1 + 1, x2 + 1) → Ψ̃(s;β, 1,x0),

uniformly for x ∈ At(t
γ), where Ψ̃ is defined in (5). The

proof is then completed by letting t → ∞ and applying the
Dominated Convergence Theorem.

Now we prove Theorem 5.

Proof of Theorem 5. LetX denote a (β, 1,x0)-urn pro-
cess and At the set of reachable states at time t as defined
above. Let λ > 0 and γ ∈ (0, β ∧ 1− 1/2). Let

A1
t = At(λ), A2

t = At \At(t
γ), A3

t = At(t
γ) \At(λ),

where At(δ) = {x ∈ At : |ρ(x)| ≤ δ} as in Lemma 4 and

|At(δ)| ∼ δt1/2. Note that P[T (X) ≥ t] =
∑3

j=1 Pj , where

Pj =
∑
x∈A

j
t

P[X(t) = x] · P[T1(β, 1,x) <∞].

We first bound P1. Since |A1
t | ∼ λt1/2, by Lemma 4,

P1 ≤
∑
x∈A1

t

P[X(t) = x] ∼ λ2β+1K(β, 1,x0)t
1/2−β .

To bound P2, let yt = argminx∈A2
t
ρ(x). By Theorem 2,

P[T1(β, 1,x) <∞] ≤ P[T1(β, 1,yt) <∞] for x ∈ A2
t . Thus

P2 ≤ P[T1(β, 1,yt) <∞] P[X(t) ∈ A2
t ] ≤ P[T1(β, 1,yt) <∞]

≤ 2Φ̄(c1t
γ) +O(t−β) = o(t1/2−β),

where the last inequality follows from Lemma 3.
Now we bound P3. By Lemmas 3 and 4,

P3 =
∑
x∈A3

t

P[X(t) = x] · P[T1(β, 1,x) <∞]

∼ 2βK(β, 1,x0)t
−β

∑
x∈A3

t

P[T1(β, 1,x) <∞]

≤ 2βK(β, 1,x0)t
−β

∑
x∈A3

t

Φ̄(c1|ρ(x)|) +O(tγ+1/2−2β)

∼ 2βK(β, 1,x0)t
1/2−β

∫ tγ

λ

Φ̄(c1u)du+ o(t−β)

≤ 2βK(β, 1,x0)t
1/2−β

∫ ∞

0

Φ̄(c1u)du+ o(t−β)

=
2β−1/2K(β, 1,x0)

(1− ϵ)
√

(2β − 1)π
t1/2−β + o(t−β),

where we have used
∫∞
0

Φ̄(c1u)du = c−1
1 (2π)−1/2 in the last

step. Letting t → ∞, we obtain from the bounds on the
Pj ’s,

lim sup
t→∞

P[T (X) ≥ t]

t1/2−β
≤ λ2β+1K(β, 1,x0)+

2β−1/2K(β, 1,x0)

(1− ϵ)
√

(2β − 1)π
.

Letting λ, ϵ→ 0,

lim sup
t→∞

P[T (X) ≥ t]

t1/2−β
≤ 2β−1/2√

(2β − 1)π
K(β, 1,x0). (15)

On the other hand,

P3 ∼ 2βK(β, 1,x0)t
−β

∑
x∈A3

t

P[T1(β, 1,x) <∞]

≥ 2βK(β, 1,x0)t
−β

∑
x∈A3

t

Φ̄(c2|ρ(x)|)−O(tγ+1/2−2β)

∼ 2βK(β, 1,x0)t
1/2−β

∫ tγ

λ

Φ̄(c2u)du− o(t−β).

Since P[T (X) ≥ t] ≥ P3, letting t→ ∞, we obtain,

lim inf
t→∞

P[T (X) ≥ t]

t1/2−β
≥ 2βK(β, 1,x0)

∫ ∞

λ

Φ̄(c2u)du.

Letting λ→ 0 and using
∫∞
0

Φ̄(c2u)du = c−1
2 (2π)−1/2,

lim inf
t→∞

P[T (X) ≥ t]

t1/2−β
≥ 2β−1/2√

(2β − 1)π
K(β, 1,x0). (16)
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Combining (15) and (16) yields (7).

4.3 Different Fitnesses
We consider in this section the case of different fitnesses.

When the feedback is linear (β = 1), it has been shown in
[13] that the duration has a power-law tail with exponent
between (r− 1)x01 and (r− 1)(x01 − r−1). We focus on the
superlinear (β > 1) and sublinear (β < 1) regimes in this
section. The main results are presented in Section 4.3.1.
The proof for the superlinear linear regime is given in Sec-
tion 4.3.2, and that for the sublinear regime is given in Sec-
tion 4.3.3.

4.3.1 Main Results
The following theorem shows that when the feedback is su-

perlinear, the duration T (β, r,x0) has a power-law tail with
exponent β − 1. Compared to the duration T (β, 1,x0) with
the same β and x0 in the equal fitness case, the duration
T (β, r,x0) with r > 1 has a significantly heavier tail, which
means that in the superlinear regime competitions may be-
come much longer when agents have different fitnesses, sim-
ilar to the observation in [13] for the linear regime. In con-
trast to the linear regime, however, the exponent in the su-
perlinear regime does not depend on either the fitness ratio
r or the initial condition x0.

