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In this paper, we introduce a new class of stochastic multilayer networks. A stochastic multilayer network
is the aggregation of M networks (one per layer) where each is a subgraph of a foundational network G.
Each layer network is the result of probabilistically removing links and nodes fromG. The resulting network
includes any link that appears in at least K layers. This model is an instance of a non-standard site-bond
percolation model. Two sets of results are obtained: first, we derive the probability distribution that the M-
layer network is in a given configuration for some particular graph structures (explicit results are provided
for a line and an algorithm is provided for a tree), where a configuration is the collective state of all links (each
either active or inactive). Next, we show that for appropriate scalings of the node and link selection processes
in a layer, links are asymptotically independent as the number of layers goes to infinity, and follow Poisson
distributions. Numerical results are provided to highlight the impact of having several layers on some metrics
of interest (including expected size of the cluster a node belongs to in the case of the line). This model finds
applications in wireless communication networks with multichannel radios, multiple social networks with
overlapping memberships, transportation networks, and, more generally, in any scenario where a common
set of nodes can be linked via co-existing means of connectivity.
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1 INTRODUCTION
There is an increasing need to understand how different networks interact with each other. One
means of such interaction arises when users (nodes) belong to two or more networks (layers). In
recent years, there has been a surge of interest in such multilayer networks [7, 20] due to their
relevance in problems stemming in varied fields such as multifrequency wireless communication
networks [32], multiple online social networks serving a common population [4, 23, 36] just to
name a few. Various models of multilayer networks (also termed multiplex networks and compos-
ite networks in the literature) relevant to different application scenarios have been proposed, in
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particular stochastic multilayer networks whose constructions can be described by one or more
control parameters (such as probability of the presence of a node, edge or more complex attributes).
For such networks, a wide variety of percolation formulations have been proposed and studied,
e.g., competition between layers [39], weak percolation [6], k-core percolation [2], directed per-
colation [1], spanning connectivity of a multilayer site-percolated network [16], and bond perco-
lation [17]. However, even simple multilayer network models have proven extremely difficult to
analyze exactly [16]. Consequently, most of this aforesaid recent literature on properties of multi-
layer networks consists of numerical and heuristic analyses.

Our goal in this paper is to consider a simple model for a stochastic multilayer network and to
attempt exact characterization of the joint probability distribution of the collective (on-off) config-
uration of the links of the multilayer network.We provide exact results and efficient algorithms for
some special graphs, and prove some complexity-theoretic hardness results in the general case. Our
model is as follows. A multilayer network consists ofM co-existing networksG (1) ,G (2), . . . ,G (M )

connecting a common set of users. Each user is active in only a subset of these networks. We also
say a user active in a particular network belongs to that network. A user active in both G (1) and
G (2) , for example, can help connect two other users that are active inG (1) alone, and inG (2) alone,
respectively, by forming a bridge. Figure 1 illustrates an example with M = 3 networks (layers),
where a path connecting v1 and v2 must traverse all three layers, and one such path is shown to
go through the bridge nodes v3 and v4, both of which belong to more than one layer. A stochastic
multilayer network is a graph G = (V ,E) along with a random process by which each network
layer is obtained from G by randomly removing links (called link thinning) and randomly deacti-
vating nodes, and a process by which the M thinned layers are merged into a single graph. Layer
m, 1 ≤ m ≤ M is a subgraph of G consisting of all remaining active nodes and all links between
active nodes not removed through link thinning. There are different ways of creating a multilayer
network out of the M layers. One is simply to take the union of (the nodes and links of) all the
layer graphs; this is illustrated by the three layer network in Figure 1. We consider a slightly more
general process whereby all active nodes are included in the final graph and all links that appear
in at least K layers.

(0)

(1)

(3)
(2)

(1)
(1)

(2)

(2)

(3)

(2)

(1)

Fig. 1. Multilayer network with three layers.

Concrete examples of such multilayer networks are: (1) a network of cities connected via dif-
ferent airline companies where each city is served only by a subset of all the airlines [4, 9], (2) a
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network of users with accounts on multiple online social networks [26], and (3) a communication
network of units equipped with radios that can listen and transmit simultaneously on a subset of
multiple frequencies [32].
With a more liberal interpretation of “co-existence”, such multilayer networks may also arise

from taking snapshots of a single network at different time epochs. For example, consider a duty-
cycled wireless sensor network where each sensor is active or dormant according to a random
periodic schedule and each period is divided into M slots. The m-th layer G (m) then consists of
sensors that are active in the m-th slot. Duty-cycled models have been studied in the wireless
sensor network literature (e.g., [3] and references therein), where the underlying networks are
usually random geometric graphs and the focus is on the connectivity of each layer, which is a
much stronger notion of connectivity than connectivity in our aggregate network.

Denote the configuration of a multilayer network by the collection of states of all links in the
underlying graph G after the layers have been merged. Here the state of each link is either active
(1) or inactive (0). We are interested in characterizing the configuration probability distribution
of the multilayer network under the assumption that thinning and deactivation operations occur
as independent events. Such a characterization can be useful for computing quantities such as
the distribution of the sizes of connected components and average path lengths. We show that in
general, computing the network configuration distribution is hard - for example, in most cases
computing the probability that there are no active links in the merged graph is #P-hard. On the
other hand we have partial positive results for some classes of graphs including trees. Moreover,
we consider the behavior of this distribution in the limit asM → ∞. Our contributions are:
• We present a newmodel of a stochastic multilayer network based on link thinning and node
deactivation, and show that in general it is a difficult problem to compute probabilities of
multilayer network configurations and it remains difficult even to approximate these proba-
bilities.
• We develop efficient algorithms for computing multilayer network configuration probabili-
ties for line and tree topologies.
• We consider a setting where the number of layersM goes to infinity and where link thinning
probabilities and node deactivation probabilities are functions of M . We provide conditions
for link existence events to be asymptotically independent.

The paper is organized as follows. Section 2 presents our stochastic multilayer model. The hard-
ness of the problem of computing multilayer network configuration probabilities is addressed in
Section 3. Exact results and efficient computational algorithms are presented in Section 4 and the
asymptotic independence of the link states asM → ∞ is found in Section 5. A discussion of related
work can be found in Section 6 and conclusions are drawn in Section 7.

2 MODEL
Let G = (V ,E) denote the underlying connectivity network, where V is the set of nodes and
E ⊂ V ×V is the set of links that represent all possible connections between pairs of nodes inV (in
the graph/percolation community a node is called a vertex/site and a link is called an edge/a bond;
throughout we will use node and link which are commonly used in communication networks). We
assume networkG is connected.
Consider an M-layer network whose layers are sub-networks of G obtained by randomly re-

moving links (called link thinning) and deactivating nodes. When a node is deactivated on a layer,
all links incident on it are removed from the same layer, including those that have survived the
independent link thinning process. More precisely, theM-layer network is obtained fromG as fol-
lows. Let M = {1, 2, . . . ,M } be the index set for layers. Let YM,E = {Ym, ℓ : ℓ ∈ E,m ∈ M} and
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ZM,V = {Zm,i : i ∈ V ,m ∈ M} be twomutually independent sets of independent Bernoulli random
variables. For them-th layerG (m) = (V ,E (m) ), node i is active if and only if Zm,i = 1, and the link
set E (m) is given by E (m) = {ℓ ∈ E : Wm, ℓ = 1}, whereWm, ℓ = Ym, (i, j )Zm,iZm, j for link ℓ = (i, j ).
Note that link ℓ = (i, j ) is in E (m) if and only if it is not thinned (Ym, ℓ = 1) and both endpoints i, j
are active on them-th layer (Zm,i = Zm, j = 1). We assume that the link thinning probabilities and
the node activation probabilities are the same across different layers but may depend on individual
links and nodes, i.e.pℓ = E[Ym, ℓ] and qi = E[Zm,i ] for allm ∈ M, ℓ ∈ E and i ∈ V . This assumption
will be relaxed in Section 5.3. We also assume that all pℓ ’s and qi ’s are strictly positive.

