
47

FuncPipe: A Pipelined Serverless Framework for Fast and

Cost-Efficient Training of Deep Learning Models

YUNZHUO LIU, Shanghai Jiao Tong University, China
BO JIANG, Shanghai Jiao Tong University, China
TIAN GUO,Worcester Polytechnic Institute, U.S.
ZIMENG HUANG, Shanghai Jiao Tong University, China
WENHAO MA, Shanghai Jiao Tong University, China
XINBING WANG, Shanghai Jiao Tong University, China
CHENGHU ZHOU, Chinese Academy of Sciences, China

Training deep learning (DL) models in the cloud has become a norm. With the emergence of serverless
computing and its benefits of true pay-as-you-go pricing and scalability, systems researchers have recently
started to provide support for serverless-based training. However, the ability to train DL models on serverless
platforms is hindered by the resource limitations of today’s serverless infrastructure and DL models’ explosive
requirement for memory and bandwidth. This paper describes FuncPipe, a novel pipelined training framework
specifically designed for serverless platforms that enable fast and low-cost training of DL models. FuncPipe is
designed with the key insight that model partitioning can be leveraged to bridge both memory and bandwidth
gaps between the capacity of serverless functions and the requirement of DL training. Conceptually simple,
we have to answer several design questions, including how to partition the model, configure each serverless
function, and exploit each function’s uplink/downlink bandwidth. In particular, we tailor a micro-batch
scheduling policy for the serverless environment, which serves as the basis for the subsequent optimization. Our
Mixed-Integer Quadratic Programming formulation automatically and simultaneously configures serverless
resources and partitions models to fit within the resource constraints. Lastly, we improve the bandwidth
efficiency of storage-based synchronization with a novel pipelined scatter-reduce algorithm. We implement
FuncPipe on two popular cloud serverless platforms and show that it achieves 7%-77% cost savings and
1.3X-2.2X speedup compared to state-of-the-art serverless-based frameworks.

CCS Concepts: • Computer systems organization→ Cloud computing; • Computing methodologies

→ Distributed computing methodologies;Machine learning.

Additional Key Words and Phrases: Serverless Function, Distributed Training, Pipeline Parallelism

ACM Reference Format:

Yunzhuo Liu, Bo Jiang, Tian Guo, Zimeng Huang, Wenhao Ma, Xinbing Wang, and Chenghu Zhou. 2022.
FuncPipe: A Pipelined Serverless Framework for Fast and Cost-Efficient Training of Deep Learning Models.
Proc. ACM Meas. Anal. Comput. Syst. 6, 3, Article 47 (December 2022), 30 pages. https://doi.org/10.1145/3570607

Bo Jiang is the corresponding author.
Authors’ addresses: Yunzhuo Liu, liu445126256@sjtu.edu.cn, Shanghai Jiao Tong University, China; Bo Jiang, bjiang@sjtu.
edu.cn, Shanghai Jiao Tong University, China; Tian Guo, tian@wpi.edu, Worcester Polytechnic Institute, U.S.; Zimeng
Huang, lukehuang@sjtu.edu.cn, Shanghai Jiao Tong University, China; Wenhao Ma, mwh1233@sjtu.edu.cn, Shanghai
Jiao Tong University, China; Xinbing Wang, xwang8@sjtu.edu.cn, Shanghai Jiao Tong University, China; Chenghu Zhou,
zhouch@lreis.ac.cn, Chinese Academy of Sciences, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2476-1249/2022/12-ART47 $15.00
https://doi.org/10.1145/3570607

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

https://doi.org/10.1145/3570607
https://doi.org/10.1145/3570607

47:2 Yunzhuo Liu et al.

Amoebanet-D
0

10
20
30
40

Ite
ra

tio
n

tim
e

(s
)

6.0

35.5

Comp Comm

(a) LambdaML performance.

30 40 50
Iteration time(s)

0.1

0.2

C
os

t (
U

SD
)

FuncPipe B1 B2

(b) Training with three configurations.

Fig. 1. (a) LambdaML encounters communication bottleneck when training an AmoebaNet-D model. (b)

Optimized model partition and serverless resource configurations greatly improve the overall performance.