Theorem 7. For r > 1 and β > 1,

P[T (β, r,x0) ≥ t] ∼ t1−β (r − 1)2β−1

β − 1
K(β, r,x0). (17)

If feedback is sublinear, however, T (β, r,x0) no longer has
a power-law tail. As the following theorem shows, the tail
distribution of T (β, r,x0) is upper bounded by a Weibull
distribution with shape parameter 1 − β. Thus in the sub-
linear regime, T (β, r,x0) with r > 1 always has a lighter
tail than the corresponding T (β, 1,x0). In particular, when
β = 0, we recover the known exponential tail of T (0, r,x0).

Theorem 8. For r > 1 and β < 1,

lim sup
t→∞

log P[T (β, r,x0) ≥ t]

t1−β
≤ 1− r

1− β
2β−1xβ01. (18)

The results are illustrated in Figure 2, which shows the
simulated tail distributions of duration for r = 1.2 and var-
ious β values. Figure 2(a) shows the superlinear regime
(β ≥ 1). The power-law exponents from simulations are
close to the theoretical values, though the agreement is not
as good as in the equal fitness case, as the finite cutoff in
simulation time has a greater impact here. Note that the
curves for β = 1 and β = 1.2 are approximately parallel.
This is not a coincidence. For β = 1.2, Theorem 7 shows
that the tail exponent is β − 1 = 0.2. For β = 1, [13] shows
that the tail exponent is roughly (r−1)x01 = 0.2. More gen-
erally, T (β, r,x0) with β > 1 may have a heavier or lighter
tail than T (1, r,x0), depending on r and x0.

Figure 2(b) shows the sublinear regime (β ≤ 1). As men-
tioned in Section 3.2, the crossover between the curves in-
dicates that there is no simple stochastic ordering between
T (β, r,x0) of different β. However, the tails are still nicely
ordered. Note that a larger β results in a heavier tail, which
is opposite to what we observe in the superlinear regime.
When β is small, the tail drops very fast. Thus in the sub-
linear regime having the advantage of a larger fitness clearly
manifests itself in shorter competition durations.
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Figure 2: Tail distribution of duration for r = 1.2
and various values of β. Dots (marks) are simulation
results. The solid lines in (a) have slopes 1− β.

4.3.2 Proof of Theorem 7
Before we prove Theorem 7, we first prove the following

result on the probability of never tying again when starting
from a tie with a large number of balls. As a consequence
of this result, for r > 1 and large t, the probability of the
duration being t has the same order as the probability of
having a tie at time t.

Lemma 5. For β ≥ 0 and r ≥ 1, the probability of never
tying again satisfies

lim
x→∞

P[T2(β, r, x, x) = ∞] = P[T2(0, r, 0, 0) = ∞] =
r − 1

r + 1
.

(19)

Proof. Note that for x ∼ (x, x), the transition probabil-
ity in (1) satisfies

lim
x→∞

Q(x,x+∆x;β, r) = Q(0,∆x; 0, r),

which is the transition probability of a biased random walk.
Thus for fixed 2k,

lim
x→∞

P[T2(β, r, x, x) = 2k] = P[T2(0, r, 0, 0) = 2k].
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Since P[T2(β, r, x, x) < ∞] =
∑∞

k=1 P[T2(β, r, x, x) = 2k],
Fatou’s Lemma yields

lim inf
x→∞

P[T2(β, r, x, x) <∞] ≥
∞∑

k=1

lim
x→∞

P[T2(β, r, x, x) = 2k]

=
∞∑

k=1

P[T2(0, r, 0, 0) = 2k] = P[T2(0, r, 0, 0) <∞].

Now using Corollary 1, we obtain

lim
x→∞

P[T2(β, r, x, x) <∞] = P[T2(0, r, 0, 0) <∞] =
2

r + 1
,

which immediately implies (19).

Now we prove Theorem 7.

Proof of Theorem 7. Let X be a (β, r,x0)-urn pro-
cess. Note that a tie occurs only at time epochs of the form
t2x = 2x − ∥x0∥1 for some integer x. At such a t2x, both
colors have x balls. Note that

P[X(t2x) = (x, x)] = P[−ξ1x < ∆(x0, x, x) < ξ2x].

Repeating the argument in the proof of Lemma 4, we obtain

P[X(t2x) = (x, x)] ∼ (r + 1)2βK(β, r,x0)t
−β
2x .

Since

P[T (X) = t2x] = P[X(t2x) = (x, x)] · P[T2(β, r, x, x) = ∞],

Lemma 5 then yields

P[T (β, r,x0) = t2x] ∼ (r − 1)2βK(β, r,x0)t
−β
2x .

Summing over x such that t2x ≥ t and using the following
Riemann sum approximation,∑

x:t2x≥t

t−β
2x ∼

∫ ∞

t

1

2
z−βdz =

1

2(β − 1)
t1−β ,

we obtain (17).