LetWℓ ∈ N denote the number of layers in which link ℓ is present. Formally, for ℓ = (i, j ),

Wℓ =
∑
m∈M

Wm, ℓ . (1)

Note that we have suppressed the explicit dependence onM of all random variables for notational
simplicity. No confusion should arise. Given some threshold K ∈ N, let Xℓ = 1{Wℓ ≥K } , where
1A is the indicator of event A. We say that link ℓ is active (inactive) in the multilayer network if
Xℓ = 1 (Xℓ = 0). We obtain a merged network G = (V , E), where E = {ℓ ∈ E : Xℓ = 1} is
the set of active links; we say the multilayer network has link configuration E, or equivalently,
configuration XE ≜ {Xℓ : ℓ ∈ E}. We will use the terms configuration and state interchangeably.
The parameterK determines the robustness of links in G; a larger value ofK results in more robust
links but a possibly less well connected network G. Note that when K = 1, G is simply the union
of the layers, i.e. G = ∪M

m=1G
(m) = (V ,

∪M
m=1 E

(m) ). More generally, we call any vector x with
component xℓ ∈ {0, 1} for ℓ ∈ E a link configuration of the multilayer network, and we call it a
feasible link configuration if P[Xℓ = xℓ,∀ℓ ∈ E] > 0.
Figure 1 shows a three-layer network with pℓ = 1 for all ℓ (i.e. no link is thinned) and K = 1.

Inactive links on each layer and in the merged network at the bottom are represented by dashed
lines. The bottom graph is G = ∪3

m=1G
(m) . In this network, node v1 belongs to two layers, v2

belongs to three layers and these nodes have two layers in common, and v3 belongs to one layer.

3 HARDNESS RESULTS
In this section, we show that it is very hard to compute the probability of given link configurations
in arbitrary multilayer networks. We show in Section 3.1 that one source of hardness is the gen-
erality of the underlying connectivity networkG. On the other hand, we show in Section 3.2 that
hardness may arise from the multilayer nature of the problem, even when the underlying network
G has a simple structure such as a clique, which makes the single layer problem easy. We assume
K = 1 throughout this section.

3.1 Hardness for Single Layer General Graphs
In this section, we show that it is hard to compute link configuration probabilities for general
underlying connectivity networkG even when there is only one layer , i.e.M = 1. The proof uses
a reduction from the #Independent Set problem. Recall that an independent set is a set of vertices
in a graph no pair of which are adjacent.

Definition 3.1 (#Independent Set). Given a graph G, count the number of independent sets in
G.

Corollary 4.2 of [37] shows that many special cases of #Independent Set is #P-complete, and
hence the following

Lemma 3.2 ([37]). #Independent Set is #P-hard.
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Recall that #P is the class of counting problems that correspond to the decision problems in
the class NP; while a decision problem asks whether there exists a solution, the corresponding
counting problem asks how many solutions there are. Note that #P-complete problems are NP-
hard. The following lemma of [34] shows that #Independent set is hard even to approximate.

Lemma 3.3 (Lemma A.3 of [34]). For any ϵ > 0, approximating the number of independent sets of
a graph on n vertices within 2n1−ϵ

is NP-hard.

Now we show that it is hard to compute the probability of the configuration where no link is
active, even when there is no link thinning and the probability for a node to be active is 1/2 for all
nodes. It follows that the general case is also hard.

Proposition 3.4. Suppose M = 1, pℓ = 1 for all ℓ ∈ E, and qi = 1/2 for all i ∈ V . It is #P-hard to
compute the probability that the network is in the configuration with no active link. It is NP-hard to
approximate this probability within a multiplicative factor of 2n1−ϵ

for any ϵ > 0, where n = |V | is
the number of nodes.

Proof. Given a graph G = (V ,E) and any node configuration a : V → {0, 1}, let s (a) = a−1 (1)
be the set of active nodes. Let A denote the set of node configurations that results in an empty
link set E. Note that a ∈ A if and only if s (a) is an independent set of G. Since q = 1/2, all node
configurations are equally likely and there are 2n of them, so |A| = 2nP[A]. Thus counting the
number of independent sets in G is equivalent to computing P[A], as one can be easily obtained
from the other through rescaling. Since it is #P-hard to compute |A| by Lemma 3.2, it is #P-hard to
compute P[A]. By Lemma 3.3, it is NP-hard to approximate P[A] within a multiplicative factor of
2n1−ϵ . □

3.2 Hardness for Multilayer Cliques
In this section, we show that hardness arises in yet another dimension. Consider the case that the
underlying networkG is a clique. In this case, it is trivial to compute link configuration probabilities
for a single layer1, but for a large number of layers, the problem becomes hard. In fact, it is hard
even to test the feasibility of a configuration, which is a simpler problem, since a configuration is
feasible if and only if its probability is nonzero. Consider theMultilayer Cliqe Configuration
(MCC) problem defined below.

Definition 3.5 (Multilayer Clique Configuration). Given anM-layer network withG being a
clique and a link configuration x , decide whether x is feasible. Denote an instance by (x ,M ).

Given any link configuration x , let G (x ) be the subgraph induced by the active links in x , i.e.
G (x ) = (V ,E (x )) where E (x ) = {ℓ ∈ E : xℓ = 1}. We have the following feasibility test.

Lemma 3.6. Suppose the underlying networkG is a clique. A link configuration x is feasible if and
only if the induced subgraph G (x ) is covered by at mostM cliques.

Proof. If x is feasible, then x =
∨M

m=1 x
(m) , where x (m) is a feasible link configuration of the

m-th layer, and ∨ is component-wise maximum. Since G is a clique, so is the subgraph G (x (m) )
induced by x (m) , if it is not empty. Thus G (x ) =

∪M
m=1G (x (m) ) is covered by at mostM cliques.

For the reverse direction, suppose G (x ) can be covered by M ′ ≤ M cliques C1, . . . ,CM ′ . On the
m-th layer G (m) , set a node to be active if and only if it is in Cm , which is a node configuration
with positive probability. The resulting link configuration of the M-layer clique is exactly x , so x
is feasible. □
1For a single layer, there is no active link if and only if at most one node is active; for configurations with at least one active
link, a node is active if and only if it is the end point of an active link.
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The above proof shows that any instance of MCC with M = 1 is easy; the configuration x
is feasible if and only if the graph G (x ) induced by the active links in x is itself a clique. For
M ≥ |E | = n(n − 1)/2, where n = |V | is the number of nodes, x is always feasible, since G (x ) can
be covered by |E | links, which are cliques of size 2. For the general case, however, we now show it
is NP-complete by reduction from the Cliqe Edge Cover (CEC) problem, which is known to be
NP-complete. Recall

Definition 3.7 (Clique Edge Cover). Given a graphG and an integer k , decide whether all edges
of G can be covered by at most k cliques in G. Denote an instance by (G,k ).