1 INTRODUCTION

Serverless computing has recently been exploited for distributed training as an alternative to tradi-
tional VM-based training [11, 35, 68, 72]. Serverless-based training has many attractive properties.
First, it relieves machine learning (ML) practitioners from management tasks such as configuring
VMs’ environment and setting up distributed training clusters [11, 68]. Second, its true pay-as-you-
go pricing helps ML practitioners avoid paying for idle resources, e.g., during the trial-and-error
process of model training [68]. Such trial-and-error processes can last a long time: based on our
analysis of two popular DL training traces, Philly [32] and Helios [26], users spent more than half
of the end-to-end training time on this process. Third, it exhibits good resource elasticity and can
auto-scale to many workers, i.e., serverless functions [65, 68]. The increased parallelism is especially
beneficial for DL training, e.g., the ability to launch many workers for fast hyperparameter tuning
and the flexibility to terminate workers for early-stopped configurations [15, 38].
However, today’s cloud serverless platforms, e.g., AWS Lambda, impose stringent limits on

available memory and bandwidth that make it difficult to utilize them to train resource-intensive
DL models directly. Despite recent system efforts in enabling model training on cloud serverless
platforms [35, 72], ML practitioners still do not have access to fast and cost-efficient serverless-based
training. Our empirical analysis reveals the following two key challenges.

First, serverless functions have restricted communication capability compared to traditional cloud
VMs that does not meet the growing communication demand for training DL models. For instance,
the maximum bandwidth of an AWS Lambda function is only about 70 MB/s (0.5 Gb/s) [36, 70] while
a VM can have up to 100 Gb/s bandwidth. Moreover, serverless functions lack the ability for direct
inter-function communication, which makes their communications rely on intermediaries such as
Amazon S3 and ElastiCache [35, 68]. Compounding with other training options like data parallelism,
existing serverless-based training frameworks can suffer severe communication bottlenecks. Fig. 1(a)
shows the average iteration time for training a 900 MB AmoebaNet-D with 8 AWS Lambda functions
using LambdaML [35], a state-of-the-art serverless-based training framework. The computation
takes only 6 seconds for each iteration, while communication takes nearly 6X of that.

Second, serverless functions are allowed a much smaller memory footprint than traditional VMs,
hindering their ability to achieve a cost-efficient computation-to-communication ratio. For example,
AWS Lambda offers up to 10 GB memory size for a serverless function [6], while a VM has up to
TBs of memory. In contrast, the memory consumption during training can easily reach tens of GBs
and increases with the model size and the activation size which is proportional to the batch size. We
observe in Fig. 1(a) that increasing the computation-to-communication ratio of the AmoebaNet-D
model from 0.17 to 0.45 (with local batch size 32) would require about 30GB of memory, far above

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:3

the current memory cap of AWS Lambda functions. Existing serverless-based training frameworks
provide no effective solution to improve this low computation-to-communication ratio [11, 35, 68].
Our work aims at improving the speed and cost-efficiency of training DL models on cloud

serverless platforms. In designing FuncPipe, we address the above challenges through two major
approaches, utilizing model partition techniques and improving storage-based communication effi-
ciency. Our key insight is that model partitioning is not only good for overcoming the memory
constraint but also useful in relieving the communication burden in training. Through model
partition, we can increase the computation to communication ratio by supporting a larger training
batch size (e.g., 32 vs. 8 without partition for AmoebaNet-D model) on each serverless function.
Model partition also reduces the size of gradients, compared to data parallelism, on each serverless
function but at the cost of additional communication, i.e., exchanging outputs between different
partitions. Because these outputs are much smaller than the gradients, the total amount of data
transfer with model partition is still a small portion of data parallelism-based training. On the other
hand, to further speed up the function-storage communication, we design a new scatter-reduce
algorithm for synchronization that pipelines the upload and download tasks. Our pipelined scatter-
reduce design simultaneously utilizes both uplink and downlink bandwidth of serverless functions,
a desirable feature not supported by LambaML, recent work for serverless-based training [35].
At the core, FuncPipe explores pipeline parallelism [17, 27, 49, 60], a type of parallel structure

based on the model partition, for fast and low-cost serverless-based training. We answer two key
design questions: (i) how to partition the DLmodel for the pipeline; and (ii) how to allocate resources
for each serverless function. Though the first question has been widely studied in server-based
pipeline training [17, 49, 63], it poses a more complicated optimization question in a serverless
environment. Specifically, those prior work often assume static training resources, i.e., a fixed
number of workers with fixed resources, with the goal to only maximize training throughput. In
contrast, FuncPipe simultaneously determines the model partition, the number of replicas for each
partition (hence the number of workers) and the resource configuration for each worker, with a
large search space (i.e., a large number of workers and many possible resource configurations), to
optimize for both training throughput and cost.
Fig. 1(b) compares the performance of training an AmoebaNet-D with the model partition and

serverless resource allocation configurations found by FuncPipe and two existing algorithms
(denoted by B1 and B2). We can see that an efficient configuration can greatly improve the overall
performance. Training with configuration found by FuncPipe decreases 52%/70% iteration time/cost
compared to B1, and reduces cost by 80% compared to B2 with only 8% time overhead. However, it
is nontrivial to identify these effective configurations for different models because the decisions for
model partition and resource allocation are tightly-coupled. The optimal model partition depends on
the allocated resources, and the training performance achieved by the model partition determines
whether the resource allocation is cost-effective. Therefore, a joint decision of the two aspects is
required, making the optimization problem more challenging.