4.3.3 Proof of Theorem 8
Let X be a (β, r,x0)-urn process and t2x = 2x− ∥x0∥1 as

in the proof of Theorem 7. Note that

P[X(t2x) = (x, x)] ≤ P[∆(x0, x+ 1, x) > 0].

Using the standard argument of exponentiation followed by
the application of the Markov inequality as in the proof of
Chernoff bound, we obtain, for s < xβ01,

P[X(t2x) = (x, x)] ≤M(s;β, x01, x+ 1)M(−rs;β, x02, x),

where

M(s;β, y1, y2) =

y2−1∏
j=y1

(
1− s

jβ

)−1

, for s < yβ1 , (20)

Note that

logM(s;β, x01, x+ 1) = −
x∑

j=x01

log

(
1− s

jβ

)
∼ sx1−β

1− β
.

and

logM(−rs;β, x02, x) = −
x−1∑

j=x02

log

(
1 +

rs

jβ

)
∼ −rsx

1−β

1− β
.

Thus

lim sup
x→∞

log P[X(t2x) = (x, x)]

x1−β
≤ (1− r)s

1− β
.

Letting s→ xβ01, we obtain

lim sup
x→∞

log P[X(t2x) = (x, x)]

x1−β
≤ 1− r

1− β
xβ01.

By Lemma 5,

log P[T2(β, r, x, x) = ∞] ∼ log
r − 1

r + 1
= o(x1−β).

Since

P[T (X) = t2x] = P[X(t2x) = (x, x)] · P[T2(β, r, x, x) = ∞],

using Lemma 5 and the fact t2x ∼ 2x, we obtain

lim sup
x→∞

log P[T (β, r,x0) = t2x]

t1−β
2x

≤ 1− r

1− β
2β−1xβ01.

Let 0 > C > 1−r
1−β

2β−1xβ01. For all large enough x,

P[T (X) = t2x] ≤ eCt
1−β
2x .

Summing over x such that t2x ≥ t, we obtain

P[T (X) ≥ t] =
∑

x:t2x≥t

P[T (X) = t2x] ≤
1

2

∫ ∞

t−2

eCs1−β

ds.

By repeated application of l’Hôpital’s rule,

lim sup
t→∞

log P[T (X) ≥ t]

t1−β
≤ lim

t→∞

log
∫∞
t
eCs1−β

ds

t1−β

= lim
t→∞

−tβeCt1−β

(1− β)
∫∞
t
eCs1−βds

= C.

Letting C → 1−r
1−β

2β−1xβ01 complets the proof.

Remark 1. A modification of the above proof shows that
color 1 always wins when β < 1. Indeed, the above proof
shows that

∑
x P[∆(x0, x + 1, x) > 0] < ∞. The Borel-

Cantelli Lemma then implies that ∆(x0, x + 1, x) ≤ 0 for
all large enough x almost surely, from which it follows that
X1(t) > X2(t) for large enough t.

5. TAIL DISTRIBUTION OF INTENSITY
In this section, we characterize the tail distribution of in-

tensity N . The equal fitness case (r = 1) is considered in
Section 5.1, and the case of different fitnesses (r > 1) is
considered in Section 5.2.

5.1 Equal Fitness
We consider the equal fitness case in this section. The

main results are presented in Section 5.1.1, and the proofs
are given in Section 5.1.2.

5.1.1 Main Results
Since T is finite if and only if N is finite, it follows from

Theorem 4 that P[N(β, 1,∞) ≥ n] = 1 for all finite n, if
β ∈ [0, 1/2]. Thus, as in Section 4.2, our focus in the present
section is the regime β > 1/2.

The following theorem bounds the tail distribution of in-
tensity. For the sublinear regime β ∈ (1/2, 1], the tail dis-
tribution of N(β, 1,x0) is bounded between two power laws
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with exponents β and β − 1/2, respectively. For the su-
perlinear regime β > 1, we only have an upper bound, but
simulations suggest that N(β, 1,x0) also has a power-law
tail in this regime.

Theorem 9. (i) For β ∈ (1/2, 1],

P[N(β, 1,x0) ≥ n] = O(n1/2−β), (21)

and

P[N(β, 1,x0) ≥ n] = Ω(n−β). (22)

(ii) For β ≥ 1,

P[N(β, 1,x0) ≥ n] = O(n−β). (23)
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10-3

10-2

10-1

100

100 101 102 103

P[
N

 >
= 

n]

Intensity (n)

r=1, x0=(1,1), L=107, runs=105

β = 0.5
β = 0.6
β = 0.8
β = 1.0
β = 1.2
β = 1.4
β = 1.6

Figure 3: Tail distribution of intensity for r = 1 and
various values of β. Dots (marks) are simulation
results. The solid lines have slopes 1− 2β.

Figure 3 shows the empirical tail distribution of intensity
from simulation. Also superimposed are straight lines with
slopes 1 − 2β. Note the good agreement of the simulated
slopes with those of the straight lines, which strongly sug-
gests that the intensity N(β, 1,x0) has a power-law tail with
exponent 1− 2β. We have the following conjecture,

Conjecture 1. For β > 1/2, and some C(β,x0),

P[N(β, 1,x0) ≥ n] ∼ C(β,x0)n
1−2β .

