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Network growth can be framed as a competition for edges among nodes in the network. As
with various other social and physical systems, skill (fitness) and luck (random chance) act as
fundamental forces driving competition dynamics. In the context of networks, cumulative advantage
(CA) – the rich-get-richer effect – is seen as a driving principle governing the edge accumulation
process. However, competitions coupled with CA exhibit non-trivial behavior and little is formally
known about duration and intensity of CA competitions. By isolating two nodes in an ideal CA
competition, we provide a mathematical understanding of how CA exacerbates the role of luck in
detriment of skill. We show, for instance, that when nodes start with few edges, an early stroke of
luck can place the less skilled in the lead for an extremely long period of time, a phenomenon we
call “struggle of the fittest”. We prove that duration of a simple skill and luck competition model
exhibit power-law tails when CA is present, regardless of skill difference, which is in sharp contrast
to the exponential tails when fitness is distinct but CA is absent. We also prove that competition
intensity is always upper bounded by an exponential tail, irrespective of CA and skills. Thus, CA
competitions can be extremely long (infinite mean, depending on fitness ratio) but almost never very
intense. The theoretical results are corroborated by extensive numerical simulations. Our findings
have important implications to competitions not only among nodes in networks but also in contexts
that leverage socio-physical models embodying CA competitions.

PACS numbers: 87.23.Ge, 89.75.Da, 05.40.-a, 02.50.-r
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I. INTRODUCTION

Growth is a fundamental aspect inherent to most networks that has been widely investigated both empirically
through the analysis of data from various contexts and theoretically through idealized models. An important driving
force behind network growth and in particular the evolution of node degrees is cumulative advantage (CA), where
accumulated edges (i.e., current node degree) promote gathering even more edges. A second widely-accepted driving
force in this context is fitness, which captures the inherent ability of nodes to attract edges. Thus, dynamics of
network growth is governed by skill (fitness) and luck (random but biased edge attachment).

Recent work has framed the problem of network growth as a competition among nodes [1–3]. In essence, nodes
in a network compete with one another to accumulate edges, increasing (or descreasing) their degrees over time. As
expected, such competitions are also driven by skill and luck and have been studied empirically and theoretically
for different networks, an example of which is the evolution and predictability of success in citation networks [2].
Outside the domain of networks, the study of skill and luck competitions have a long history in social and physical
sciences [4, 5].

However, the intricacies of skill and luck competitions are far from trivial, even in a simple CA model with just two
competitors. To illustrate, consider a network with two hub nodes that compete for connectivity. Each time a new
node joins the network, it connects to one of the hubs randomly with bias depending on the hubs’ fitnesses (model
details given in Section III). In the presence of CA, the bias also depends on the hubs’ current degrees. Figure 1a and
Figure 1b illustrate the difference of the hubs’ degrees over time for two sample paths in the absence and presence of
CA, respectively. The paths with the same color and label in both plots are generated using the same pseudorandom
sequence. The competition is tied every time the degree difference is zero and we define the competition duration as
the time until the final tie occurs. Note that when generated by the same pseudorandom sequence, a competition
with CA can last either much shorter (see the red paths in Figure 1) or significantly longer (see the blue paths in
Figure 1) than without CA, pointing to a large variance in competition duration. Moreover, with CA the less fit hub
enjoys a sizable degree leadership for a long time. These observations also apply to two specific nodes in more general
network growth models, provided that we interpret time as the total degrees of the two nodes of interest. However,
are these sample paths anomalies or the norm? Can we be more precise about these observations?
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FIG. 1. Time evolution of degree difference between two nodes in competitions without and with cumulative advantage (CA).
Each plot shows two independently simulated sample paths. The sample paths with the same color in both plots use the same
sequence of pseudorandom numbers. Competition starts tied and node X is 10% fitter than node Y . See model details in
Section III.

In this work, we aim to develop a fundamental understanding of the effects of CA in competitions. We approach this
problem by considering classical, simple and well-studied theoretical models for competitions based on skill and luck
that are either coupled with or free of cumulative advantage. These models may not be general enough as statistical
models that fit real-world data for competitions in growing networks, as such models must capture intricate features
of the domain, such as skill distribution or amplitude of cumulative advantage (e.g., linear or sub-linear), as well
as their time dependency. However, they still provide invaluable insights into how CA impacts competitions. More
specifically, we focus on competitions between two agents (nodes) and study two fundamental aspects of competitions:
duration – the time required for the most skilled to overtake its competitor and forever enjoy undisputed leadership;
intensity – the number of times competitors tie for the leadership. In this direction, we make the following main
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contributions.

• In the case where the two competitors have equal fitness, we obtain the asymptotic tail distributions for both
duration and intensity of CA competitions. We demonstrate that they are power laws with respective tail
exponents −1/2 and −1, which are independent of the initial wealth of the competitors.

• In the case where the two competitors have unequal fitness, we derive asymptotic lower and upper bounds for the
tail distribution of duration of CA competitions, and an upper bound for the tail distribution of their intensity.
These bounds show that duration is heavy tailed while intensity is exponential tailed in the presence of CA. In
particular, duration is heavier tailed while intensity is lighter tailed than corresponding RW competitions.

• We observe that a slight difference in fitness of the two results in an extremely heavy tail for duration of CA
competitions. Thus, an individual that is only slightly more skilled than his competitor might have to hang on
to the competition for an extremely long period of time before taking the ultimate lead, a phenomenon we call
the “struggle of the fittest”.

Despite 90 years since the basic CA model was first proposed [6], known as Pólya’s urn model, our work is, to the
best of our knowledge, the first to characterize the duration and intensity distributions of CA competitions with skill.
We believe our findings have profound implications to our understanding of competitions, beyond its importance to
the evolution of degree of nodes in growing networks.

The rest of the paper is organized as follows. Section II briefly discusses the related work. Section III introduces
the CA competition model. Section IV presents the theoretical results, illustrated and supplemented by simulations.
Section V concludes the paper.

II. RELATED WORK

Resource accumulation is a ubiquitous phenomenon that naturally arises in a variety of social and complex systems.
The problem is usually framed as a competition among agents for resources that are abundant, and has been studied
in different contexts across various disciplines ranging from protein binding within a cell [7, 8] to views of online
social media [9, 10] and citations among scholarly papers [2, 11]. In the context of networks, network growth and in
particular node degree evolution has been recently framed as competition among nodes, where different aspects of
competitions have been studied empirically and theoretically [1–3, 12, 13].

Models for resource accumulation competitions generally incorporate skill (fitness), luck (randomness) and exter-
nalities. Cumulative advantage is one type of externality that is considered a general mechanism for inequality [5]. It
appears in the literature under many variants such as Price’s cumulative advantage model [11], preferential attachment
[14–16], “the rich get richer”, Matthew effect [5, 17, 18], and path-dependent increasing returns [4]. The Pólya’s urn
model [6, 19] is widely used to capture these effects. Most previous work on Pólya’s urn model and its generalizations
focuses on the share of resources gathered by each agent, also known as the agent’s market share, proving convergence
and limiting results of the market share distribution [19–21]. More recent studies consider Pólya’s urn models with
non-linear bias [22], the effects of initial conditions of urns [23, 24], as well as the time for the first tie [25] and
probability of a tie ever occuring [26].