In short, we make the following main contributions.

• We design and implement FuncPipe; a novel pipelined serverless framework that enables
fast and cost-efficient training of DL models with layered structures. FuncPipe provides
user-friendly Python APIs that require minimal changes to user code. We make the source
code of FuncPipe publicly available 1.

• We propose a novel pipelined scatter-reduce algorithm that utilizes uplink and downlink
bandwidth during model synchronization. Our algorithm reduces the synchronization time by

1https://github.com/liu445126256/FunPipe

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

https://github.com/liu445126256/FunPipe

47:4 Yunzhuo Liu et al.

6%-26% and the overall iteration time by 2%-18% compared to the non-pipelined scatter-reduce
used in LambdaML [35].

• We formulate a co-optimization problem of model partition and resource allocation using
Mixed-Integer Quadratic Programming (MIQP). Our optimization approach finds configu-
rations that achieve an average of 80% faster training speed or 55% lower cost compared to
existing approaches [10, 63].

• We conduct an extensive evaluation of FuncPipe on two popular serverless platforms with
representative DL models. FuncPipe achieves 1.3X-2.2X training speedup and 7%-77% cost
reduction, compared to LambdaML, the state-of-the-art serverless training framework [35].

2 BACKGROUND

2.1 Serverless Computing

Serverless computing provides a new paradigm for deploying applications. To use serverless
computing on major platforms such as AWS Lambda [6], users upload their applications (including
code and dependencies) and execute them as stateless serverless functions. Though serverless users
can execute the functions and obtain the computation results without managing the underlying
computing infrastructures, users need to configure the functions with the proper amount of
resources. The task of resource configuration in today’s serverless platforms amounts to deciding
thememory allocation; given amemory allocation, other resources like CPU and network bandwidth
are allocated accordingly by the cloud providers. Further, users are charged proportionally to the
allocated memory and the actual runtime of their applications.
Serverless computing makes it easy to launch many instances of the same serverless function

(up to thousands) concurrently; each function instance is often ready to run within seconds or even
milliseconds [44, 66]. Serverless provides the true pay-as-you-go pricing models and has garnered
interests from both industry and academia [1, 16, 25, 54] to run event-driven workloads such
as in-memory caching [56, 57, 67] and workloads that benefit from a high degree of parallelism,
including distributed training [11, 35, 68, 72]. While prior work focuses on enabling distributed DL
training on the serverless platforms, this work improves the training speed and cost-efficiency with
approaches including pipelining and co-optimization of model partition and resource allocation.

2.2 Distributed Training

Distributed training refers to training a machine learning model with multiple workers that
communicate over different networks [13, 76]. When using distributed training, DL practitioners
need to make twomajor decisions, i.e., determining how to divide tasks among workers (parallelism)
and how to communicate progress (synchronization).

Parallelism. Data parallelism [42, 58] is a widely adopted type of parallelism where each worker
maintains a replica of the entire model and a portion of the dataset. In a training iteration, i.e.,
the processing of one batch of data, workers calculate gradients on their local data and then
communicate the gradients to update the model parameters. Another type is model parallelism [8,
12, 28] where the model is partitioned across workers. Rather than compute the gradients for
the entire model, each worker will only compute the data batch on the assigned partition and
then communicate the output to the worker that holds the next partition. Consequently, model
parallelism often leads to reduced memory consumption and communication data size on each
worker, as the total size of transferred data is usually much smaller than that of model gradients
in data parallelism. Model parallelism can be further combined with data parallelism by having
multiple replicas for each model partition [7, 20, 34]. In such a case, workers working on the same
partition need to communicate gradients. Similar to model parallelism, such hybrid parallelism

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:5

reduces communication as only gradients for partitions are exchanged when compared to data
parallelism. Our work falls under the general hybrid parallelism as we leverage pipeline parallelism,
detailed in §2.3, where we partition the model and allow data parallelism for each partition.

Synchronization.Distributed training can either use synchronous [17, 27, 29, 39] or asynchronous
protocols [43, 49, 75] to instruct when workers can proceed to work on the next data batch.
Synchronous protocol, in essence, ensures that workers work on the same version of model
parameters by aggregating gradients from all workers to update the model at the end of every
iteration. Therefore, it is not subject to potential accuracy convergence issues faced by asynchronous
training. In this work, we focus on synchronous training to avoid impact on converged accuracy.