Lemma 3.8 (Theorem 8.1 of [29]). CEC is NP-complete.

We have the following

Proposition 3.9. MCC is NP-complete.

Proof. MCC is clearly in NP.We show that it is NP-hard by reduction fromCEC. Fix an instance
(G,k ) of CEC. Consider the cliqueC that has the same node set asG. Let x be the link configuration
ofC such that xℓ = 1 if and only if ℓ is a link inG, i.e.G is the subgraph ofC induced by x . Now we
obtain an instance (x ,k ) ofMCC. The conclusion then follows from Lemma 3.6 and Lemma 3.8. □

4 EXACT RESULTS
In this section, we provide recursions for computing link configuration probabilities. In the case
of trees and lines, the recursions can be turned into a pseudopolynomial algorithm. In Section 4.1,
we discuss two different ways of doing recursions. We then consider line and tree networks in
Sections 4.2 and 4.3, respectively.

4.1 Two Different Ways for Recursion
There are two natural ways to obtain recursions for link configuration probabilities of a multilayer
network. One is to do recursion on the number of layers and the other on the number of nodes.
We briefly discuss the former in the present section and leave the latter for Sections 4.2 and 4.3.
We restrict our discussion to the case K = 1 in this section.

Consider an M-layer network with a general underlying graph G = (V ,E). For K = 1, the
merged network is G = ∪M

m=1G
(m) . Now considered a network G (k ) obtained by merging only

the first k layers, i.e. G (k ) :=
∪k

m=1G
(m) , for k = 1, 2, . . . ,M . Recall that a link is active in the G (k )

if it is active in at least one layer 1, . . . ,k . Let Qk (x ) be the probability of the link configuration
x ∈ {0, 1} |E | in G (k ) . We have the following recursion,

Qk+1 (x ) =
∑

y∈Y (x )

Qk (y)Q1 (x − y) (2)

for all x ∈ {0, 1} |E | and k = 1 . . . ,M , where Y (x ) := {y ∈ {0, 1} |E | : y ≤ x } is the set of vectors in
{0, 1} |E | component-wise smaller than or equal to vector x ∈ {0, 1} |E | .
For instance, if |E | = 3 and x = (0, 1, 1) then

Y (x ) = {(0, 1, 1), (0, 0, 1), (0, 1, 0), (0, 0, 0)}.
Note that for any vectors x ,y ∈ {0, 1} |E | such thaty ≤ x , the vector x −y is also a vector in {0, 1} |E | .
Recursion (2) shows that if one know Q1 (x ) for all x ∈ {0, 1} |E | then one can determine the

probability configuration of anym-layer graph. However, as we have seen in Section 3.1, it is not
easy to compute evenQ1 (x ) for generalG. Moreover, the number of terms in the summation in (2)
is exponential in the graph size. Thus (2) is feasible only for very small graphs.
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Note that (2) still requires exponential time even when the underlying graph has a simpler
structure such as a tree. As we will see in the next two sections, recursions on the number of
nodes lead to computationally more efficient algorithms for tree networks, although we do not
know how to do it for general graphs.

4.2 Links in Series
Throughout this section, we assume that qv = q for all nodes v , pℓ = 1 for all links ℓ, and K = 1.
Section 4.3 presents a general algorithm for trees that allows for arbitrary qv , pℓ and K .

Consider the graph Gn = (Vn ,En ) defined by Vn = {1, 2, . . . ,n + 1} and En = {ej }nj=1, where
ej = (j, j + 1) for j = 1, . . . ,n. In other words, Gn is composed of n + 1 nodes and n links in series,
e1, e2, . . . , en ; see Figure 2.

1 2 3 n n+1
e1 e2 en

Fig. 2. Line networkGn .

We are interested in calculatingQGn,x (n ) , the probability that links e1, . . . , en are in state x (n) :=
(x1, . . . ,xn ) ∈ {0, 1}n . Link ej is in state 1 (resp. state 0), denoted by x j = 1 (resp. x j = 0), if it
is active (resp. inactive), namely, if nodes j and j + 1 belong to at least one common layer (resp.
do not have any layer in common). Let QGn,x (n ) (m) denote the probability that Gn is in state x (n)

given that node n+1 belongs tom layers. By symmetry,QGn,x (n ) (m) is also the probability of state
x (n) given that node n+1 belongs to an arbitrarily fixed set ofm layers. Since no confusion occurs,
henceforth we will drop the subscriptGn in bothQGn,x (m ) andQGn,x (n ) (m) . With a slight abuse of
notation, 0(n) = (0, . . . , 0) and 1(n) = (1, . . . , 1), where each vector has n entries.

The following recursion holds for Qx (n ) (m), n ≥ 2,

Qx (n ) (m) = x̄nq̄
m

M−m∑
i=0

(
M −m

i

)
qiq̄M−m−iQx (n−1) (i )

+ xn

m∑
j=1

(
m

j

)
q jq̄m−j

M−m∑
i=0

(
M −m

i

)
qiq̄M−m−iQx (n−1) (i + j ), (3)

with q̄ = 1 − q, x̄n = 1 − xn , and Qx (0) (·) = 1 by convention. In particular,

Qx (1) (m) = x1 (1 − q̄m ) + x̄1q̄
m . (4)

The first term in the r.h.s. of (16) accounts for the fact that if link en = (n,n + 1) is in state xn = 0
then node n cannot belong to the same layer as node n + 1 (this occurs with probability (1 − q)m
as node n + 1 belongs tom layers) but otherwise can belong to any of theM −m remaining layers,
while the second term accounts for the fact that if link en is in state xn = 1 then node n needs to
share at least one layer with node n + 1 but otherwise can belong to any other layer(s).

We first calculate Q0(n ) (m), the probability that links e1, . . . , en are all inactive given that node
n + 1 belongs tom layer. This probability will turn out to be a key ingredient in the calculation of
Qx (n ) .

Proposition 4.1 (Calculation of Q0(n ) (m)). For any integer m = 0, 1, . . . ,M , Q0(1) (m) = q̄m ,
and n ≥ 2,

Q0(n ) (m) = q̄m
[
1 − (n − 2)q2 + Pn−1 (q)

]m [
1 − (n − 1)q2 + Pn (q)

]M−m
, (5)
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where P1, . . . , Pn are polynomials in the variable q, recursively defined by

Pk (q) = q̄Pk−1 (q) + qq̄Pk−2 (q) + q
3 + (k − 3)q4, (6)

for k = 3, . . . ,n, with
P1 (q) = P2 (q) ≡ 0. (7)

Proof. For n = 1, the conclusion follows from (4). For n = 2, setting x (2) = 0(2) in (16) yields

Q0(2) (m) = q̄m
M−m∑
i=0

(
M −m

i

)
qiq̄M−m−iQ0(1) (i ).

Using Q0(1) (i ) = q̄
i , we obtain Q0(3) (m) = q̄m (1 − q2)M−m , in agreement with (5).