5.1.2 Proof of Theorem 9
By symmetry, we assume x01 ≥ x02 throughout the proof.

Note that N ≤ T/2. Thus for β > 1/2, Theorem 5 yields,

P[N(β, 1,x0) ≥ n] ≤ P[T (β, 1,x0) ≥ 2n] ∼ K(β, 1,x0)√
(2β − 1)π

n
1
2
−β ,

which implies (21).
Now we prove (22). Since xβ is concave for β ∈ (1/2, 1],

by Jensen’s inequality, for any x1, x2 > 0,

xβ1 + xβ2
2

≤
(x1 + x2

2

)β
,

and hence

xβi
xβ1 + xβ2

≥
(

2xi
x1 + x2

)β

2−1.

By considering each sample path in the set {Tn(β, 1,x0) =
d0 + 2ℓ}, where d0 = x01 − x02, we obtain

P[Tn(β, 1,x0) = d0 + 2ℓ]

≥
[
B(x01 + ℓ, x01 + ℓ)

B(x01, x02)
2d0+2ℓ

]β
P[Tn(0, 1, d0, 0) = d0 + 2ℓ],

(24)

where B(·, ·) is the beta function.
Note that

P[N(β, 1,x0) ≥ n] = P[Tn(β, 1,x0) <∞]

=

∞∑
ℓ=n−1

P[Tn(β, 1,x0) = d0 + 2ℓ].

Then (22) follows from (24) and the following lemma.

Lemma 6. Let f̃
(n,d0)
d0+2ℓ ≜ P[Tn(0, 1, d0, 0) = d0+2ℓ] be the

probability that the n-th visit to the origin occurs at time
d0+2ℓ in a simple random walk starting from d0 ≥ 0. Then

∞∑
ℓ=n−1

[
B(x01 + ℓ, x01 + ℓ)

B(x01, x02)
2d0+2ℓ

]β
f̃
(n,d0)
d0+2ℓ = Θ(n−β).

(25)

The proof of (23) follows from the same argument as the
proof of (22), except that the directions of all the inequalities
get reversed, since xβ is convex for β ≥ 1.

Now we complete the proof of Theorem 9 by proving
Lemma 6.

Proof of Lemma 6. Note that for large ℓ,[
B(x01 + ℓ, x01 + ℓ)

B(x01, x02)
2d0+2ℓ

]β
∼ C Γ(2ℓ+ 2x01 + 1)

Γ(2ℓ+ 2x01 + 1 + β/2)
,

(26)

where Γ(·) is the gamma function, and

C =

[ √
π

2∥x0∥1−3/2B(x01, x02)

]β
.

By Eq. (4.4.2) of [18],

Γ(2ℓ+ 2x01 + 1)

Γ(2ℓ+ 2x01 + 1 + β/2)
= 0D

−β/2
1 [z2x01+2ℓ], (27)

where aD
−α
x is the Riemann-Liouville fractional integral op-

erator defined by

aD
−α
x f =

1

Γ(α)

∫ x

a

f(z)(x− z)α−1dz.

Denote the sum in (25) by Λn. Combining (26) and (27)
yields

Λn ∼ C

∞∑
ℓ=n−1

0D
−β/2
1 [z2x01+2ℓ]f̃

(n,d0)
d0+2ℓ .

By the linearity of Riemann-Liouville integral for power se-
ries (see Section 5.2 of [18]),

Λn ∼ C 0D
−β/2
1

{
∞∑

ℓ=n−1

f̃
(n,d0)
d0+2ℓ z

2x01+2ℓ

}
= C 0D

−β/2
1

[
zx01+x02Gn(z; d0)

]
, (28)
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where Gn(z; d0) =
∑∞

ℓ=n−1 f̃
(n,d0)
d0+2ℓ z

d0+2ℓ is the generating

function of f̃
(n,d0)
d0+2ℓ , the expression of which is given by the

following (see Eq. (A.15) of [13]),

Gn(z; d0) = z−d0
(
1−

√
1− z2

)n+d0−1

. (29)

Substituting (29) into (28) yields

Λn ∼ C

Γ(β
2
)

∫ 1

0

(1− z)
β
2
−1z2x02

(
1−

√
1− z2

)n+d0−1

dz,

where we have used x01 + x02 − d0 = 2x02. Note that the
integrand can be rewritten as

(1−z2)
β
2
−1(1+z)1−

β
2 (1+

√
1− z2)x02(1−

√
1− z2)n+x01−1,

which on (0, 1) is bounded between constant multiples of

(1− z2)
β
2
−1(1−

√
1− z2)n+x01−1.

Thus

Λn = Θ

(∫ 1

0

(1− z2)
β
2
−1
(
1−

√
1− z2

)n+x01−1

dz

)
.

A change of variable u =
√
1− z2 yields

Λn = Θ

(∫ 1

0

uβ−1(1− u)n+x01−1du

)
= Θ(B(β, n+ x01)) = Θ(n−β),

which completes the proof.