Serverless-based distributed training. In serverless-based training, each worker is mapped
to a running serverless function. Existing serverless-based training frameworks [11, 35, 68, 72]
are based on data parallelism and differ mainly in their communication designs. There are two
major communication architectures, i.e., centralized and decentralized. Parameter Server (PS) is a
typical centralized architecture where workers upload their gradients to a central server, and from
whom fetch the latest updated model parameters [40, 41]. A recently proposed serverless-based
training framework Cirrus [11] adopts such an architecture. In decentralized architecture, workers
communicate with each other following the steps of specific communication algorithms, such as
all-reduce [52, 53, 55, 64] and scatter-reduce [64]. The state-of-the-art serverless-based training
framework LambdaML [35] adopts decentralized architecture and proposes a storage-based scatter-
reduce method to combat the performance degradation due to indirect communication via the
intermediary storage. Our work also uses decentralized architecture as it is shown to have better
scalability in general [35]. The major difference between our work and LambdaML is that our
work explores more complicated pipeline parallelism as the key to addressing the performance
bottleneck of serverless-based training. We focus on combining pipeline parallelism with serverless
design and optimizing the performance of serverless-based pipeline training.

2.3 Pipeline Training and Model Partition

Pipeline parallelism has been explored to improve the resource utilization of traditional server-based
model parallel distributed training [17, 27, 39, 49, 60]. At a high level, pipeline parallelism divides a
data batch into micro-batches and treats each model partition as a stage in the pipeline. During the
training, micro-batches will be scheduled to go through the model partitions in a pipelined fashion
to simultaneously utilize resources of different stages. As such, pipeline parallelism can address
model parallelism’s low resource utilization problem by reducing worker idle time.

One of the key designs to ensure the efficiency of pipeline training is model partition. Although
model partition is awell-studied topic inmodel parallelism [9, 24, 31, 47, 48], the proposed algorithms
usually achieve sub-optimal performance when applied to pipeline training due tomismatched goals.
The goal for model parallelism is to minimize the processing time of one batch, while in pipeline
training, the goal is to minimize the processing time of multiple micro-batches in an iteration. Prior
work on server-based pipeline training has proposed several model partition strategies to improve
pipeline training throughput [17, 49, 63]. However, they often assume static training resources,
i.e., a fixed number of workers with a fixed amount of resources. In serverless computing, we are
presented with the flexibility to scale up to many workers and to easily configure workers with
different amounts of resources. Such flexibility is a double-edged sword: it gives us more knobs
to improve the performance and reduce the monetary cost, while it also makes the problem of
configuring pipeline parallelism more difficult. In this work, we tackle the challenge of effectively
partitioning the model in pipeline training and configuring resources in a serverless environment
to achieve high training throughput and incur low cloud bills.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:6 Yunzhuo Liu et al.

Profiler functions

7. Monitor training
FuncPipe API
10

...

512MB

1024MB3

Partition/Resource
Optimizer

Function Manager

4

...

Initial worker

5

Training Pipeline

Communication
Primitives

...

...

...
...

Stage 0

Stage 1

Stage 2

6

7

C
lo

ud
 s

to
ra

ge

8

9

Client

Training iteration

Cloud
Monitor Daemon

Pipeline Scheduler

Task Executor

Function Manager
Model Profiler

Data
 Loading

Computation
with Pytorch

1. Code upload and setup1
FuncPipe API

 Launch
FuncPipe API
2

User

Fig. 2. FuncPipe system architecture and workflow. The two gray boxes enclose FuncPipe components.

The blue blocks are the startup components active in the initial worker, and the yellow blocks are the runtime

components in a training worker.

3 FUNCPIPE DESIGN

In this section, we present FuncPipe, a novel pipelined serverless framework for efficiently training
DL models. §3.1 provides an overview of the system architecture and workflow. §3.2 and §3.3 give
detailed designs of the training pipeline and pipelined scatter-reduce, respectively. §3.4 presents
our co-optimization approach for model partition and resource allocation.

3.1 Overview

System architecture. As shown in Fig. 2, FuncPipe consists of three parts, startup components,
runtime components, and client-side APIs. The startup and runtime components are displayed
in the two gray boxes in the figure, represented by blue and yellow boxes, respectively. Those
components run on the serverless platform and interact with cloud storage and client-side APIs. The
client-side APIs enable the users to set up, launch, and monitor the training with minimum effort.
Our choice of cloud storage as function-to-function communication channel follows the recent
work LambdaML [35]. Specifically, we choose object storage, e.g., AWS S3, for its low monetary cost.
Even though in-memory storage like Elasticache and DynamoDB provides lower access latency,
they are often more costly. Plus, latency has little impact on the performance of serverless-based
training, whose communication bottleneck is often caused by the limited function bandwidth.