We now use induction to complete the proof. Assume that (5) holds for n = 2, . . . ,n′ − 1 with
n′ ≥ 3, and let us show that it still holds for n = n′. Setting x1, . . . ,xn′−1 to zero in (16) and using
the induction hypothesis and the binomial expansion yields

Q0(n′) (m) = q̄m
[
1 − (n′ − 2)q2 + Pn′−1 (q)

]m
×
[
1 − (n′ − 1)q2 + q̄Pn′−1 (q) + qq̄Pn′−2 (q) + q3 + (n′ − 3)q4

]M−m
= q̄m

[
1 − (n′ − 2)q2 + Pn′−1 (q)

]m [
1 − (n′ − 1)q2 + Pn′ (q)

]M−m
,

where the latter equality comes from the definition of Pn′ (q). This completes the proof. □

Corollary 4.2 (Calculation of Q0(n ) ). For any integer n ≥ 1,

Q0(n ) =
[
1 − nq2 + Pn+1 (q)

]M
.

The proof is straightforward by using Proposition 4.1 together with the identify

Q0(n ) =

M∑
m=0

(
M

m

)
qm (1 − q)M−mQ0(n ) (m). (8)

We are now in position to findQx (n ) , the probability that links e1, . . . , en are in state (x1, . . . ,xn ).
This result will be an easy consequence (see Proposition 4.4) of the next proposition that deter-
mines Qx (n )

k
(m), the probability that links ek , . . . , en are in state (xk , . . . ,xn ) given that node vk

belongs tom layers, for k = n, . . . , 1.

Proposition 4.3 (Calculation of Qx (n ) (m)). For any integer n ≥ 1,m = 0, 1, . . . ,M ,

Qx (n ) (m) =
n∑
j=0

hjQ0(n−j ) (m)
n∏

l=j+1

(x̄l − xl ), (9)

where Q0(0) (·) ≡ 1, {Q0(j ) (m)}n−1j=1 is given in (5), and {hj }nj=0 are mappings depending on x (n) and q
recursively defined by

hj = x j

j−1∑
r=0

[
1 − (j − 1 − r )q2 + Pj−r (q)

]M
hr

j−1∏
l=r+1

(x̄l − xl ), (10)

for j = 2, . . . ,n, with
h1 = x1 and h0 = 1. (11)
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Proof. We use the convention
∏0

l=1 · = 1. Letting n = 1 in (9) and using (5), (11) andQ0(0) (·) ≡ 0
yield

Qx (1) (m) = h0Q0(1) (m) (x̄1 − x1) + h1Q0(0) (m)

= x1 (1 − q̄m ) + x̄1q̄
m ,

which is true by (4). Assume that (9) is true for n = 1, . . . ,n′ − 1. We show that it is still true for
n = n′.

From the induction assumption (9) with n = n′ − 1, relation (45) and Lemma A.2 both given in
Appendix A, we get

Qx (n′) (m) = x̄n′q̄
m

n′−1∑
j=0

hjF (Q0n′−1−j ,m)
n′−1∏
l=j

(x̄l − xl ) + xn′
n′−1∑
j=0

hjG (Q0n′−1−j ,m)
n′−1∏
l=j

(x̄l − xl )

=

n′−1∑
j=0

hjQ0n′−j (m)
n′∏

l=j+1

(x̄l − xl ) +
n′−1∑
j=0

[
1 − (m′ − 1 − j )q2 + Pn′−j

]M
hj

n′−1∏
l=j+1

(x̄l − xl )

=

n′−1∑
j=0

hjQ0n′−j (m)
n′∏

l=j+1

(x̄l − xl ) + hn′ (12)

=

n′∑
j=0

hjQ0n′−j (m)
n′∏

l=j+1

(x̄l − xl ),

where (12) follows from the definition of hn′ given in (10). This concludes the induction step. □

Proposition 4.4 (Calculation of Qx (n ) ).
For any integer n ≥ 1,

Qx (n ) =

n∑
j=0

hjQ0(n−j )

n∏
l=j+1

(x̄l − xl ), (13)

where Q0(0) = 1, and Q0(1) . . . ,Q0(n ) are given in Corollary 4.2 and h0, . . . ,hn are given in (10)-(11).

Proof. The proof follows from the identity

Qx (n ) =

M∑
m=0

(
M

m

)
qmq̄M−mQx (n ) (m)

together with Proposition 4.3 and (8). □

We conclude this section by calculating the expected value and the probability generating func-
tion (pgf) of the size of the connected component a node belongs to, and the pgf of the number of
active links.

For a path of length n in Figure 2, letCn,i ∈ {1, . . . ,n+1} denote the random variable for the size
of the connected component that node i belongs to, i = 1, ...,n + 1. Note thatCn,i can be rewritten
as

Cn,i = C
′
n,i +C

′′
n,i − 1,

where C ′n,i and C ′′n,i count the number of nodes to the left and right of node i (including node
i) in the same connected component, respectively. The subtraction by 1 accounts for the double
counting of node i .

Let Ĉn,i (z) = E[zCn,i ] denote the pgf for the distribution of Cn,i , and

Ĉn (z;m) := E[zCn,n+1 | node n + 1 belongs tom layers]
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the conditional pgf of Cn,n+1. Note that given the number of layers that node i belongs to, C ′n,i
and C ′′n,i are conditionally independent and have the same conditional distributions as Ci−1,i and
Cn−i+1,n−i+2, respectively. Therefore,

Ĉn,i (z) =
1
z

M∑
m=0

(
M

m

)
qmq̄M−mĈi−1 (z;m)Ĉn−i+1 (z;m). (14)

We are left with finding Ĉn (z;m). Note that Ĉ0 (z;m) = z and Ĉ1 (z;m) = q̄mz + (1 − q̄m )z2. Define
the vector y (i ) of size i ≥ 2 by y (i ) = (0, 1, . . . , 1). For n ≥ 2, Proposition 4.3 yields

Ĉn (z;m) = Q0(1) (m)z +
n∑
i=2

ziQy (i ) (m) + zn+1Q1(n ) (m)

= Q0(1) (m)z +
n∑
i=2

zi (−1)i−1ĥ0,0Q0(i ) (m) +
n∑
i=2

zi
i∑
j=1

(−1)i−jĥ0, jQ0(i−j ) (m)

+ zn+1
n∑
j=0

(−1)n−jĥ1, jQ0(n−j ) (m), (15)

where Q0(1) (m), . . . ,Q0(n ) (m) are given in Proposition 4.1 (with Q0(0) (·) = 1), P1 (q), . . . , Pn (q) are
recursively defined in (6) and (7), and for b ∈ {0, 1}, ĥb,0 = 1, ĥb,1 = b, and

ĥb, j = (−1) j−b
(
1 − (j − 1)q2 + Pj (q)

)M
+

j−1∑
r=1

(−1) j−r−1
(
1 − (j − 1 − r )q2 + Pj−r (q)

)M
ĥb,r

for j = 2, 3, . . . ,n.
Let C̄n,i = E[Cn,i ] be the expected size of the connected component node i belongs to. From

C̄n,i = dĈn,i (z)/dz |z=1, (14) and (15), we obtain

C̄n,i = C̄i−1,1 + C̄n−i+1,1 − 1,
and

C̄n,1 = Q0(1) +

n∑
i=2

i (−1)i−1ĥ0,0Q0(i ) +

n∑
i=2

i
i∑
j=1

(−1)i−jĥ0, jQ0(i−j ) + (n + 1)
n∑
j=0

(−1)n−jĥ1, jQ0(n−j ) ,

where Q0(1) , . . . ,Q0(n ) are given in Corollary 4.2 (and Q0(0) = 1).
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Fig. 3. Expected size C̄20,1 of the cluster containing node 1 in the line network of Figure 2 as a function of
the number of layersM , for n = 20 and q ∈ {0.2, 0.4, 0.6, 0.8}.
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Fig. 4. Expected size C̄20,1 of the cluster containing node 1 in the line network of Figure 2 as a function of
the number of layersM , for n = 20 and q ∈ {M−1,M−1/2,M−1/3}.