However, two fundamental metrics associated with competitions, duration - how long it takes for the undisputed
winner to emerge, and intensity - how many times the competitors tie for the leadership, have largely been neglected
in the literature. Previous results establish that the most skilled agent eventually wins [19], and that average intensity
up to time t is approximately (log t)α, where α depends on the relative skill of the competitors [12, 27]. To the
best of our knowledge, no previous work has provided rigorous characterizations for the distributions of duration and
intensity of competitions in Pólya’s urn models. Our work partially fills this gap for the two competitor case and
sheds light on some recent approximate results [12, 27].

III. MODELS

In this section, we formally introduce competition models for two competing agents and give precise definitions for
two fundamental metrics of a competition, i.e. its duration and intensity.
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FIG. 2. State space of competition processes, with an illustration of a sample path with x0 = 2, y0 = 1, and three ties at time
t = 3, 5, 7.

A. General Setup and Metrics

Let X and Y denote the two agents that engage in the competition. Each agent is associated with a positive
fitness value that reflects its intrinsic competitiveness or skill level. Let fX and fY denote the fitness of X and Y ,
respectively, and r = fX/fY the fitness ratio. Without loss of generality, we assume that fX ≥ fY and hence r ≥ 1.
The resource that the agents compete for will be generically referred to as wealth, which is measured in discrete

units. The competition starts at time t = 0 with agents X and Y having x0 and y0 units of initial wealth, respectively.
We consider a discrete-time process. At each time step, one unit of wealth is added to the system and given to either
X or Y . Denote by Xt and Yt the respective cumulative wealth of X and Y at time t. The complete history of the
competition {(Xt, Yt)}∞t=0 then forms a discrete-time discrete-space stochastic process. The state space S is the first
quadrant of the integral lattice (see Figure 2),

S = {(x, y) ∈ Z2 : x ≥ 1, y ≥ 1}.

The initial condition is (X0, Y0) = (x0, y0). How the process evolves over time is defined by specific competition
models, of which the CA competition model to be introduced in Section III B is an example.
We now make the notions of duration and intensity of competitions more precise by defining them through events

of wealth ties. Given a competition process {(Xt, Yt)}∞t=0, we say that a tie occurs at time t if Xt = Yt. Figure 2
shows three ties at times t = 3, 5, 7.

The duration T of a competition is defined to be the time of the last tie, i.e.,

T = sup{t ≥ 0 : Xt = Yt}.

When there is no tie, we follow the standard convention that T = sup ∅ = −∞. The competition ends at time T in
the sense that one of the agents takes the lead and never lose it again after T .
The intensity Nt of a competition until time t is the number of ties that occur by time t, i.e.,

Nt =

t∑
i=0

1{Xi = Yi},

where 1{A} is the indicator of event A. The intensity N of a competition is the total number of ties throughout
the competition, i.e., N = limt→∞Nt. This measures the intensity of the competition in the sense that it counts the
number of potential changes in leadership. Note that T < +∞ if and only if N < +∞.

B. CA Competition Model

In the CA competition model, the unit of wealth introduced at time t+ 1 is given to X with probability

pX,t =
fXXt

fXXt + fY Yt
=

rXt

rXt + Yt
;
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otherwise it is given to Y . Note that the transition probability pX,t embodies both fitness and CA effects (externalities).
More formally, in the CA competition model, the complete history {(Xt, Yt)}∞t=0 forms a discrete-time Markov

chain with stationary transition probabilities. The transition probability P[(Xt+1, Yt+1) = (x′, y′) | (Xt, Yt) = (x, y)]
is given by

QCA,r(x, y;x
′, y′) =


rx

rx+ y
, if (x′, y′) = (x+ 1, y),

y

rx+ y
, if (x′, y′) = (x, y + 1),

0, otherwise.

(1)

Note that the transition probabilities are spatially inhomogeneous, i.e., they depend on the current state (x, y), which
makes the analysis difficult, especially when r > 1.

For the purpose of comparison, a RW competition model incorporates skill and luck but not the CA effect (no
externalities), where the transition probabilities are determined entirely by the fitness ratio r. In particular, the
probability that agent X receives the unit of wealth introduced at any time is always given by

pX =
fX

fX + fY
=

r

r + 1
.

Thus the RW competition model is a discrete-time Markov chain with the same state space S as the CA competition
model, but with the following spatially homogeneous transition probabilities,

QRW,r(x, y;x
′, y′) =


r

r + 1
, if (x′, y′) = (x+ 1, y),

1

r + 1
, if (x′, y′) = (x, y + 1),

0, otherwise.

The spatial homogeneity of the transition probabilities leads to a more tractable analysis. In fact, the difference
process {Xt − Yt} is a standard biased RW with parameter r/(r + 1). Thus the abundance of known results for RW
[28] can be directly translated into results for RW competitions, including duration and intensity as we have defined
in Section IIIA.

Throughout the rest of the paper, we use CA= and RW= to denote CA and RW competitions with identical fitness
(r = 1), respectively. We use CA ̸= and RW̸= to denote CA and RW competitions with distinct fitnesses (r > 1),
respectively. Before presenting our results, we point out here some connections between the CA and RW models that
are useful in our analysis. In particular, in CA=, all paths connecting two given states (x0, y0) and (x, y) have the
same probability. This is a nice property that CA= shares with RW, which enables us to leverage existing results on
RW in our analysis of CA=. Unfortunately, this property is lost in CA ̸=, where we resort to the Chapman-Kolmogorov
equation for upper and lower bounds on the probabilities of interest. In the limiting case where Xt and Yt are both
large but comparable to each other, the connection to RW is again partially retained, a fact we also exploit in the
analysis of CA ̸=.

IV. RESULTS

In this section we present our theoretical results for duration and intensity distributions, which are also illustrated
graphically and supported by extensive numerical simulations. Table I provides a summary of our main results along

with prior knowledge about RW competitions from the literature. Note that P(x0,y0)
⟨Model⟩,r denotes the probability in

model ⟨Model⟩ ∈ {CA,RW} with fitness ratio r and initial state (x0, y0). The following notations have been used in
Table I and will be used throughout the rest of the paper.

• f(x) ∼ g(x) if and only if limx→∞ f(x)/g(x) = 1.

• f(x) ≲ g(x) if and only if lim supx→∞ f(x)/g(x) ≤ 1.

• f(x) ≳ g(x) if and only if lim infx→∞ f(x)/g(x) ≥ 1.

All proofs are relegated to Appendix A.
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metric ⟨Model⟩ r = 1 r > 1

duration T :

P(x0,y0)

⟨Model⟩,r[T ≥ t]

CA ∼ t−1/2 ≳ t−(r−1)x0

≲ t−(r−1)(x0− 1
r
)

RW 1 ≤
[

4r
(r+1)2

]t
intensity N :

P(x0,y0)

⟨Model⟩,r[N ≥ n]

CA ∼ n−1 ≤
(

2
r+1

)n−1

RW 1
(

2
r+1

)n−1

TABLE I. Tail distributions for duration and intensity of competitions in both RW and CA models. Multiplicative constants
are omitted in all expressions involving t and n. The RW statistics can be found in most textbooks on the topic, e.g. [28, pp.
113,116].