Workflow. The workflow of FuncPipe is shown in Fig. 2. The user first prepares the training
code using FuncPipe APIs and then sets up and launches training from the client side (1○ and
2○). In the beginning, an initial worker with the startup components performs the preparation
work: 3○ Model Profiler profiles model layers, i.e. network topologies in the architecture of the deep
learning model such as convolutional layers and fully connected layers, on serverless functions with
different memory allocations; 4○ With the gathered layer-wise information, e.g., computation time,
parameter and activation size, Partition/Resource Optimizer finds the optimal model partition and
the best resource allocation based on our MIQP formulation (§3.4); 5○ Function Manager configures
resources and launches all training workers to start the pipeline.

When the pipeline training starts, micro-batches are scheduled to traverse the pipeline with the
help of the following components. 6○ Each worker runs a Pipeline Scheduler and the scheduler
decides the processing order of the micro-batches. 7○ Task Executor handles the processing tasks

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:7

0 ↑ 1 ↑ 2 ↑
0 ↑ 1 ↑ 2 ↑

0 ↑ 1 ↑ 2 ↑
0 ↑ 1 ↑ 2 ↑

0 ↑ 1 ↑ 2 ↑
0 ↑ 1 ↑ 2 ↑

0 ↑ 1 ↑ 2 ↑
0 ↑ 1 ↑ 2 ↑ 0 ↓ 1 ↓ 2 ↓

0 ↓ 1 ↓ 2 ↓
0 ↓ 1 ↓ 2 ↓

0 ↓ 1 ↓ 2 ↓
0 ↓ 1 ↓ 2 ↓

0 ↓ 1 ↓ 2 ↓
0 ↓ 1 ↓ 2 ↓

0 ↓ 1 ↓ 2 ↓

sync

sync

sync

x1 = 1

x3 = 1

x2 = 0

layer 1

layer 2

layer 3

layer 4

partition 1

partition 2

partition 3

timeline
0

t̂3fc

t0f

∆f

tf tf + t2b

t2b

tf + t2b + t2s

t2s

titer

computation

upload

download

Fig. 3. Training pipeline of FuncPipe. Each block represents a processing task. The labeled index indicates

the micro-batch that each block corresponds to, and the labeled up/down arrows represent the forward/back-

ward processes respectively. Blocks in the vertical direction can overlap each other in execution. The notations

on the timeline are used in the formulation in §3.4.

by interacting with underlying storage-based Communication Primitives and Pytorch. It properly
overlaps communication and computation. 8○ Each worker runs a Function Manager, and the
managers exchange information during training to ensure the health of the pipeline. As serverless
functions have a limited lifetime, e.g., 15minutes in AWS Lambda, FunctionManager checkpoints and
restarts the worker at a designated time interval to avoid function timeout. The same procedure is
adopted by prior work [11, 35]. Finally, 9○Monitor Daemon gathers and uploads training information
that users can access using client-side API (10○).

3.2 Training Pipeline

We illustrate the pipeline design of FuncPipe through the example in Fig. 3. FuncPipe uses the
pipeline to perform synchronous training that avoids potential convergence and accuracy issues.
FuncPipe partitions the model and places each partition on a serverless worker. In a training
iteration, the data batch is divided into micro-batches, and they are scheduled to traverse the
partitions in the following order: (i) all micro-batches go through each partition to perform forward
computation; (ii) after all forward computations have finished, the micro-batches go in a reversed
order for backward computation, i.e., backpropagation.
Each worker in our pipeline generally handles two types of tasks, computation and communi-

cation. Communication tasks are further divided into upload, download, and sync. The output of
the partitions is communicated through upload and download to/from the cloud storage; sync is
required at the end of a training iteration if multiple workers are configured for a partition (i.e.,
data parallelism). It can be performed once the backward computation of the partition is completed.

Our micro-batch scheduling policy is similar to the one used by GPipe [27], which was designed
for server and GPU-based training. Our scheduling policy has two differences: it treats communi-
cation tasks as a pipeline stage and overlaps it with the computation task, and it uses a pipelined
scatter-reduce algorithm (§3.3) to utilize both uplink and downlink bandwidth for the sync task.
Our communication-oriented optimization is driven by the key difference between serverless and
server-based pipelines, i.e., the proportion of communication time in the overall training time.
For example, in the server-based case, communication time is usually negligible as its workers
can have large bandwidth, e.g., 100Gb RDMA or 300GB NVlink. In the serverless case, however,
communication can take up a large proportion as serverless functions have limited bandwidth.
More concretely, both upload and download times can be comparable to computation time. The sync
time can even be significantly longer depending on the degree of data parallelism.