Let Ln denote the number of active links in a line of length n ≥ 1 and L̄n = E[Ln]. Note that
L̄1 = 1− (1−q2)m and L̄n = nL̄1. Let L̂n (z) = E[zLn ] be the pgf of Ln . Note that L̂n (z) is expressed
as

L̂n (z) =
M∑

m=0

(
M

m

)
qmq̄M−mL̂(m)

n (z), n ≥ 1,

where L̂(m)
n (z) = E[Ln | node n + 1 belongs tom layers] is the conditional pgf form = 0, . . . ,M .

The following recursion holds for L(m)
n (z), n ≥ 2,

L̂(m)
n (z) = q̄m

M−m∑
i=0

(
M −m

i

)
qiq̄M−m−i L̂(i )n−1 (z) + z

m∑
j=1

(
m

j

)
q jq̄m−j

M−m∑
i=0

(
M −m

i

)
qiq̄M−m−i L̂(i+j )n−1 (z),

(16)
with L̂(m)

1 (z) = q̄m + z (1 − q̄m ) form = 0, 1, . . . ,M , and
∑0

j=1 · = 0 by convention. Note that L̄n =∑M
m=0

(
M
m

)
qmq̄M−mdL̂(m)

n (z)/dz |z=1, but it is much easier to use the formula L̄n = n[1 − (1 − q2)m].
Figures 3 and 5 display the mappings M → C̄n,1 and M → L̄n for n = 20, respectively, when

q ∈ {0.2, 0.4, 0.6, 0.8}. It shows the impact of having a finite number of layers on these metrics.
Figures 4 and 6 investigate the behavior of these mappings when q ∈ {M−1,M−1/2,M−1/3}. These
plots show that both C̄n,1 and L̄n scale with M as q = 1/

√
M . This result is rooted in the result

that the limit of 1 − (1 − q2)M – the probability that a link is active – is non-zero as M ↑ ∞ when
q = 1/

√
M (this limit is 1 − e−1). The asymptotic behavior of a multilayer network as M → ∞ is

investigated in depth in Section 5.

4.3 Recursion for Multilayer Trees
In this section, we consider the case where the underlying graph is a tree T . We develop a re-
cursion that provides a pseudo polynomial time algorithm to compute the probability of any link
configuration. The recursion applies to all parameter settings of the model introduced in Section 2.

Pick any root r for T . For v ∈ V , let Tv denote the subtree rooted at v . With a slight abuse of
notation, let Tv (x ) be the event that the links in Tv are configured according to x : E → {0, 1}, i.e.
Xℓ = xℓ for all ℓ ∈ Tv . For v,w ∈ V , let Av be the number of layers on which v is active, and Avw
the number of layers on which both v and w are active. Note that Av has a binomial distribution
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Fig. 5. Expected number L̄20 of active links in a line network with 20 links as a function of the number of
layersM , for q ∈ {0.2, 0.4, 0.6, 0.8}.
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Fig. 6. Expected number L̄20 of active links in a line network with 20 links as a function of the number of
layersM , for q ∈ {M−1,M−1/2,M−1/3}.

with parameterM and qv , i.e.

P[Av =m] = B (m;M,qv ) ≜
(
M

m

)
qmv (1 − qv )M−m .

Form = 0, 1, . . . ,M , define f (m)
v (x ) by

f (m)
v (x ) = P[Av =m,Tv (x )].

Let ch(v ) denote the set ofv’s children. Using the conditional independence ofX (v,w ) andTw (x )
for differentw ∈ ch(v ), we obtain

f (m)
v (x ) = P[Av =m]

∏
w ∈ch (v )

д(m)
vw (x ),

where
д(m)
vw (x ) = P

[
X (v,w ) = x (v,w ),Tw (x )

��� Av =m
]
.
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Av Aw

Avw Tw (x )

X (v,w )

Fig. 7. Dependency structure in the calculation of д(m)
vw .

If v is a leaf node, then ch(v ) = ∅ and ∏
w ∈ch (v ) д

(m)
vw (x ) = 1 by convention.

To compute д(m)
vw (x ), we make use of the dependency structure among the variables/events

shown in Figure 7. Thus

д(m)
vw (x ) =

M∑
k=0

min{m,k }∑
j=0

P[Aw = k,Tw (x )] × P[Avw = j | Av =m,Aw = k]

× P[X (v,w ) = x (v,w ) | Avw = j].

The first factor in the summation is f (m)
w (x ). By permutation symmetry, the second factor in the

summation is given by a hypergeometric pmf, i.e.

P[Avw = j | Av =m,Aw = k] = H (j;M,m,k ) ≜

(
m
j

) (
M−m
k−j

)
(
M
k

) .

For the third factor, note that given Avw = j, the number of layers on which link (v,w ) is active,
W(v,w ) , has a binomial distribution with parameter j and p(v,w ) . Thus

P[X (v,w ) = x (v,w ) | Avw = j] = (1 − xvw )[1 − F̄B (K ; j,p(v,w ) )] + xvw F̄B (K ; j,p(v,w ) ),

where F̄B (k ; j,p(v,w ) ) =
∑

ℓ≥k B (ℓ; j,p(v,w ) ) is the ccdf of binomial distribution with parameter j
and p(v,w ) .

We can compute
{
f (m)
v (x ) :m = 0, 1, . . . ,M

}
for all v ∈ V sequentially from leaf nodes up to

the root. The complexity is linear in n = |V |. The probability of configuration x is then

P[Xℓ = xℓ,∀ℓ ∈ E] =
M∑

m=0
f (m)
r (x ).

Since the pmfs of hypergeometric and binomial distributions can be computed in time polynomial
inM , the above recursion can be computed in timeO (n·poly(M )). Note that this pseudopolynomial
time algorithm relies on the assumption that the layers are i.i.d.. Although a similar recursion can
be developed when layers are independent but have non-identical distributions, the complexity
will scale asM!, making it feasible only for smallM .

Figure 9 displays the probability that all links are active in the star shaped network represented
Figure 8 as a function ofq, for different number of layers. Similarly, Figure 10 shows the probability
that all links are active in a binary tree of depth 5 as a function of q, for different number of layers.
These results were generated using the recursion discussed in this section with qv = q and pℓ = 1
for all nodes v and links l .
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Fig. 8. A star shaped network.
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Fig. 9. Probability that all links are active in the star shaped network in Figure 8 as a function of the node
activation probability q.
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Fig. 10. Probability that all links are active in a binary tree of height 5 as a function of the node activation
probability q.

5 ASYMPTOTIC RESULTS
In this section, we derive the link configuration distribution in the limit as the number of layers,
M , goes to infinity and the probabilities {pℓ }ℓ∈E and {qi }i ∈V decrease as functions ofM . This case
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is especially relevant when the multilayer network arises from snapshots of a single network as in
duty-cycled wireless sensor networks, where M can easily become very large. Even for moderate
M , the asymptotics may already provide good approximations as shown in [16]. The main results
are presented in Section 5.1 with proofs given in Section 5.2. The results are extended in Section 5.3
beyond the model of Section 2 to the case of non-identical layers.