A. Competition Duration

As shown in Table I, RW= competitions never end, i.e., P(x0,y0)
RW,1 [T = ∞] = 1, while RW̸= competitions are generally

very short, whose durations exhibit exponential tails. The story for CA competitions is drastically different. The

introduction of CA guarantees that a competition always ends, i.e. P(x0,y0)
CA,r [T <∞] = 1, even when the two agents are

equally fit, which is in sharp contrast to endless RW= competitions. On the other hand, CA fundamentally increases
the chance of having a long-lasting competition between unequally fit agents, as the duration of CA̸= always has a
power-law distribution, in contrast to a sub-exponential distribution for RW̸=. Thus, cumulative advantage does not
always make competitions shorter as one might expect.

1. Equal Fitness Case: CA=

The following theorem shows that the duration T for CA= is heavy-tailed with an asymptotic power-law distribution.

Theorem 1. The duration of a CA= competition has the following asymptotic tail distribution,

P(x0,y0)
CA,1 [T ≥ t] ∼ 1

2x0+y0−5/2
√
πB(x0, y0)

t−1/2, (2)

where B(x, y) =
∫ 1

0
sx−1(1− s)y−1ds is the beta function.

It follows from (2) that

P(x0,y0)
CA,1 [T <∞] = 1− lim

t→∞
P(x0,y0)
CA,1 [T ≥ t] = 1,

i.e. the duration of CA= is almost surely finite.
Note, however, that the power-law exponent is always −1/2, independent of the initial wealth x0 and y0. Conse-

quently, although the duration of CA= is finite rather than infinite as in RW=, the expected duration is still infinite,
even if x0 is significantly larger than y0 or vice versa.
On the other hand, the initial wealth (x0, y0) does affect the location of the distribution. Figure 3 shows the duration

distributions from simulations for various values of initial wealth, with the asymptotes in Eq. (2) superimposed. Each
simulation curve is the average of 105 independent runs for 107 time steps each. All curves are truncated at t = 106,
since the empirical distributions will drop down sharply and become inaccurate as t approaches the cutoff time in
simulations. Similar truncations will be applied to later plots without further mention. Note the good agreement
between theory and simulation in the tails in Figure 3. When both x0 and y0 increase but are kept equal, the
distribution curve shifts upwards, which means the competition lasts longer. When the initial wealth of only one
agent (y0 here) increases, the distribution curve shifts downwards, which means the competition is shorter.

2. Different Fitness Case: CA ̸=

The next theorem shows that the tail distribution of the duration T for CA ̸= is asymptotically bounded by power
laws from both below and above.
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FIG. 3. Tail distribution for duration of CA= with various (x0, y0). The dots are simulation results. The solid lines are the
asymptotes in Eq. (2).

Theorem 2. The tail distribution of the duration of a CA̸= competition has the following asymptotic bounds,

φ1 t
−(r−1)x0 ≲ P(x0,y0)

CA,r [T ≥ t] ≲ φ2 t
−(r−1)(x0−1/r), (3)

where

φ1 =
Γ(rx0 + y0)

(r + 1)x02x0+y0−1Γ(x0)Γ(y0)
, (4)

and

φ2 =
2(r−1)(x0−r−1)Γ(r−1)Γ(rx0 + y0)

(r + 1)(x0 − r−1)Γ(x0)Γ(y0)
, (5)

where Γ(x) =
∫∞
0
sx−1e−sds is the gamma function.

It follows from the lower bound that P(x0,y0)
CA,r [T < ∞] = 1 for r > 1, i.e. the duration for CA ̸= is almost surely

finite as is for CA=. The constants φ1 and φ2 are very loose, so the bounds are best interpreted as bounds on the
tail exponent.

Note that the power-law exponents in the upper and lower bounds depend on x0 but not on y0, and they differ only
by 1− 1/r < 1. In this sense, the shape of the distribution at large t is largely determined by the fitness ratio and the
initial wealth of the fitter agent, while the initial wealth of the less fit plays a much weaker role. This is illustrated in
Figure 4, which shows the duration distributions from simulations for r = 1.2 and various values of (x0, y0), alongside
the lower bounds from Eq. (3) that are shifted closer to the simulation results for easier comparison of the slopes.
Each simulation curve is the average of 105 independent runs for 109 time steps each.
Figure 4a shows how the slopes of the distribution curves, which correspond to the power-law exponents, depend

critically on x0. The impact of x0 is two-fold. As x0 increases, the distribution curve becomes more tilted as predicted
by the bounds. At the same time, it also shifts downwards. Both changes mean that the competition tends to be
shorter.

Figure 4b shows the impact of changing both x0 and y0. When x0 is fixed, increasing y0 only results in a slight
decrease in the absolute value of the slope, in agreement with Eq. (3). The distribution curve shifts upwards, which
means the competition tends to last longer. When both x0 and y0 increase, the situation becomes more intricate.
The curve may shift upwards while bending down faster in the tail, which could possibly lead to a crossover in the
old and new curves, as is the case of going from (x0, y0) = (1, 1) to (x0, y0) = (3, 3). In this case, the new competition
is more likely to have a medium long duration.

3. Struggle-of-the-Fittest Phenomenon

Now we look at the impact of fitness ratio r on duration. Contrasting Eqs. (2) and (3) leads to an interesting
observation. Departing from CA= by slightly increasing the fitness ratio r from 1 to 1 + ε, where ε is close to 0,
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FIG. 4. Tail distribution for duration of CA̸= with r = 1.2 and various (x0, y0). The dots are simulation results. The solid
lines are the asymptotic lower bound in Eq. (3) but shifted closer to the simulation results for easier visual comparison of the
slopes.

precipitates a significant increase in the probability of long-lasting competitions, as manifested in the discontinuous
jump in the power-law exponents from −1/2 in Eq. (2) to −εx0 ≈ 0 in Eq. (3). This is opposite to what happens in
RW competitions, where a slight increase in fitness departing from RW= to RW ̸= transforms the competition from
one that never ends to one with a geometrically distributed duration. The lower bound in Eq. (3) shows that CA ̸=
with r < 1+ (2x0)

−1 is more likely to have long-lasting competitions than CA=, despite the fact that the fitter agent
is bound to become the ultimate winner. We refer to the phenomenon that the fitter agent takes an extremely long
time to win as “struggle of the fittest”.

Figure 5 shows the duration of simulated CA competitions for various fitness ratios r. Each simulation curve is the
average of 105 independent runs for 109 time steps each. Note how the distribution of duration jumps upward from
the curve for CA= to the curve for CA ̸= with r = 1.1. It also shows how the curves for CA ̸= become more and more
tilted as r increases, being roughly parallel to the CA= curve at r = 1 + (2x0)

−1 = 1.5.
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FIG. 5. Tail distribution for duration of CA with various r. The dots are simulation results. For r = 1, the solid line is the
asymptote in Eq. (2). For r > 1, the solid lines are the lower bound in Eq. (3) but shifted as in Figure 4.
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B. Competition Intensity

Given that CA competitions are long-lasting, one might expect them also to be intense, i.e., exhibit many ties
(Xt = Yt). As we will see in this section, this intuition is appropriate for CA= but not for CA ̸=.

1. Equal Fitness Case: CA=

The following theorem shows that the intensity N of CA= is heavy-tailed with an asymptotic power-law distribution.

Theorem 3. The intensity of a CA= competition has the following asymptotic tail distribution,

P(x0,y0)
CA,1 [N ≥ n] ∼ 1

2x0+y0−2B(x0, y0)
n−1, (6)

where B(x0, y0) is the beta function as in Eq. (2).