Other micro-batch scheduling policies [17, 29, 39] could also be used but will lead to more complex
pipeline structures and therefore introduce additional complexity in developing the co-optimization
approach (§3.4). In other words, we choose the current scheduling policy for its simplicity, and we
leave exploring other scheduling methods as future work.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:8 Yunzhuo Liu et al.

(a)

(b)

Gradient splits :

Worker ID : 0 i n-1 i-(k-1) i+1

...
1 ...0 1 n-1

...
1 ...0 1 n-1

Worker 0

...
1 ...0 1 n-1

Storage states (after each step)

1

i+1

0

...

...

1 ...1 2 k

1 ...i+1 i+2 i+k
1 ...0 1 n-1+k

Worker i

Worker n-1

11 2 n-1

1 ...0 i-1 n-1
1 ...0 1 n-2

3

i+1

2

...

...

... ...

Step 1 Step k Step n

...

...

...

...

i+1

i+k

i

i

Phase 1 Phase 2&

Step 1

Step k

Step n

...
1 ...0 1 n-1

...
1 ...0 1 n-1

Worker 0

...
1 ...0 1 n-1

Storage states (after each phase)

Worker i

Worker n-1

11 2 n-1

1 ...0 i-1 n-1
1 ...0 1 n-2

3

i+1

2

...

...

Phase 1

...

...

Gradient split ID
...

i-1
n-1

i+1
...0

i1
...

0
i-1

n-1
i+1

...

1i i...Phase 2

Phase 3

Phase 2

0

i

n-1

...

...

Phase 1
11 2 n-1

(a)

(b)

Gradient splits :

Worker ID : 0 i n-1 i-(k-1) i+1

...
1 ...0 1 n-1

...
1 ...0 1 n-1

...
1 ...0 1 n-1

1

i+1

0

...

...

1 ...1 2 k

1 ...i+1 i+2 i+k
1 ...0 1 n-1+k

11 2 n-1

1 ...0 i-1 n-1
1 ...0 1 n-2

3

i+1

2

...

...

... ...

Step 1 Step k Step n

...

...

...

...

i+1

i+k

i

i

...
1 ...0 1 n-1

...
1 ...0 1 n-1

...
1 ...0 1 n-1

11 2 n-1

1 ...0 i-1 n-1
1 ...0 1 n-2

3

i+1

2

...

...

Phase 1

...

...

...
i-1

n-1
i+1

...0

i1
...

0
i-1

n-1
i+1

...

1i i...

Phase 2

0

i

n-1

...

...
i

n-1
...

0

i

n-1
...
i

n-1

0

i

n-1
...

11 2 n-1

1 ...0 i-1 n-1
1 ...1 n-2

3

i+1

2

...

...
...

...

Phase 3

Merged gradient split

1 ...0 i-1 n-1
1 ...0 1 n-2

3

i+1

2

...

...
...

...

Fig. 4. Illustration of our pipelined scatter-reduce. (a) The scatter-reduce in LambdaML [35] has three

phases where download and upload are performed serially. (b) Our pipelined scatter-reduce performs down-

load and upload in duplex in phase 1 and phase 2.

3.3 Pipelined Scatter-Reduce

We identify one of the causes for the low communication efficiency in existing serverless-based
training frameworks [35] as that the current storage-based synchronization design fails to make
efficient use of the network bandwidth. To address the problem, we propose a pipelined storage-
based scatter-reduce method that simultaneously utilizes downlink and uplink bandwidth. Fig. 4(a)
displays the state-of-the-art storage-based scatter-reduce method proposed in LambdaML [35]. It
utilizes the computation resource of all workers for gradient aggregation by dividing the gradients
as n splits, where n is the number of workers, and each worker is in charge of merging one split.
The scatter-reduce process can be divided into three phases: in phase 1, each worker uploads the
n − 1 gradient splits that other workers are in charge of to the storage. In phase 2, the i-th worker
retrieves all the i-th splits uploaded by other workers and computes the merged gradients. In phase
3, each worker uploads its merged split and retrieves all other merged splits. The communication
time of phase 1 and phase 2 are both sдrad (n−1)

n ·w + tlat , where sдrad is the size of the gradients,w is
the bandwidth of a worker and tlat is the latency for accessing the storage. The communication
time of phase 3 is sдrad

w + 2tlat , and the total synchronization time is

3 ·
sдrad

w
−
2sдrad
n ·w

+ 4tlat . (1)

As the upload in phase 1 and the download in phase 2 are performed serially, the network resource
is not efficiently utilized.
Our scatter-reduce further pipelines phase 1 and phase 2 to improve communication efficiency.