5.1 Main Results
Consider link ℓ = (i, j ) ∈ E. Note that its multiplicityWℓ , the number of layers within which link
ℓ is active (given in (1)) has a binomial distribution,

P[Wℓ = w] =
(
M

w

)
(pℓqiqj )

w (1 − pℓqiqj )M−w , w = 1, . . . ,M .

If Mpℓqiqj has a finite positive limit as M → ∞, a classical result shows that the above binomial
distribution converges to a Poisson distribution. If we allow the natural interpretation of a Poisson
distribution with rate parameter 0 or∞ as a point mass at 0 or∞, then we have the following,

Theorem 5.1. Suppose
lim
M→∞

Mpℓqiqj = λℓ ∈ [0,∞]

exists for link ℓ = (i, j ). Then, as M → ∞, the distribution of the multiplicityWℓ of ℓ converges to a
Poisson distribution with parameter λℓ , i.e.

lim
M→∞

P[Wℓ = w] = π (w ; λℓ ) ≜
λw
ℓ

w!
e−λℓ . (17)

The joint distribution of theWℓ ’s may have a complicated correlation structure. However, when
pℓ and qi scale with M appropriately, theWℓ ’s become asymptotically independent. We consider
the case that pℓ and qi scale withM as follows,

pℓ ∼ cℓM−αℓ , for ℓ ∈ E, (18)

qi ∼ diM−βi , for i ∈ V , (19)

where cℓ,di > 0 and αℓ, βi ≥ 0. For a link ℓ = (i, j ), the parameter λℓ defined in (17) is then given
by

λℓ =


0, if αℓ + βi + βj > 1;
cℓdidj , if αℓ + βi + βj = 1;
+∞, if αℓ + βi + βj < 1.

(20)

For node k , let
Nk = {i ∈ V : (k, i ) ∈ E,α (k,i ) + βk + βi = 1}.

We also assume the following condition,

βk < 1, if |Nk | ≥ 2. (21)

Theorem 5.2. Under the conditions (18), (19) and (21), the collection of random variables {Wℓ :
ℓ ∈ E} become asymptotically independent asM → ∞, i.e. for any {wℓ : ℓ ∈ E} ∈ NE ,

lim
M→∞

P[Wℓ = wℓ,∀ℓ ∈ E] =
∏
ℓ∈E

π (wℓ ; λℓ ) =
∏
ℓ∈E

e−λℓ
λwℓ

ℓ

wℓ!
, (22)

where λℓ is given by (20).
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Proof Idea. In the largeM limit, each layer essentially has at most one link. Thus the configu-
ration roughly follows a multinomial distribution, which in the limit becomes a product of Poisson
distributions. The details are given in Section 5.2. □

Note that condition (21) is necessary. The example below shows that asymptotic independence
does not hold when condition (21) fails.

Example 5.3. Consider the line network in Figure 2 with three nodes. The probability that no
links exist is given by

P[W(1,2) =W(2,3) = 0] =
[
1 − q2 + q2 (1 − q1p(1,2) ) (1 − q3p(2,3) )

]M
.

If β2 = 1 and α (1,2) = β1 = α (2,3) = β3 = 0, then

lim
M→∞

P[W(1,2) =W(2,3) = 0] = e−d2+d2 (1−q1p(1,2) )(1−q3p(2,3) )

= π (0, λ (1,2) )π (0, λ (2,3) )eλ (1,2)λ (2,3)/d2 ,

which shows thatW(1,2) andW(2,3) are not asymptotically independent.

It follows from Theorem 5.2 and the definition of Xℓ that {Xℓ : ℓ ∈ E} is a set of asymptotically
independent Bernoulli random variables with limiting marginal distribution limM→∞ P[Xℓ = 1] =∑
w ≥K π (w ; λℓ ). In particular, for K = 1, the following corollary yields Theorem 1 of [16] if G is a

tree and the conjecture therein if G is a general graph.

Corollary 5.4. Suppose pℓ = 1 for all ℓ ∈ E, qi = dM−1/2 for all i ∈ V , and K = 1. Then

lim
M→∞

P[Xℓ = xℓ,∀ℓ ∈ E] = e−d
2 ( |E |− |E |) (1 − e−d2

) |E | . (23)

In the limit M → ∞, the merged network G has a giant component if d exceeds the threshold√
− log(1 − pc ), where pc is the bond-percolation threshold of G.

Another consequence of Theorem 5.2 is the following trichotomy.

Corollary 5.5. Suppose pℓ = p ∼ cM−α for all ℓ ∈ E, qi = q ∼ dM−β for all i ∈ V . Then in the
limitM → ∞, the network G is
(1) an empty network with no link, if α + 2β > 1;
(2) the entire network G, if α + 2β < 1;
(3) an Erdös-Rényi-like sub-network of G where a link exists with probability

∑
w ≥K π (w ; cd2), if

α + 2β = 1.

As an easy application of the results obtained in this section, consider the line network in Figure
2. When q = 1/

√
M we know that links become independent as M → ∞, with pa := 1 − e−1 the

(asymptotic) probability that a link is active. The expected size of the cluster node 1 belongs to,
including this node, is then given by C̄a,n = (1 − pn+1a )/(1 − pa ) and is plotted in Fig. 11 for
n = {1, . . . , 20}. We observe that Ca,n converges fast w.r.t. n, the number of links. We have also
plotted in this figure the mapping n → C̄n (1) for q = 1/

√
M with M = 50, which shows that

making the assumption that links are independent when q = 1/
√
50 with M = 50 yields a relative

error of less then 10% across all values of n ∈ {1, . . . , 20}. Similarly, the expected number of active
links when q = 1/

√
M andM → ∞, given by L̄n,a = npa , is plotted in Fig. 12 as a function of n. We

have also plotted in this figure the mapping n → L̄n (see Section 4.2) for q = 1/
√
M with M = 40

and M = 50. For M = 40 the relative error made by approximating Ln by L̄n,a does not exceed
14.1% across of all values of n ∈ {1, . . . , 20}; it does not exceed 0.59% whenM = 50.
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Fig. 11. Expected size of cluster containing node 1 in the line network of Figure 2 as a function of the total
number of links n, for q = 1/

√
M andM → ∞ (referred to as qlim) and q = 1/
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50.

0 5 10 15 20
0

5

10

Total number of links |E | = n

Ex
pe
ct
ed

nu
m
be
ro

fa
ct
iv
e
lin

ks

qlim

q = 1/
√
40

q = 1/
√
50

Fig. 12. Expected number of active links in the line network of Figure 2 as a function of the total number of
links n, for q = 1/

√
M andM → ∞ (referred to as qlim), q = 1/

√
40, and q = 1/

√
50.

5.2 Proof of Theorem 5.2
We will use the following simple result, which holds for any probability measure.

Lemma 5.6. For any sequence of events {AM } and {BM } such that P[BM ]→ 1 asM → ∞, we have
P[AM ] − P[AM ∩ BM ]→ 0, asM → ∞.

Proof. The follows from the following inequalities,

0 ≤ P[AM ] − P[AM ∩ BM ] ≤ P[BM ] = 1 − P[BM ].