In this case, the intensity has infinite expectation, as does the duration. Figure 6 shows the duration distributions
from simulations for various values of initial wealth, with the asymptotes in Eq. (6) superimposed. Each simulation
curve is the average of 105 independent runs for 107 time steps each. We observe the same behavior as in Figure 3.
When both x0 and y0 increase but are kept equal, the distribution curve shifts upwards, which means the competition
is more intense. When the initial wealth of only one agent (y0 here) increases, the distribution curve shifts downwards,
which means the competition is less intense.

We mention in passing that if we have a finite observation time tf , the expected intensity Ntf by time tf grows as
log tf , a phenomenon observed for the related CA model in Godrèche et al. [12].
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FIG. 7. Tail distribution for intensity of CA with various r.
The dots are simulation results. The solid lines are the upper
bounds from Eq. (7) for r > 1, and the asymptote in Eq. (6)
for r = 1.

2. Different Fitness Case: CA ̸=

In sharp contrast, CA ̸= competitions are not intense despite their long durations. In fact their intensities are
surprisingly mild, bounded above by a geometric distribution, as shown in the next theorem.

Theorem 4. The tail distribution of the intensity of a CA̸= competition has the following upper bound,

P(x0,y0)
CA,r [N ≥ n] ≤ C

(
2

1 + r

)n−1

, (7)



10

with

C =

{
1, x0 ≤ y0,

(y0)x0−y0

(rx0+y0)x0−y0

(
1 + 1

r

)x0−y0
, x0 > y0,

where (x)k =
∏k−1

i=0 (x+ i) is the Pochhammer symbol.

Note that the expectation and all higher moments of N are finite. Therefore, the intensity of a CA competition
changes dramatically when the fitnesses of the two parties become unequal, the distribution shifting from a power-law
tail to an exponential tail. This is illustrated in Figure 7, where each simulation curve is the average of 105 independent
runs for 109 time steps each. An important observation is that both CA ̸= and RW̸= competitions have intensities that
are upper bounded by identical exponential tails (see Table I), while exhibiting fundamentally different durations.
Why are CA ̸= competitions simultaneously not intense and long-lasting? The answer resides in the probability of

Y being the eventual winner. In CA= competitions, Y wins with probability y0/(x0+y0), while in CA ̸= competitions
Y (the less fit) never wins. However, for small values of r, especially for those very close to one, the dynamics in the
initial stages of the competition closely follows that of CA=. Thus there is a non-negligible chance that Y takes a
significant lead, with the CA effect helping it uphold the lead for a long period of time over which there is no tie.
Eventually, however, fitness effect outweighs the CA effect, and X catches up with Y . By then they both have large
accumulated wealth, which makes CA ̸= behave like RW̸= in the vicinity of X = Y , allowing X to quickly establish
a lead ahead of Y . At this final stage both fitness and CA effects work in favor of X, and Y stands little chance
in taking the lead again. To summarize, the less fit agent has a non-negligible probability of taking an early lead
which can last for a very long time due to the CA effect, but it will ultimately surrender the lead to the fitter agent
and never lead again, a phenomenon that we call “delusion of the weakest”, which is the flip-side of “struggle of the
fittest”.

Figure 8 illustrates this observation by showing sample paths for different values of r, all generated using the same
sequence of random bits. Note that for r = 1 (identical fitness), Y wins quickly, whereas for r = 1.1 the fitter agent
X, having trailed behind for a long time, eventually takes over after 69,426 time steps. Finally, for both r = 1.2 and
r = 1.5 agent X has no trouble quickly winning the competition. These sample paths showcase the long struggle of
the “slightly” fitter agent in competitions with CA effects.

t

X
t−

Y
t

− 105

− 103

0

103

105

1 10 102 103 104 105

r=1.00
r=1.10
r=1.15
r=1.20
r=1.50

FIG. 8. “Delusion of the weakest”: sample paths for different values of r (x0 = y0 = 1), all generated using the same sequence
of random bits

C. Interplay of Duration and Intensity

In this section, we study the relationship between duration and intensity. Note that duration gives a natural upper
bound N ≤ T/2 for intensity, i.e., the number of ties is at most half of the duration in any competition. In CA=,
duration and intensity are strongly and positively correlated. In fact, a tie at time t increases the probability of having
another tie at a time greater than t. More precisely, [25] shows that for CA=,

P(x0,y0)
CA,1 [T > t|Xt = Yt] ≃ 1− 1√

πXt

. (8)
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tioned on their duration being at least t, namely E(x0,y0)
CA,r [N |

T ≥ t].

Since Xt ∼ t/2 at a tie, Eq. (8) implies that the later a tie occurs, the more likely another tie will occur, intuitively
explaining why long-lasting competitions are also intense in this case.

Figure 9 shows a scatter-plot of duration versus intensity from 104 independent runs of CA= competitions with
x0 = y0 = 1, each simulated for 109 time steps. This unveils a strong positive linear correlation between the two
statistics in log-log scale (sample Pearson correlation coefficient of 0.94).

Interestingly, CA ̸= shows a different behavior, since even long-lasting competitions exhibit only a small number
of ties. Figure 10 shows simulation results for conditional average intensities of competitions with x0 = y0 = 1 and
different fitness ratios r, conditioned on the duration being at least t. Each simulation curve is obtained from 104

independent runs for 109 time steps each. Note that for r = 1, the conditional average intensity increases linearly
with t, but for r > 1, it stabilizes as t increases. Again, we observe a sharp transition as we move from identical to
distinct fitnesses, this time in the correlation between intensity and duration.

V. DISCUSSION AND CONCLUSION

As supported by various empirical studies over the last century, real world competitions for resource accumulation
seem to be subject to cumulative advantage effects, at least to some extent. Because of such findings and the fact
that CA generally leads to large inequalities in resource distribution, understanding the role of skill and luck in
competition dynamics becomes a pressing issue both in theory and practice. Indeed, recent empirical [2, 29, 30] and
theoretical [1, 12, 25, 31] studies have contributed in this direction.

However, contrary to prior theoretical works, we consider simple and classical mathematical models that capture
just the essence of skill and luck competitions with and without CA effects, and investigate fundamental aspects
of competition, namely duration (i.e., time until an ultimate winner emerges) and intensity (i.e., number of ties in
competition). By considering simple models and simple properties we prove and illustrate fundamental theoretical
results: CA effect exacerbates the role of luck - power-law tail duration emerges regardless of skill differences, and
become extreme (i.e., infinite mean) when skill differences are small enough. Moreover, duration is long not necessarily
because of intense competition where agents tussle aggressively for ultimate leadership. On the contrary, under CA,
competitions are generally very mild, exhibiting an exponential tail. Long competitions emerge when an early stroke
of luck places the less skilled in the lead, who can then, boosted by CA effects, enjoy leadership for a very long period
of time. Thus, when CA is present luck sides with the less skilled.