The pipelined phase includes a total of n steps, as shown in Fig. 4(b):

• In step 1: worker i uploads gradient split i + 1 to storage.
• In step k , for 2 ≤ k ≤ n−1: worker i uploads gradient split i+k to storage while downloading
split i uploaded by worker i − (k − 1).

• In step n: worker i downloads gradient split i uploaded by worker i + 1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:9

We use arithmetic modulo n in the above. The communication time of each of the above steps is
sдrad
n ·w + tlat , and the time for n steps is sдrad

w + n · tlat . The total synchronization time is

2 ·
sдrad

w
+ (2 + n)tlat . (2)

Comparison of (1) and (2) shows that the pipelined scatter-reduce achieves a noticeable reduction
in the transfer time, i.e. from 3 sдradw −

2sдrad
n ·w to 2 sдradw . For example, for an AWS Lambda function

with 70MB/s bandwidth, the data transfer time of synchronizing a 280MB model among 8 workers
can be reduced by 27%, from 11s to 8s. Although our design can suffer higher latency with the
increase of workers, the latency is much smaller than the data transfer time, e.g., the measured tlat
is less than 40ms for AWS Lambda.

3.4 Co-optimization of Model Partition and Resource Allocation

To make the training pipeline fast and cost-efficient, we need to optimize the partition plan that
splits model layers into different pipeline stages and the resource allocation for each stage. This
plan includes the number of workers used for intra-stage data parallelism as well as the memory
size of each worker. A major challenge here is the strong coupling between model partitioning and
resource allocation, which defies most existing solutions that optimize only one aspect [17, 49, 63].
In this section, we formulate the co-optimization of model partition and resource allocation as a
mixed-integer quadratic program.

3.4.1 Formulation of Optimization Problem. Consider a model with L layers. LetD = {D1, . . . ,DK }

be the set of possible degrees of data parallelism, where D1 = 1, meaning no data parallelism. Let
M = {M1, . . . ,M J } be the set of different memory sizes for serverless workers. We use a binary
variable xi to indicate whether the model is partitioned after layer i . Let d ∈ D be the degree of
data parallelism. We enforce the same degree of data parallelism for all stages to reduce the problem
complexity. Letmi ∈ M be the memory size of workers holding layer i . We parameterize d andmi

as d =
∑K

k=1 ykDk andmi =
∑J

j=1 zi , jMj with binary variables yk and zi , j , where yk = 1 if d = Dk

and zi , j = 1 ifmi = Mj . The number of micro-batches per worker is given by µ = M
d =

∑K
k=1 yk

M
Dk

,
whereM is the total number of micro-batches. Other notations will be introduced as needed; see
Appendix A for a full table of notations.

Our goal is to choose (xi), (yk) and (zi , j) to minimize the cost citer and time titer per training
iteration. We formulate it as the nonlinear binary integer program in (3), which we explain below.

min α1 · citer + α2 · titer (3a)
s .t . µâi + ŝi (4 − 2y1) + s0 ≤ mi , 1 ≤ i ≤ L; (3b)

|mi −mi−1 | ≤ xi−1 ·Mmax, 2 ≤ i ≤ L; (3c)
K∑
k=1

yk = 1,
J∑
j=1

zi , j = 1, 1 ≤ i ≤ L; (3d)

xi ,yk , zi , j ∈ {0, 1}, ∀i, j,k . (3e)

The expressions for citer and titer will be given in §3.4.2. We combine the two objectives into
a single objective in (3a) using the weighted sum method. Each pair of weights (α1,α2) yields a
Pareto optimal solution. As the weights vary, the solutions will trace out the Pareto Frontier [51].