□

Since the limiting marginal distribution (17) degenerates to a point mass when λℓ = 0 or∞, by
the above lemma, we only need to prove Theorem 5.2 for the case λℓ ∈ (0,∞) for all ℓ ∈ E, or,

αℓ + βi + βj = 1, ∀ℓ = (i, j ) ∈ E, (24)

which we assume throughout the rest of this section. Note that this assumption and (21) imply
that βi < 1 for all i ∈ V with degree greater than one in G. Let Γ = {i ∈ V : βi < 1}. If Γ = ∅, then
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every node has degree at most one, and hence (22) holds trivially. We henceforth assume Γ , ∅
and let

γ = min
j :∈Γ

(1 − βj ) ∈ (0, 1]. (25)

We can also assume that there is no isolated node in G since all such nodes can be removed.
Consider the m-th layer. Since the layers are i.i.d., the following analysis applies to all layers.

Let Aℓ be the event that link ℓ = (i, j ) exists on this layer, i.e. Aℓ = {Wm, ℓ = 1}. The probability of
this event is

rℓ ≜ P[Aℓ] = pℓqiqj ∼ λℓM
−1. (26)

Consider the probability that two links ℓ and ℓ′ co-exist on them-th layer. There are two cases. If
ℓ and ℓ′ do not share an endpoint, then Aℓ and Aℓ′ are independent, so the probability is

P[Aℓ ∩Aℓ′] = P[Aℓ]P[Aℓ′] = rℓrℓ′ ∼ λℓλℓ′M
−2.

If ℓ and ℓ′ share an endpoint i , then i ∈ Γ and Aℓ and Aℓ are conditionally independent given i .
Thus

P[Aℓ ∩Aℓ′] = P[Aℓ ∩Aℓ′ | node i active]qi
= P[Aℓ | node i active]P[Aℓ′ | node i active]qi

=
rℓrℓ′

qi
∼ λℓλℓ′

di
M−2+βi ≤ λℓλℓ′

di
M−2+γ ,

where the last inequality follows from (25). In both cases, we have

P[Aℓ ∩Aℓ′] ≤ CM−1−γ , (27)

for some constant C > 0 that does not depend on ℓ, ℓ′,m orM .
Let µℓ be the probability that ℓ is the only link on them-th layer. We have

µℓ = P
Aℓ ∩

∩
ℓ′∈E :ℓ′,ℓ

Ac
ℓ′

 . (28)

From the identity

Aℓ = *,Aℓ ∩
∩

ℓ′∈E :ℓ′,ℓ
Ac
ℓ′
+- ∪ *,

∪
ℓ′∈E :ℓ′,ℓ

Aℓ ∩Aℓ′
+- ,

the union bound and (27), we find

0 ≤ δℓ ≜ rℓ − µℓ ≤
∑

ℓ′∈E :ℓ′,ℓ
P[Aℓ ∩Aℓ′] ≤ |E |CM−1−γ . (29)

Let µ0 be the probability that there is no link on them-th layer, given by

µ0 = P[Ac
ℓ ,∀ℓ ∈ E]. (30)

Bonferroni’s inequality

P *,
∪
ℓ∈E

Aℓ
+- ≥

∑
ℓ∈E
P(Aℓ ) −

1
2

∑
ℓ,ℓ′∈E, ℓ,ℓ′

P(Aℓ ∩Aℓ′ )

and (27) yield

0 ≥ δ0 ≜ 1 − µ0 −
∑
ℓ∈E

rℓ ≥ −
1
2

∑
ℓ,ℓ′
P[Aℓ ∩Aℓ′] ≥ −

|E |2
2

CM−1−γ . (31)

Consider the event thatWℓ = wℓ for all ℓ ∈ E and each layer has at most one link. This event
occurs if and only if each ℓ exists on a disjoint set ofwℓ layers and the remainingM −w layers are
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empty, wherew =
∑

ℓ∈E wℓ . The corresponding probability is given by a multinomial distribution.
Formally, if we let B denote the event that each layer has at most one link, then

P [Wℓ = wℓ,∀ℓ ∈ E,B] =
M!

(M −w )!
∏

ℓ∈E wℓ!
µM−w0

∏
ℓ∈E

µwℓ

ℓ
, (32)

where µℓ and µ0 are defined in (28) and (30).
AsM → ∞,

M!
(M −w )!

∼ Mw . (33)

By (36), (29) and (31), we also have

µwℓ

ℓ
= (rℓ − δℓ )wℓ ∼

λwℓ

ℓ

Mwℓ
, (34)

and

µM−w0 = *,1 −
∑
ℓ∈E

rℓ − δ0+-
M−w

→ e−
∑

ℓ∈E λℓ . (35)

Plugging (33)–(35) into (32) yields asM → ∞,

P [Wℓ = wℓ,∀ℓ ∈ E,B]→
∏
ℓ∈E

λwℓ

ℓ

wℓ!
e−λℓ ,

which is almost the same as the claim in (22). By Lemma 5.6, it suffices that P[B] → 1 as M → ∞,
which we show next.

Note that the probability that a given layer has at most one link is given by µ0 +
∑

ℓ∈E µℓ =
1 − δ0 −

∑
ℓ∈E δℓ . Since the layers are independent,

P[B] = *,1 − δ0 −
∑
ℓ∈E

δℓ+-
M

∼ e−Mδ0−
∑

ℓ∈E Mδℓ → 1,

where we have used (29) and (31). This completes the proof of Theorem 5.2.

5.3 Extension to Non-identical Layers
So far we have assumed that different layers are i.i.d., i.e. pℓ = E[Ym, ℓ] and qi = E[Zm,i ] for
all layers m ∈ M, ℓ ∈ E and i ∈ V . In this section, we will relax this assumption by letting
pm, ℓ = E[Ym, ℓ] and qm,i = E[Zm,i ]. The development will parallel that for the i.i.d. case.

Recall the definitionWm, ℓ = Ym, ℓZm,iZm, j for ℓ = (i, j ). Link ℓ exists on them-th layer if and
only ifWm, ℓ = 1. Define

rm, ℓ ≜ EWm, ℓ = pm, ℓqm,iqm, j . (36)

We assume that asM → ∞,
max

1≤m≤M
rm, ℓ → 0, (37)

and

EWℓ =

M∑
m=1

rm, ℓ → λℓ ∈ (0,∞). (38)

Then again a classical result (e.g. [19, Theorem 5.7]) shows that the marginal distribution ofWℓ

converges to a Poisson distribution with parameter λℓ as in (17).
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Let Rℓ,ℓ′ be the expected number of layers on which two links ℓ and ℓ′ co-exist, i.e.

Rℓ,ℓ′ ≜
M∑

m=1
E[Wm, ℓWm, ℓ′]. (39)

We replace condition (21) by the following. If two links ℓ, ℓ′ ∈ E share an endpoint, then asM → ∞,
Rℓ,ℓ′ → 0. (40)

Note that in the i.i.d. case, (21) implies (40) as shown in the Section 5.2.

Theorem 5.7. Under the conditions (37), (38) and (40), the collection of random variables {Wℓ :
ℓ ∈ E} become asymptotically independent asM → ∞, i.e. (22) holds.