5.2 Different Fitnesses
We consider the case of different fitnesses in this section.

The following theorem shows that the distribution of the
intensity N(β, r,x0) for r > 1 always has an exponential
tail. Thus competitions are never intense when agents have
different fitnesses, irrespective of the feedback strength β
and the initial condition x0.

Theorem 10. For r > 1,

P[N(β, r,x0) ≥ n] ≤ r−(x01−x02)
+
(

2

r + 1

)n−1

, (30)

where (x)+ = max{x, 0}. In addition,

lim
n→∞

log P[N(β, r,x0) ≥ n]

n
= log

(
2

r + 1

)
. (31)

The result is illustrated in Figure 4, which shows the sim-
ulated tail distributions of intensity. Note that the plot uses
semi-log scale. The superimposed straight line has the slope
log 2

r+1
given in (31). Note that the simulated curves all

become parallel to the straight line, in good agreement with
the theory. Of course, specific β values do affect the leading
constants, as reflected by the parallel shifts of the curves.

Proof of Theorem 10. Eq. (30) follows from Corollary 2
and the well-known formula for P[N(0, r,x0) ≥ n] (see e.g.
XI.3.d of [9]).

Now we prove (31). Let X be a (β, r,x0)-urn process and
Fn(z) = P[X1(Tn(X)) = z | Tn(X) < ∞]. By the strong
Markov property and the fact that Fn(z) = 0 for z < n,

P[Tn+1(X) <∞ | Tn(X) <∞] =
∑
z≥n

Fn(z)P[T2(β, r, z, z) <∞].
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Figure 4: Tail distribution of intensity for r = 1.2
and various values of β. The dots (marks) are from
simulation. The straight line has slope log 2

r+1
.
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Figure 5: Empirical distribution of duration condi-
tioned on either 1 or 2 leading the competition at
the end of simulation time.

Lemma 5 then implies

lim
n→∞

P[Tn+1(X) <∞ | Tn(X) <∞] =
2

r + 1
. (32)

Since

P[N(β, r,x0) ≥ n] =

n−1∏
j=0

P[Tj+1(X) <∞ | Tj(X) <∞],

(31) follows from (32) and the fact that the Cesàro mean of a
convergent sequence converges to the limit of the sequence.

6. DISCUSSION AND CONCLUSION
Apart from the insights provided by the simulations on

our theoretical findings, we illustrate another interesting as-
pect of the different fitness case. Recall that in the superlin-
ear regime the fittest agent can lose the competition. Does
the competition duration depend on the winner? Figure 5
strongly suggests that the answer is yes, which shows the
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empirical duration distribution conditioned on either 1 or 2
leading the competition at the end of the simulation. For
competitions that 1 leads, we observe a power law distri-
bution, consistent with our theoretical findings (the same
slopes 1 − β are shown in the plot). However, for compe-
titions that 2 leads, duration seems to be dominated by an
exponential tail. Thus, if 2 is to win the competition it has
to do so early on: 2 has very little chance of winning if it is
trailing behind when a long time has elapsed. However, if
1 is to win, competitions may last very long with 2 putting
up a good battle for the lead but losing eventually.

This work presented a rigorous mathematical treatment
of a nonlinear Pólya urn process which embodies the fit-
ness of agents (f1,2) and the feedback strength of CA effect
(β > 0). In particular, we considered sublinear (β < 1)
and superlinear (β > 1) regimes as well as equal (f1 = f2)
and non-equal (f1 ̸= f2) fitness scenarios and characterized
the tail distribution of two important statistics of competi-
tions: duration (i.e., time of the last tie) and intensity (i.e.,
number of ties). We characterized the complex interactions
between fitness superiority and feedback strength, revealing
various interesting properties of such competitions, such as
the serious struggle of the fittest in the superlinear regime.
We believe that our theoretical findings contribute to vari-
ous applications of the generalized Pólya urn processes that
incorporate both fitness and nonlinearity.
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Birkhäuser, 1992.

[23] A. I. Sakhanenko. Estimates in the invariance
principle in terms of truncated power moments.
Siberian Mathematical Journal, 47(6):1113–1127, 2006.

[24] C. Wagner, P. Singer, M. Strohmaier, and B. A.
Huberman. Semantic stability in social tagging
streams. In Proceedings of 23rd international
conference on World Wide Web, pages 735–746. ACM,
2014.

[25] T. Wallstrom. The equalization probability of the
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APPENDIX
A. PROOF OF THEOREM 2

The proof uses a coupling argument similar to the one
used in the proof of Theorem 1. Let {ηj}j∈N be a sequence
of independent random variables uniformly distributed on
[0, 1]. Define a (β, r,x0)-urn process {Y(t)}t∈N recursively
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by setting Y(0) = x0 and

Y1(t+ 1) = Y1(t) + 1

{
ηt ≤

rY1(t)
β

rY1(t)β + Y2(t)β

}
,

Y2(t+ 1) = Y1(t) + Y2(t) + 1− Y1(t+ 1).