The non-negligible probability of long-lasting competitions has far-reaching implications. In the absence of CA, it
takes very little time for the fittest agent to establish dominance, so it is often reasonable to neglect the possibility
of a premature burnout. Such observations are in hand with the “survival of the fittest” principle, since soon enough
the more skilled will prevail. In the presence of CA, however, even agents with superior fitness may face the challenge
of having to endure extremely long competitions. This challenge becomes all more real when the fitness superiority is
only minimal. Will the more skilled survive the seemingly eternal inferiority during the competition? Under CA time
becomes a central issue, with delusion becoming reality if the more skilled burns out during a long struggle. Thus, in
the face of CA, the fittest survives only if it can persist, which prompts us to rename the principle “survival of the
fittest and persistent” when considering CA competitions.
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This observation may also shed light on the seemingly inherent difficulty of predicting success in real-world compe-
titions by observing ongoing sample paths. Different empirical studies have alluded to this problem [2, 29, 30] as well
as recent model driven studies [31]. A key ingredient in predicting success is the assessment of the agents’ fitnesses.
However, fitness estimation for an ongoing competition which is driven by a single, likely short, sample path is a hard
problem. The Cramér-Rao bound [32] provides a lower bound on the mean squared error of any unbiased estimator.

The Cramér-Rao bound of the fitness values estimates f̂X and f̂Y in the linear CA case with one step is

MSE(f̂h) = (J−1)hh , h ∈ {X,Y } ,

where

Ji,j =

X0+1∑
zX=X0

Y0+X0+1−zX∑
zY =Y0

(
(f2i − fi)zi + fifjzj

(fizi + fjzj)2

)(
(f2j − fj)zj + fjfizi

(fjzj + fizi)2

)(
fizi

fizi + fjzj

)
.

Replacing fitness values fX = 1 and fY = 2, with X0 = Y0 = 1 into the above equation we get MSE(f̂X) ≥ 105

and MSE(f̂Y ) ≥ 59. These are large lower bounds for the error, showing that accurate unbiased estimation is not
possible in this case. In particular, in light of our results which indicate that competition durations follow power laws,
an accurate estimation of agents’ fitnesses may require extremely long observations. In an environment where direct
competitions tend to be relatively short with a competitor giving up after some time and fitness differences among
agents tend to be small, estimating agents’ fitnesses or even the most fit agent seems challenging.

The CA effect considered in the present work is linear, which need not be the case in general. Nonlinear CA

has also been investigated in the literature. In particular, [22, 23] considered the case pX,t =
rXβ

t

rXβ
t +Y β

t

with r = 1

and β > 0 (note that β = 1 corresponds to linear CA). A natural problem here is to characterize the duration and
intensity of nonlinear CA competitions, where the interaction between CA and fitness becomes more complicated.
Our preliminary investigation in this direction indicates that in the equal fitness case (r = 1) both duration and
intensity retain power-law distributions, whose exponents depend on β. When agents have different fitnesses (r > 1)
intensity seems to remain light-tailed for all values of β. In contrast, duration seems to be heavy-tailed only when
β ≥ 1 and become light-tailed when β < 1. A more precise and detailed characterization of non-linear CA, however,
is more involved and left for future work.
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[19] Hosam Mahmoud. Pólya urn models. CRC Press, 2008.
[20] S. Janson. Limit theorems for triangular urn schemes. Prob. Theory Related Fields, 134:417–452, 2005.
[21] R. Pemantle. A survey of random processes with reinforcement. Probability Surveys, 4:1–79, 2007.
[22] Eleni Drinea, Alan Frieze, and Michael Mitzenmacher. Balls and bins models with feedback. In ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 308–315, 2002.
[23] Roberto Oliveira. Balls-in-bins processes with feedback and brownian motion. Journal of Combinatorics, Probability and

Computing, 17(1):87–110, 2008.
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Appendix A: Proofs

In this appendix, we provide proofs for our main results in Section IV. We will use the following additional notations
and definitions.

• Denote the transition probability from state (x0, y0) to state (x, y) in t = x+ y − x0 − y0 steps by

pr(x0, y0;x, y) = P(x0,y0)
CA,r [(Xt, Yt) = (x, y)].

Note that the transition probability is nonzero only for this specific t. Thus we will often omit to mention t
explicitly hereafter and assume that the appropriate t has been chosen.

• Let τn be the time of the n-th tie, which can be defined recursively by τ0 = −∞ and

τn = inf{t > τn−1 : Xt = Yt}, n ≥ 1.

Note that T = τN .
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• Denote by qr(x0, y0) the probability of having no tie after leaving state (x0, y0), i.e.,

qr(x0, y0) = P(x0,y0)
CA,r [Xt ̸= Yt, t ≥ 1].

Note that qr(x0, x0) = P(x0,x0)
CA,r [τ2 = ∞] and qr(x0, y0) = P(x0,y0)

CA,r [τ1 = ∞] for x0 ̸= y0.

• Denote by An,t(x, y) the set of paths that start from (x, y) at time 0 and end with the n-th tie at time t, i.e.,
τn = t.

1. Proof of Theorem 1

Note that the CA= model is the standard Pólya urn model. The proof of Theorem 1 combines known results for
this model. Starting from the initial state (x0, y0), Xt has a beta-binomial distribution with parameters x0 and y0
[33]. Note that the event Xt = Yt occurs only if t = |x0 − y0|+ 2k for some integer k ≥ 0. For such t, Xt = Yt if and
only if Xt = z0 + k, where z0 = max{x0, y0}. By Eq. (6.27) of [33],

P(x0,y0)
CA,1 [Xt = Yt] = P(x0,y0)

CA,1 [Xt = z0 + k] =
B(z0 + k, z0 + k)

B(x0, y0)

(
t

k

)
. (A1)

Recall that q1(x, y) is the probability of having no tie after leaving state (x, y). Thus

P(x0,y0)
CA,1 [T = t] = P(x0,y0)

CA,1 [Xt = Yt] · q1(z0 + k, z0 + k), (A2)

where the second factor on the right-hand side is the probability of having no tie after t.
Recall that the exit probability E(x, y) in [25] is the probability of ever having a tie starting from (x, y), including

the initial state (x, y). Thus for x ̸= y, q1(x, y) is related to E(x, y) by

q1(x, y) = 1− E(x, y).

Using Eq. (22) of [25] for E(x, y), we obtain

q1(x+ 1, x) = q1(x, x+ 1) =
Γ(x+ 1/2)

Γ(x+ 1)Γ(1/2)
.

However, q1(x, x) ̸= E(x, x) = 1. By considering the one-step transition from (x, x) to (x + 1, x) or (x, x + 1), we
obtain

q1(x, x) =
1

2
q1(x+ 1, x) +

1

2
q1(x, x+ 1) =

Γ(x+ 1/2)

Γ(x+ 1)Γ(1/2)
.

Eliminating Γ(x+ 1/2) by the identity

Γ(2x) = π−1/222x−1Γ(x)Γ(x+ 1/2)

in [34, Eq. (5.5.5)], and using Γ(x+ 1) = xΓ(x) and Γ(1/2) =
√
π, we obtain

q1(x, x) =
Γ(2x)

x22x−1Γ(x)Γ(x)
=

1

x22x−1B(x, x)
. (A3)

Substitution of Eqs. (A1) and (A3) into Eq. (A2) yields

P(x0,y0)
CA,1 [T = t] =

1

B(x0, y0)
· 1

(z0 + k)22k+2z0−1

(
t

k

)
.