Proof. We first show that Rℓ,ℓ′ → 0 as M → ∞ for any pair of links ℓ , ℓ′. If ℓ and ℓ′ share
an endpoint, this is assumption (40). If ℓ and ℓ′ do not share an endpoint, thenWm, ℓ andWm, ℓ′ are
independent, so

Rℓ,ℓ′ =

M∑
m=1
EWm, ℓEWm, ℓ′ =

M∑
m=1

rm, ℓrm, ℓ′ .

By (37) and (38),

Rℓ,ℓ′ =

M∑
m=1

rm, ℓrm, ℓ′ ≤ max
1≤m′≤M

rm′, ℓ′
M∑

m=1
rm, ℓ → 0,

asM → ∞. Thus Rℓ,ℓ′ → 0 asM → ∞ for all ℓ , ℓ′.
Let µm, ℓ be the probability that ℓ is the only link on them-th layer, By the same argument for

(29) and (31), we obtain

0 ≤ rm, ℓ − µm, ℓ ≤
∑

ℓ′∈E :ℓ′,ℓ
E[Wm, ℓWm, ℓ′].

Summing overm,

0 ≤
M∑

m=1
rm, ℓ −

M∑
m=1

µm, ℓ ≤
∑

ℓ′∈E :ℓ′,ℓ
Rℓ,ℓ′ .

The last sum goes to zero asM → ∞. Thus (37) and (38) imply µm, ℓ → 0 and
M∑

m=1
µm, ℓ → λℓ (41)

asM → ∞.
Let µm,0 the probability that there is no link on them-th layer. Using first the same argument

for (31) and then the argument above for µm, ℓ , we obtain µm,0 → 0 and
M∑

m=1
(1 − µm,0) →

∑
ℓ∈E

M∑
m=1

rm, ℓ =
∑
ℓ∈E

λℓ, (42)

asM → ∞.
Now we compute the Laplace transform of the random variablesWℓ, ℓ ∈ E. For t = (tℓ : ℓ ∈ E)

and tℓ ≥ 0, the Laplace transform φ (t ) is given by

φ (t ) = E exp *,−
∑
ℓ∈E

tℓWℓ
+- .
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Using (1) and the independence between layers, we obtain

φ (t ) = E exp *,−
∑
ℓ∈E

tℓ
∑
m∈M

Wm, ℓ
+- =

∏
m∈M

E exp *,−
∑
ℓ∈E

tℓWm, ℓ
+- .

For a givenm,

E exp *,−
∑
ℓ∈E

tℓWm, ℓ
+- ≥ µm,0 +

∑
ℓ∈E

e−tℓ µm, ℓ,

and

E exp *,−
∑
ℓ∈E

tℓWm, ℓ
+- ≤ 1 −

∑
ℓ∈E

µm, ℓ +
∑
ℓ∈E

e−tℓ µm, ℓ .

Using (41) and (42), we obtain
M∑

m=1

1 − E exp *,−
∑
ℓ∈E

tℓWm, ℓ
+-
 →

∑
ℓ∈E

λℓ (1 − e−tℓ ), asM → ∞.

By Lemma 5.8 of [19], asM → ∞,

φ (t ) → exp *,
∑
ℓ∈E

λℓ (e
−tℓ − 1)+- =

∏
ℓ∈E

exp
(
λℓ (e

−tℓ − 1)
)
.

The limit is the product of the Laplace transforms Poisson distributions with parameters λℓ , which
yields (22). □

6 RELATEDWORK
As discussed in the introduction of this paper, there has been an explosion of research in multi-
layer networks in recent years, mostly from the physics community; two recent review articles
are [7, 20]. Multilayer networks have been applied to airline networks [13], transportation sys-
tems serving a common user population [14], many body problems arising in condensed matter
physics [30], brain and neural networks [10] and scientific collaboration networks [5], in addition
to those listed in the introduction. Various models of multilayer networks relevant to different
application scenarios have been proposed. These have been used in studies of diffusion dynamics
of multilayer networks [15], cascades [8, 40], spectral properties [35], robustness [11, 24, 31], fail-
ure mechanisms [12, 33], correlations [28], growing random multilayer networks [27], epidemic
spread [22], community structure [25], and algorithmic complexity of finding short paths through
co-evolving multilayer networks [4]. The connectivity properties of random multilayer networks
have also been studied, such as the study of the properties of the giant connected component (GCC)
in a random network with correlated multiplexity, i.e., where the node degree distributions across
layers have positive (or negative) correlations [21].

Stochastic multilayer networks are those whose constructions can be described by one or more
control parameters (such as probability of the presence of a node, edge or more complex attributes).
For such networks, a wide variety of percolation formulations have been proposed and studied,
e.g., competition between layers [39], weak percolation [6], k-core percolation [2], directed perco-
lation [1], spanning connectivity of a multilayer site-percolated network [16], and bond percola-
tion [17]. Our stochastic multilayer network model can be visualized as a layered extension of the
classical site-bond percolation model [18, 38], where bonds and sites are independently occupied
with probabilities q and p.

The work closest to ours [16] considers a special case of our model where only node deacti-
vations are permitted and these are characterized as i.i.d. Bernoulli random variables. This work
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focuses on deriving conditions under which the multilayer network percolates, i.e., identifying the
deactivation probability threshold such that if the deactivation probability lies below this thresh-
old, a single giant connected component emerges. [16] studied the percolation behavior asM → ∞
and derived the threshold under the conjecture that links become asymptotically independent as
M → ∞without proving that conjecture.We have established this conjecture to be true with Theo-
rem 5.1 in Section 5. Moreover, much of our paper is concerned with characterizing and computing
the multilayer network configuration distribution.

7 CONCLUSIONS
In this work, we introduced a new class of stochastic multilayer networks. Such a network is
the aggregation of M random sub-networks of an underlying connectivity graph G. This model
finds applications in social networks and communication networks, and, more generally, in any
scenario where a multilayer network is formed over a common set of nodes via coexisting means
of connectivity. We showed that it is #P hard to compute exactly and NP-hard to approximate link
configuration probabilities for general G, and it remains NP-hard to compute these probabilities
whenG is a clique. We derived efficient recursions for computing configuration probabilities when
G is a line or more generally a tree. We showed that for appropriate scalings of the node and
link selection processes to a layer, link multiplicities have asymptotically independent Poisson
distributions asM goes to infinity.
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A APPENDIX
Define

F ( f ,m) =
M−m∑
i=0

(
M −m

i

)
qiq̄M−m−i f (i ) (43)

G ( f ,m) =
M−m∑
i=0

(
M −m

i

)
qiq̄M−m−i

m∑
j=1

(
m

j

)
q jq̄m−j f (i + j ). (44)

Lemma A.1. If f (i ) = aibM−ic then

F ( f ,m) = cbm (qa + q̄b)M−m

G ( f ,m) = c (qa + q̄b)M − c (qa + q̄b)M−m (q̄b)m .

Proof. This follows directly from the binomial expansion. □

Note that Qx (k ) (m) in (16) expresses as

Qx (n ) (m) = x̄nq̄
mF

(
Qx (n−1) ,m

)
+ xnG

(
Qx (n−1) ,m

)
. (45)

Lemma A.2.

q̄mF
(
Q0(n−1) ,m

)
= Q0(n ) (m) (46)

G
(
Q0(n−1) ,m

)
= (1 − (n − 1)q2 + Pn )M −Q0(n ) (m). (47)

Proof. (46) follows from (45) with x1 = · · · = xn = 0; (47) is easily obtained by using (5), (6)
and Lemma A.1. □
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