Similarly define a (β′, r′,x′
0)-urn process {Y′(t)}t∈N using

the same sequence {ηj}j∈N. We now show that T1(Y) ≥
T1(Y

′) if either (i) or (ii) holds.
If x01 = x02, this is trivial. Now assume (i) holds with

x01 > x02. We will show by induction that Y1(t) ≥ Y ′
1 (t),

Y ′
2 (t) ≥ Y2(t) and Y1(t) ≥ Y2(t) for t ≤ T1(Y). The base

case t = 0 holds trivially. Assume it holds for t < T1(Y)
and consider t + 1. Since x01 > x02, by the definition of
T1(Y), we have Y1(t) ≥ Y2(t) for t < T1(Y). The induction
hypothesis then implies that

rY1(t)
βY ′

2 (t)
β′

r′Y2(t)βY ′
1 (t)

β′ =
r

r′

(
Y1(t)

Y2(t)

)β−β′ (
Y1(t)

Y ′
1 (t)

· Y
′
2 (t)

Y2(t)

)β′

≥ 1.

It follows that

rY1(t)
β

rY1(t)β + Y2(t)β
≥ r′Y ′

1 (t)
β′

r′Y ′
1 (t)

β′ + Y ′
2 (t)

β′ ,

and hence

Y1(t+ 1) = Y1(t) + 1

{
ηt ≤

rY1(t)
β

rY1(t)β + Y2(t)β

}
≥ Y ′

1 (t) + 1

{
ηt ≤

r′Y ′
1 (t)

β′

r′Y ′
1 (t)

β′ + Y ′
2 (t)

β′

}
= Y ′

1 (t+ 1).

Similarly, Y2(t+1) ≤ Y ′
2 (t+1), which completes the induc-

tion. In particular,

Y1(t)− Y2(t) ≥ Y ′
1 (t)− Y ′

2 (t)

for t ≤ T1(Y). Since Y1(0) − Y2(0) ≥ Y ′
1 (0) − Y ′

2 (0) > 0, it
follows that T1(Y) ≥ T1(Y

′).
Now assume (ii) holds. The same argument as above

shows that Y1(t) ≤ Y ′
1 (t), Y

′
2 (t) ≤ Y2(t) and Y1(t) ≤ Y2(t)

for t ≤ T1(Y), which implies T1(Y) ≥ T1(Y
′).

B. PROOF OF LEMMA 1
First consider the case β > 1. In this case, it is known

(see e.g. Section 3.2 of [19]) that Sk(x0k,∞) < ∞ almost
surely. The characteristic function of Sk(x0k,∞) is given
by Ψ(sf−1

k ;β, x0k,∞), which is absolutely integrable. Thus
Sk(x0k,∞) has an absolutely continuous distribution Hk

with continuous density hk. Let f1 = 1 and f2 = r−1. Note
that K(β, r,x0) is the probability density of S1(x01,∞) −
S2(x02,∞) at the origin. By the Convolution Theorem,

K(β, r,x0) =

∫ ∞

0

h1(z)h2(z)dz ∈ R.

Since h1 is not identically zero, h1(z0) > 0 for some z0 > 0.
By continuity, there exists some ϵ > 0 such that h1(z) >
h1(z0)/2 for z ∈ (z0 − ϵ, z0 + ϵ) ⊂ (0,∞). Thus

K(β, r,x0) ≥
h1(z0)

2

∫ z0+ϵ

z0−ϵ

h2(z)dz > 0,

where the last inequality holds because every z ∈ (0,∞) is
a point of increase of H2 by Theorem 3.7.5 of [15].

Now consider the case β > 1/2 and r = 1. The proof is
similar to that of Theorem 4 in [20]. By symmetry, assume
x01 ≤ x02 without loss of generality. In this case,

Ψ̃(s;β, 1,x0) = Ψ(s;β, x01, x02)Ĥ3(s;β, x02),

where

Ĥ3(s;β, x02) = lim
x→∞

|Ψ(s;β, x02, x)|2 =

∞∏
j=x02

(
1 +

s2

j2β

)−1

,

the characteristic function of
∑∞

j=x02
(ξ1j − ξ2j), which is

finite almost surely (see e.g. Section 3.2 of [19]).
If x01 = x02, then Ψ(s;β, x01, x02) = 1, and K(β, 1,x0) >

0 follows from the fact Ĥ3(s;β, x02) > 0.

Suppose x01 < x02. Since Ĥ3 is absolutely integrable,
the corresponding distribution H3 is absolutely continuous
with continuous density h3. Let H4 and h4 be the distribu-
tion function and density of S1(x01, x02), both continuous
on (0,∞). By the Convolution Theorem,

K(β, 1,x0) =

∫ ∞

0

h3(−z)h4(z)dz ∈ R.

Again by Theorem 3.7.5 of [15], every z ∈ R is a point of
increase of H3. Since h4 is continuous and not identically
zero, the same argument as for the β > 1 case shows that
the above integral is strictly positive.

C. PROOF OF LEMMA 3
We will need the next two lemmas that give some large

deviation results. Their proofs are deferred to Appendix C.1
and Appendix C.2, respectively.