For t = |x0 − y0|+ 2k, Stirling’s formula yields (
t

k

)
∼
√

2

π
t−1/22t,
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and hence

P(x0,y0)
CA,1 [T = t] ∼ 1

2x0+y0−5/2
√
πB(x0, y0)

t−3/2. (A4)

It is well-known that as t → ∞, Xt/(Xt + Yt) converges almost surely to a beta random variable V . It follows that
|Xt − Yt|/(Xt + Yt) → |2V − 1|. Thus, for V ̸= 1/2, which holds almost surely, we have |Xt − Yt|/(Xt + Yt) > 0 for

all large enough t. Therefore, P(x0,y0)
CA,1 [T = ∞] = 0. Summing over t in Eq. (A4), we obtain as t→ ∞,

P(x0,y0)
CA,1 [T ≥ t] =

∞∑
t′=t

P(x0,y0)
CA,1 [T = t′] ∼ 1

2

∞∑
s=t

1

2x0+y0−5/2
√
πB(x0, y0)

s−3/2

∼ 1

2

∫ ∞

t

1

2x0+y0−5/2
√
πB(x0, y0)

s−3/2ds =
1

2x0+y0−5/2
√
πB(x0, y0)

t−1/2,

where we have used the fact that half of the terms are zero in the second step, and
∑∞

s=t s
−a ∼

∫∞
t
s−ads in the third

step. This completes the proof of Theorem 1.

2. Proof of Theorem 2

Similar to Eq. (A2), we have

P(x0,y0)
CA,r [T = t] = pr(x0, y0; z0 + k, z0 + k) · qr(z0 + k, z0 + k). (A5)

Thus the proof here amounts to finding expressions for both pr(x0, y0; z0 + k, z0 + k) and qr(z0 + k, z0 + k) in CA ̸=.
We break the proof into three lemmas.

Lemma 1.

pr(x0, y0;x0 + k, y0 + h) ≥ (x0)k(y0)h
(rx0 + y0)k+h

(
k + h

k

)
, (A6)

for all k ≥ 0, h ≥ 0.

Lemma 2.

pr(x0, y0;x0 + k, y0 + h) ≤ (x0)k(y0)h
(r−1)k(rx0 + y0)h

, (A7)

for all k ≥ 0, h ≥ 0.

Lemma 3. For r > 1,

qr(x, x) →
r − 1

r + 1
, (A8)

as x→ ∞.

Before proving these lemmas, we first use them to prove Theorem 2.

Proof of Theorem 2. By Lemma 1, we have

pr(x0, y0; z0 + k, z0 + k) ≥ (x0)k+z0−x0
(y0)k+z0−y0

(rx0 + y0)2k+2z0−x0−y0

(
2k + 2z0 − x0 − y0

k + z0 − x0

)
=

Γ(rx0 + y0)

Γ(x0)Γ(y0)
· Γ(k + z0)Γ(k + z0)

Γ(k + z0 − x0 + 1)Γ(k + z0 − y0 + 1)
· Γ(2k + 2z0 − x0 − y0 + 1)

Γ(2k + 2z0 + (r − 1)x0)

Using the relation Γ(k + a)/Γ(k + b) ∼ ka−b as k → ∞, we obtain

pr(x0, y0; z0 + k, z0 + k) ≳ Γ(rx0 + y0)

2x0+y0−2Γ(x0)Γ(y0)
(2k)−(r−1)x0−1 = 2(r + 1)x0φ1(2k)

−(r−1)x0−1,
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where φ1 is given by Eq. (4). Application of this asymptotic bound and Lemma 3 to Eq. (A5) yields

P(x0,y0)
CA,r [T = t] ≳ 2(r − 1)x0φ1t

−(r−1)x0−1. (A9)

Note that P(x0,y0)
CA,r [T = +∞] = P(x0,y0)

CA,r [N = +∞] = 0, where the second equality will follow from Theorem 4, so we

will not provide a separate proof here. Summing over t in Eq. (A9) and noting that half of the terms are zero, we
obtain as t→ ∞,

P(x0,y0)
CA,r [T ≥ t] =

∞∑
t′=t

P(x0,y0)
CA,r [T = t′] ≳

∫ ∞

t

(r − 1)x0φ1s
−(r−1)x0−1ds = φ1t

−(r−1)x0 ,

establishing the lower bound.
In a similar way, Lemma 2 yields

pr(x0, y0; z0 + k, z0 + k) ≲ 2(r + 1)(x0 − r−1)φ2(2k)
−(r−1)(x0−r−1)−1,

where φ2 is given by Eq. (5). Application of this asymptotic bound and Lemma 3 to Eq. (A5) yields

P(x0,y0)
CA,r [T = t] ≲ 2(r − 1)(x0 − r−1)φ2t

−(r−1)(x0−r−1)−1,

and

P(x0,y0)
CA,r [T ≥ t] =

∞∑
t′=t

P(x0,y0)
CA,r [T = t′] ≲ φ2t

−(r−1)(x0−r−1),

establishing the upper bound.

Now we prove the lemmas. Recall that the transition probability p(x0, y0;x, y) of going from (x0, y0) to (x, y)
satisfies the following recursion (Chapman-Kolmogorov equation),

pr(x0, y0;x, y) =
r(x− 1)

r(x− 1) + y
pr(x0, y0;x− 1, y) +

y − 1

rx+ y − 1
pr(x0, y0;x, y − 1), (A10)

for x ≥ x0, y ≥ y0 and x + y ≥ x0 + y0 + 1, with the boundary condition pr(x0, y0;x, y) = 0 for x < x0 or y < y0.
Note that we have replaced the one-step transition probabilities QCA,r(x− 1, y;x, y) and QCA,r(x, y − 1;x, y) by the
expressions in Eq. (1).

Proof of Lemma 1. We will use the short-hand notation p(k, h) for pr(x0, y0;x0 + k, y0 + h), and ψ(k, h) for the
right-hand side of Eq. (A6). We first prove the boundary case for k = 0. By Eq. (A10), for h ≥ 1,

p(0, h) =
y0 + h− 1

rx0 + y0 + h− 1
p(0, h− 1),

which is a simple recursion in h and can be expanded to yield

p(0, h) =
(y0)h

(rx0 + y0)h
p(0, 0) =

(y0)h
(rx0 + y0)h

= ψ(0, h),

which yields Eq. (A6) for k = 0 and h ≥ 1. Here we have used p(0, 0) = pr(x0, y0;x0, y0) = 1.
Similarly, for the other boundary case h = 0, k ≥ 1, we have

p(k, 0) =
(x0)k

(x0 + r−1y0)k
p(0, 0) =

(x0)k
(x0 + r−1y0)k

≥ (x0)k
(rx0 + y0)k

= ψ(k, 0),

where the last inequality is because (x)k increases with x, and x0 + r−1y0 ≤ rx0 + y0.
For the general case, we use induction on k + h. The base case k + h = 1 is already proven, since either k = 0 or

h = 0 when k + h = 1. Assume Eq. (A6) holds for k + h = m ≥ 1. Consider k + h = m + 1. We can also assume
k ≥ 1 and h ≥ 1, since we have proven the boundary cases for k = 0 or h = 0. The recursion in Eq. (A10) yields

p(k, h) =
r(x0 + k − 1)

rk + h+ c0 − r
p(k − 1, h) +

y0 + h− 1

rk + h+ c0 − 1
p(k, h− 1)
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≥ r(x0 + k − 1)

rk + h+ c0 − 1
p(k − 1, h) +

y0 + h− 1

rk + h+ c0 − 1
p(k, h− 1),

where c0 = rx0 + y0.
Applying the induction hypothesis p(k − 1, h) ≥ ψ(k − 1, h) and p(k, h − 1) ≥ ψ(k, h − 1) to the above inequality

yields

p(k, h) ≥ r(x0 + k − 1)

rk + h+ c0 − 1
ψ(k − 1, h) +

y0 + h− 1

rk + h+ c0 − 1
ψ(k, h− 1) =

(rk + h)(k + h+ c0 − 1)

(k + h)(rk + h+ c0 − 1)
ψ(k, h),

where in the last step we have used

ψ(k − 1, h) =
k

k + h
· k + h+ c0 − 1

x0 + k − 1
ψ(k, h),

and

ψ(k, h− 1) =
h

k + h
· k + h+ c0 − 1

y0 + h− 1
ψ(k, h).