Lemma 7. Let ym ∼ zm ∼ m, and qm = ym − zm ≥ 9.
For ϵ ∈ (0, 1) and large enough m,

P
{
Sk(zm, ym) < (1− ϵ)qmm

−β
}
≤ e−

1
2
ϵ
√
qm+1, (33)

and

P
{
Sk(zm, ym) > (1 + ϵ)qmm

−β
}
≤ e−

1
2
ϵ
√

qm+ 9
2 . (34)

Lemma 8. For β > 0, c > 0, zm ≥ m+ 1 and qm ≥ 1,

P
{

sup
y≥zm

ξky > cqmm
−β

}
= O(me−cqm). (35)

Now we prove Lemma 3. Let E ≜ {T1(β, 1,x) < ∞}. By

symmetry, assume q ≜ x1 − x2 > 0. The event E occurs if
and only if S2(x2, y) < S1(x1, y + 1) for some y ≥ x1, i.e.

E =

{
sup
y≥x1

∆(x, y + 1, y) > 0

}
=

{
sup
y≥x1

[ξ1y +∆(x1, x1, y, y)] > S2(x2, x1)

}
.

Let m = ∥x∥1/2. Note that E ⊂ E1 ∪ E2 ∪ E3, where

E1 =

{
sup
y≥x1

∆(x1, x1, y, y) >

(
1− 2

3
ϵ

)
qm−β

}
,

E2 =

{
sup
y≥x1

ξ1y >
1

3
ϵqm−β

}
,

E3 =

{
S2(x2, x1) <

(
1− 1

3
ϵ

)
qm−β

}
.
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Note that q = ρ(x)
√

∥x∥1 = Ω(
√
m). By (9), (33) and (35),

we obtain

P[E] ≤ P[E1] + P[E2] + P[E3] ≤ 2Φ̄(c1ρ(x)) +O(∥x∥−β
1 ).

On the other hand, E4 ⊂ E5 ∪ E, where

E4 =

{
sup
y≥x1

∆(x1, x1, y, y) > (1 + ϵ)qm−β

}
,

E5 =
{
S2(x2, x1) > (1 + ϵ)qm−β

}
.

By (10) and (34), we obtain

P[E] ≥ P[E4]− P[E5] ≥ 2Φ̄(c2ρ(x))−O(∥x∥−β
1 ).

C.1 Proof of Lemma 7
We first prove (33). Using the standard argument of ex-

ponentiation followed by the application of the Markov in-
equality as in the proof of Chernoff bound, we obtain for
s > 0,

P1 ≜ P
{
Sk(zm, ym) < (1− ϵ)qmm

−β
}

≤ es(1−ϵ)qmM(−smβ ;β, zm, ym)

≤ es(1−ϵ)qm

[
1 + s

(
m

ym

)β
]−(ym−zm)

,

where M is given by (20). Let κ1 = 1− ϵ/2. Since ym ∼ m,

for large enough m, we have
(

m
ym

)β
> κ1, and hence

P1 ≤ es(1−ϵ)qm(1 + sκ1)
−qm .

Applying the following inequality to the last term,

(1 + u)−1 ≤ 1− u+ u2 ≤ e−u+u2

, for u ≥ 0,

we obtain

P1 ≤ es(1−ϵ)qmeqm(−sκ1+s2κ2
1) = e−

1
2
ϵsqm+κ2

1qms2 .

Since κ1 ∈ (0, 1), setting s = q
−1/2
m in the above inequality

yields (33).
Now we prove (34). For large m and s ∈ (0, zβm/m

β),
the standard argument of exponentiation followed by the
application of the Markov inequality yields

P2 ≜ P
{
Sk(zm, ym) > (1 + ϵ)qmm

−β
}

≤ e−s(1+ϵ)qmM(smβ ;β, zm, ym)

≤ e−s(1+ϵ)qm

[
1− s

(
m

zm

)β
]−(ym−zm)

,

Let κ2 = 1 + ϵ/2. Since zm ∼ m, for large enough m, we

have
(

m
zm

)β
< κ2,

P2 ≤ e−s(1+ϵ)qm(1− sκ2)
−qm .

Applying the following inequality to the last term,

(1− u)−1 ≤ 1 + u+ 2u2 ≤ eu+2u2

, for u ∈
[
0,

1

2

]
,

we obtain

P2 ≤ e−s(1+ϵ)qmeqm(sκ2+2s2κ2
2) = e−

1
2
ϵsqm+2κ2

2qms2 .

Since κ2 ∈ (1, 3/2), setting s = q
−1/2
m yields (34). Note

that the conditions that s ∈ (0, zβm/m
β) and sκ2 ∈ [0, 1/2]

are satisfied by this particular choice of s when m is large
enough.

C.2 Proof of LEMMA 8
By the union bound,

P ≜ P
{

sup
y≥zm

ξky > cqmm
−β

}
≤
∑

y≥zm

P[ξky > cqmm
−β ]

=
∑

y≥zm

e−cqmm−βyβ

.