To complete the proof, it suffices to show that

(rk + h)(k + h+ c0 − 1)

(k + h)(rk + h+ c0 − 1)
≥ 1,

but this is equivalent to r ≥ 1, which is true by assumption.

Proof of Lemma 2. The proof of Lemma 2 follows the same line of reasoning as that used to prove Lemma 1. The
boundary cases can be verified directly. We only outline the induction step here. Applying Eq. (A7) to the right-hand
side of Eq. (A10) yields

p(k, h) ≤ r(x0 + k − 1)

rk + h+ c0 − r

(x0)k−1(y0)h
(r−1)k−1(c0)h

+
y0 + h− 1

rk + h+ c0 − 1

(x0)k(y0)h−1

(r−1)k(c0)h−1

=

[
r(r−1 + k − 1)

rk + h+ c0 − r
+

c0 + h− 1

rk + h+ c0 − 1

]
(x0)k(y0)h
(r−1)k(c0)h

.

Note that

r(r−1 + k − 1)

rk + h+ c0 − r
+

c0 + h− 1

rk + h+ c0 − 1
≤ r(r−1 + k − 1)

rk + h+ c0 − r
+

c0 + h− 1

rk + h+ c0 − r
= 1,

which completes the induction.

Proof of Lemma 3. Recall that An,2k(x, x) is the set of paths that start from (x, x) at time 0 and end with the n-th
tie at time 2k, i.e., τn = 2k. Let An,2k = An,2k(0, 0). Note that the paths in An,2k(x, x) are exactly the paths in An,2k

translated by (x, x). Let π̃ ∈ An,2k and its state at time t be π̃t = (x̃t, ỹt). The translation of π̃ by (x, x), denoted
x+ π̃, is a path in An,2k(x, x), whose probability in the CA model is given by

P(x,x)
CA,r[x+ π̃] =

2k−1∏
j=0

(
r(x+ x̃j)

r(x+ x̃j) + (x+ ỹj)

)x̃j+1−x̃j

·
2k−1∏
j=0

(
(x+ ỹj)

r(x+ x̃j) + (x+ ỹj)

)ỹj+1−ỹj

.

For fixed k and π̃, as x→ ∞, P(x,x)
CA,r[x+ π̃] converges to

2k−1∏
j=0

(
r

r + 1

)x̃j+1−x̃j
(

1

r + 1

)ỹj+1−ỹj

= P(0,0)
RW,r[π̃],

which corresponds to the probability of the path π̃ in a random walk with parameter r/(r + 1). Thus, as x→ ∞,

P(x,x)
CA,r[τn = 2k] =

∑
π̃∈An,2k

P(x,x)
CA,r[x+ π̃] →

∑
π̃∈An,2k

P(0,0)
RW,r[π̃] = P(0,0)

RW,r[τn = 2k].
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After summing over k and using Fatou’s Lemma, we obtain

P(x,x)
CA,r[N ≥ n] = P(x,x)

CA,r[τn <∞] =

∞∑
k=1

P(x,x)
CA,r[τn = 2k] ≳

∞∑
k=1

P(0,0)
RW,r[τn = 2k] = P(0,0)

RW,r[τn <∞] = P(0,0)
RW,r[N ≥ n].

Since P(x,x)
CA,r[N ≥ n] ≤ P(0,0)

RW,r[N ≥ n] by Theorem 4 (whose proof does not rely on the present lemma), we obtain

P(x,x)
CA,r[N ≥ n] → P(0,0)

RW,r[N ≥ n].

In particular,

qr(x, x) = 1− P(x,x)
CA,r[N ≥ 2] → 1− P(0,0)

RW,r[N ≥ 2] =
r − 1

r + 1
,

completing the proof.

3. Proof of Theorem 3

Recall that An,t(x0, y0) is the set of paths starting from (x0, y0) that end with the n-th tie at time t, i.e., τn = t.
We will use the short-hand notation An,t for An,t(x0, y0). As in Section A1, the set An,t is non-empty only if
t = |x0 − y0| + 2k for some integer k ≥ n − 1, in which case, every path in An,t ends in state (z0 + k, z0 + k) with
z0 = max{x0, y0}. Recall from [25] that the probability of any path π connecting states (x0, y0) and (x, y) is

P(x0,y0)
CA,1 [π] =

B(x, y)

B(x0, y0)
=

B(x, y)

B(x0, y0)
2tP(x0,y0)

RW,1 [π].

Summing over π ∈ An,t, where x = y = z0 + k, we obtain

P(x0,y0)
CA,1 [τn = t] =

B(z0 + k, z0 + k)

B(x0, y0)
2tP(x0,y0)

RW,1 [τn = t]. (A11)

Thus the probability of having the n-th and also the last tie at time t is given by

P(x0,y0)
CA,1 [T = t,N = n] = P(x0,y0)

CA,1 [τn = t] · q1(z0 + k, z0 + k) =
1

2x0+y0−2B(x0, y0)
· 1

t+ x0 + y0
P(x0,y0)
RW,1 [τn = t] (A12)

where we have used Eqs. (A11) and (A3) in the last step. Note that P(x0,y0)
RW,1 [τn = t] is the probability fn,t(d0) of the

n-th visit to the origin at time t in a simple symmetric random walk starting from d0 = |x0 − y0|. Summing over t in
(A12), we obtain

P(x0,y0)
CA,1 [N = n] =

1

2x0+y0−2B(x0, y0)

∞∑
k=n−1

fn,d0+2k(d0)

2k + d0 + x0 + y0
=

Gn(1; d0)

2x0+y0−2B(x0, y0)
, (A13)

where

Gn(z; d0) =

∞∑
k=n−1

fn,d0+2k(d0)

2k + d0 + x0 + y0
zd0+2k.