Since the summand is decreasing in y and zm ≥ m + 1,
bounding the sum by the corresponding integral yields

P ≤
∫ ∞

m

e−cqmm−βzβdz

=

∫ ∞

1

me−cqmzβdz

= me−cqm

∫ ∞

1

e−cqm(zβ−1)dz

≤ me−cqm

∫ ∞

1

e−c(zβ−1)dz.

Since the last integral is finite, P = O(me−cqm).

D. PROOF OF UNIFORM CONVERGENCE
IN LEMMA 4

Throughout this section, the limiting process is under-
stood to be t→ ∞. For a function G(x, . . . ) of x and other
variables, we will use the following notation,

∥G(x, . . . )∥x ≜ sup
x∈At(tγ)

|G(x, . . . )|.

Recall that we have shown in Section 4.2.3 that

P[X(t) = x] =
x−β
1 + x−β

2

2π

∫ ∞

−∞
ψ(s;x1 + 1, x2 + 1)ds,

which can be rewritten as

P[X(t) = x] =
2β

πtβ

∫ ∞

−∞
Ψ̃(s;β, 1,x0)Z(x, t, s)ds,

where Ψ̃(s;β, 1,x0) is defined in (5), and

Z(x, t, s) =
1

2

[(
t

2x1

)β

+

(
t

2x2

)β
]
ψ(s;x1 + 1, x2 + 1)

Ψ̃(s;β, 1,x0)
.

Recalling the definition (6) of K(β, 1,x0), we obtain∥∥∥tβP[X(t) = x]− 2β+1K(β, 1,x0)
∥∥∥
x

=
2β

π

∥∥∥∥∫ ∞

−∞
Ψ̃(s;β, 1,x0)[Z(x, t, s)− 1]ds

∥∥∥∥
x

≤ 2β

π

∫ ∞

−∞
|Ψ̃(s;β, 1,x0)| · ∥Z(x, t, s)− 1∥x ds. (36)

Note that for all large enough t, the last integrand is upper
bounded by

|Ψ̃(s;β, 1,x0)| · (∥Z(x, t, s)∥x + 1)
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≤ 2|ψ(s;x1 + 1, x2 + 1)|+ |Ψ̃(s;β, 1,x0)|
≤ 3|ψ(s;x01 + 1, x02 + 1)|

≤ 3

(
1 +

s2

∥x0∥2β1

)−1

,

where the last bound is integrable in s. If we can show

∥Z(x, t, s)− 1∥x → 0, (37)

then the uniform convergence claimed in Lemma 4 will follow
from (36) and the Dominated Convergence Theorem.

Now we prove (37). Rewrite Z in polar form as Z(x, t, s) =

R(x, t, s)eiΘ(x,t,s), i.e.R(x, t, s) = |Z(x, t, s)| and Θ(x, t, s) =
argZ(x, t, s). Note that

ψ(s;x1 + 1, x2 + 1)

Ψ̃(s;β, 1,x0)
=

∞∏
j=x1+1

(
1− is

jβ

) ∞∏
j=x2+1

(
1 +

is

jβ

)
.

Thus

R(x, t, s) ≥ 1

2

[(
t

2x1

)β

+

(
t

2x2

)β
]
,

and

R(x, t, s) ≤ 1

2

[(
t

2x1

)β

+

(
t

2x2

)β
]

∞∏
j=x1∧x2

(
1 +

s2

j2β

)
.

For x ∈ At(t
γ) and large enough t, we have |2x1,2 − t| ≤

2tγ+1/2 < t and x1 ∧ x2 ≥ ⌊t/4⌋ ≥ 1. It follows that

R(x, t, s) ≥
(
1 + 2tγ−1/2

)−β

, (38)

and

R(x, t, s) ≤
(
1− 2tγ−1/2

)−β
∞∏

j=⌊t/4⌋

(
1 +

s2

j2β

)
. (39)

Since for β > 1/2,

∞∏
j=⌊t/4⌋

(
1 +

s2

j2β

)
≤ exp

s2 ∞∑
j=⌊t/4⌋

j−2β

→ 1,

(38) and (39) imply that

∥R(x, t, s)− 1∥x → 0.

For the phase Θ(x, t, s), note that

Θ(x, t, s) = (−1)1{x1>x2}
x1∨x2∑

j=x1∧x2+1

arctan

(
s

jβ

)
,

where x1 ∨ x2 = max{x1, x2}. For x ∈ At(t
γ) and large t,

|x1 − x2| ≤ 2tγ+1/2 and x1 ∧ x2 ≥ t/4. Thus

|Θ(x, t, s)| ≤
x1∨x2∑

j=x1∧x2+1

s

jβ
≤ s22β+1tγ+1/2−β .

Since γ < β − 1/2, it follows that

∥Θ(x, t, s)∥x → 0.

Note that for z ∈ C,

|z − 1|2 = (|z| − 1)2 + 4|z| sin2
(arg z

2

)
≤ (|z| − 1)2 + |z| · | arg z|2.

It follows that

∥Z(x, t, s)− 1∥2x ≤ ∥R(x, t, s)− 1∥2x
+ ∥R(x, t, s)∥x · ∥Θ(x, t, s)∥2x → 0,

which completes the proof.
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