To simplify Gn(z; d0), we have

d

dz
[zx0+y0Gn(z; d0)] = zx0+y0−1

∞∑
k=n−1

fn,d0+2k(d0)z
d0+2k = zx0+y0−1Φn(z; d0), (A14)

where Φn(z; d0) =
∑∞

k=n−1 fn,d0+2k(d0)z
d0+2k is the generating function of the probability distribution of the n-th

visit to the origin in a simple random walk starting from d0. Let F1(z) be the generating function of the distribution
of the time of the first return to the origin in a simple random walk starting from the origin. The standard renewal
argument (see e.g. XI.3.d of [35]) shows that Φn(z; d0) is given by

Φn(z; d0) = [Φ1(z; 1)]
d0 [F1(z)]

n−1,
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where Φ1(z; 1) and F1(z) are given by Eqs. (3.6) and (3.14) of [35, Chap. XI], respectively. Therefore,

Φn(z; d0) = z−d0

(
1−

√
1− z2

)n+d0−1

. (A15)

Substituting Eq. (A15) into Eq. (A14) and integrating from 0 to 1 yields

Gn(1; d0) =

∫ 1

0

z2min{x0,y0}−1
(
1−

√
1− z2

)n+d0−1

dz,

where we have used x0 + y0 − d0 = 2min{x0, y0}. A change of variable u =
√
1− z2 yields

Gn(1; d0) =

∫ 1

0

u(1− u2)min{x0,y0}−1(1− u)n+d0−1du,

which is upper bounded by

Gn(1; d0) ≤
∫ 1

0

u(1− u)n+d0−1du = B(2, n+ d0), (A16)

and lower bounded by

Gn(1; d0) ≥
∫ 1

0

u(1− u)min{x0,y0}−1(1− u)n+d0−1du = B (2, n+max{x0, y0} − 1) , (A17)

where we have used min{x0, y0}+ d0 = max{x0, y0}. Applying Eqs. (A16) and (A17) to Eq. (A13) yields

B(2, n+max{x0, y0} − 1)

2x0+y0−2B(x0, y0)
≤ P(x0,y0)

CA,1 [N = n] ≤ B(2, n+ d0)

2x0+y0−2B(x0, y0)
.

Note that P(x0,y0)
CA,1 [N = ∞] = P(x0,y0)

CA,1 [T = ∞] = 0. Summing over n and using
∑∞

m=nB(2,m) = n−1, we obtain

1

2x0+y0−2B(x0, y0)
· 1

n+max{x0, y0} − 1
≤ P(x0,y0)

CA,1 [N ≥ n] ≤ 1

2x0+y0−2B(x0, y0)
· 1

n+ d0
,

which immediately yields Eq. (6).

4. Proof of Theorem 4

We first prove the following lemma.

Lemma 4. The probability P(x0,y0)
CA,r [τ1 <∞] of ever having a tie is bounded as follows,

P(x0,y0)
CA,r [τ1 <∞] ≤

{
1, x0 ≤ y0,

(y0)x0−y0

(rx0+y0)x0−y0

(
1 + 1

r

)x0−y0
, x0 > y0.

Note that P(x0,y0)
CA,r [τ1 <∞] is the exit probability E(x, y) in [25] when r = 1.

Proof. The case x0 = y0 is trivial since τ1 = 0. When x0 < y0, Theorem 3.3 of [21] yields Yt/Xt → 0 almost surely,

from which it follows that Xt > Yt eventually and hence P(x0,y0)
CA,r [τ1 <∞] = 1.

Now assume x0 > y0. Recall that A1,t(x0, y0) is the set of paths starting from (x0, y0) that end with the first tie
at time t. Note that A1,t(x0, y0) is nonempty only if t = d0 + 2k, where d0 = x0 − y0 and k ≥ 0. Let π ∈ A1,t(x0, y0)
and its state at time j be πj = (xj , yj). The probability of the path π is given by

P(x0,y0)
CA,r [π] =

t−1∏
j=0

(
rxj

rxj + yj

)xj+1−xj
(

yj
rxj + yj

)yj+1−yj

=
rxt−x0(x0)xt−x0(y0)yt−y0∏t−1

j=0(rxj + yj)
=

rxt−x0(x0)xt−x0(y0)yt−y0∏t−1
j=0[(r − 1)xj + x0 + y0 + j]

,



20

where in the last step we have used xj +yj = x0+y0+ j. Note that P(x0,y0)
CA,r [π] is maximized if the xj ’s are minimized,

subject to the constraints that the xj ’s increase monotonically from x0 to xt with step size 0 or 1, and that xj > yj
for all 1 ≤ j ≤ t− 1, or equivalently xj > x0 + (j − d0)/2. This is achieved by the following sequence,

x∗j =


x0, j = 0, 1, . . . , d0 − 1;

x0 + ⌊(j − d0)/2⌋+ 1, j = d0, d0 + 1, . . . , t− 1;

xt, j = t.

The corresponding path π∗ has probability

P(x0,y0)
CA,r [π∗] =

d0−2∏
j=0

y0 + j

rx0 + y0 + j

xt−1∏
x=x0

rx

rx+ (x− 1)
· x− 1

r(x+ 1) + (x− 1)

xt − 1

rxt + (xt − 1)
,

which, after arrangement, yields,

P(x0,y0)
CA,r [π∗] =

d0−1∏
j=0

y0 + j

rx0 + y0 + j

xt−1∏
x=x0

rx

(r + 1)x+ r
· x

(r + 1)x+ (r − 1)

≤ (y0)d0

(rx0 + y0)d0

rxt−x0

(r + 1)2(xt−x0)

=
(y0)d0

(r + 1)d0

(rx0 + y0)d0

(
r

r + 1

)xt−x0
(

1

r + 1

)yt−y0

=
(y0)d0(r + 1)d0

(rx0 + y0)d0

P(x0,y0)
RW,r [π].

Thus we have

P(x0,y0)
CA,r [π] ≤ P(x0,y0)

CA,r [π∗] ≤ (y0)d0(r + 1)d0

(rx0 + y0)d0

P(x0,y0)
RW,r [π],

and, after summing over π ∈ A1,t(x0, y0),

P(x0,y0)
CA,r [τ1 = t] ≤ (y0)d0(r + 1)d0

(rx0 + y0)d0

P(x0,y0)
RW,r [τ1 = t].

Summing over t, we obtain

P(x0,y0)
CA,r [τ1 <∞] ≤ (y0)d0(r + 1)d0

(rx0 + y0)d0

P(x0,y0)
RW,r [τ1 <∞].

By Eq. (XI.3.9) and XI.3.d in [35], P(x0,y0)
RW,r [τ1 <∞] = r−d0 , from which the desired conclusion follows.

Corollary 1. The probability of having at least one more tie starting from a tie state (x, x) is bounded by

P(x,x)
CA,r[τ2 <∞] ≤ 2

r + 1
.

Proof. By considering the one-step transition from (x, x) into (x, x+ 1) or (x+ 1, x), we obtain

P(x,x)
CA,r[τ2 <∞] =

r

r + 1
P(x+1,x)
CA,r [τ1 <∞] +

1

r + 1
P(x,x+1)
CA,r [τ1 <∞] ≤ x

(r + 1)x+ r
+

1

r + 1
≤ 2

r + 1
,

where the first inequality follows from Lemma 4.

Now we prove Theorem 4.
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Proof of Theorem 4. Let Zn be the common value of Xt and Yt at t = τn, i.e., Zn = Xτn . Conditioned on τn < ∞
and Zn = z, the probability of τn+1 <∞ is just the probability of having a tie after leaving (z, z). Thus

P(x0,y0)
CA,r [τn+1 <∞ | τn <∞, Zn = z] = P(z,z)

CA,r[τ2 <∞] ≤ 2

r + 1
,

by Corollary 1. Removal of the conditioning yields

P(x0,y0)
CA,r [τn+1 <∞ | τn <∞] ≤ 2

r + 1
.

It follows that

P(x0,y0)
CA,r [N ≥ n] = P(x0,y0)

CA,r [τn <∞] = P(x0,y0)
CA,r [τ1 <∞]

n−1∏
i=1

P(x0,y0)
CA,r [τi+1 <∞ | τi <∞] ≤ P(x0,y0)

CA,r [τ1 <∞]

(
2

r + 1

)n−1

.

An application of Lemma 4 completes the proof.
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