To explain the constraints, we first introduce the hat operator. Given any sequence u1,u2, . . . ,uL
where ui is a quantity associated with layer i , we define

û1 = u1, ûi = ui + ûi−1(1 − xi−1), 2 ≤ i ≤ L, (4)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:10 Yunzhuo Liu et al.

where xi are our decision variables for model partition. The hat operator accumulates quantities
forwardly in each partition. Let H denote the set of the highest layers of the partitions. For the
example in Fig. 3, H = {1, 3, 4}. For i ∈ H , ûi is the sum of the quantity uj over the partition
containing layer i . In Fig. 3, û3 = u2 + u3 is the sum over partition 2.
The constraints (3b) specify that the memory consumption of each partition does not exceed

the allocated memory of the corresponding worker. Let si denote the parameter size and ai the
activation size per micro-batch at layer i . For i ∈ H , µâi is the memory for activations of µ
micro-batches in the partition that layer i belongs to; ŝi (4 − 2y1) comprises three parts of memory
consumption, ŝi for parameters, ŝi for gradients, and 2(1 − y1)ŝi for serialized data during model
synchronization. Note synchronization is needed only ify1 = 0. The quantity s0 is the basic memory
consumption of a serverless worker, e.g., memory consumed by the framework. We only need the
constraints for i ∈ H , as the others are redundant. The constraints (3c) enforce consistency of
the memory allocation for adjacent layers if they belong to the same partition, as they actually
share the same workers, i.e.mi =mi−1 if xi−1 = 0. WithMmax = max1≤j≤ J M J being the maximum
memory available, the constraint for i becomes vacuous when the model is partitioned after i −1, i.e.
xi−1 = 1. The constraints (3d) and (3e) specify that we choose exactly one degree of data parallelism
and exactly one memory configuration for each layer.

To solve (3), we convert it into an MIQP using standard linearization techniques, which is then
solved by off-the-shelf solvers, e.g., Gurobi[22]. The details for linearization is in Appendix C.

3.4.2 Performance Model.

Iteration cost. Recall the memory allocated for layer i workers ismi =
∑J

j=1 zi , jMj . Since layers
of the same partition are assigned to the same workers, we only count the layers in H , and the
total memory of all workers is

cmem = d
∑
i ∈H

mi = d

(
L−1∑
i=1

ximi +mL

)
(5)

The cost of serverless functions is proportional to the product of their running time and memory
allocation, so the iteration cost citer is

citer = P · titer · cmem (6)

where P is the unit price specified by the service provider.

Iteration time. As shown in Fig. 3, the iteration time titer is given by

titer = tf + max
1≤i≤L

(t ib + t
i
s), (7)

where tf is the forward time. When layer i is the lowest layer of a partition (e.g., layer 2 in Fig. 3),
t ib is the backward computation completion time of that partition, and t is the corresponding model
synchronization time. For other layers (e.g., layer 3 in Fig. 3), their sum t ib + t

i
s will be dominated

by that of the lowest layer of the same partition (e.g., layer 2), and hence their inclusion in (7) does
not affect titer . Next we introduce the formulas for tf , t ib and t is in detail.

Forward and backward time. We only show the calculation of the forward time tf . The calculation
of the backward time t ib is similar and relegated to Appendix B. The forward time tf is

tf = t0f + (µ − 1)∆f ,

where t0f is the time for the first micro-batch to traverse the forward pipeline, ∆f the lag between
consecutive micro-batches at the end of the forward pipeline, and µ the number of micro-batches

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:11

per worker. The time t0f is given by

t0f =
L∑
i=1

t if c +
L−1∑
i=1

(t if u + t
i
f d),

where t if c is the forward computation time of layer i , t if u the upload time of the output of layer i to
the storage, and t if d the download time of the output of layer i from the storage to layer i + 1. The
individual terms are related to (zi , j) by

t if c = β

J∑
j=1

zi , jT
i , j
f c , 1 ≤ i ≤ L,

t if u = xi

(
J∑
j=1

zi , j
oi
Wj
+ tlat

)
, 1 ≤ i ≤ L − 1, (8)

t if d = xi

(
J∑
j=1

z(i+1), j
oi
Wj
+ tlat

)
, 1 ≤ i ≤ L − 1,

where T i , j
f c is the forward computation time of layer i by a worker with memory Mj , β ≥ 1

is the average slowdown factor due to resource contention when we overlap computation and
communication, oi is the output size of layer i ,Wj is the bandwidth of a worker with memoryMj ,
and tlat is the measured latency to storage. The values of T i , j

f c , β ,Wj and tlat are measured by the
Model Profiler during initial profiling. Note that communication times t if u and t if d are nonzero only
if xi = 1, i.e. there is a partition boundary after layer i .

The lag ∆f is the maximum time of all stages, i.e.

∆f = max
{
t̂1:Lf c , t

1:(L−1)
f u , t1:(L−1)f d

}
,

where t i1:i2 denotes the set of variables t i for i1 ≤ i ≤ i2, and t̂ if c is related to t if c by (4). For i ∈ H ,
t̂ if c is the computation time for the stage containing layer i . For the example in Fig. 3, t̂3f c is the time
for the second computation stage, consisting of layer 2 and layer 3. Note we only need to include
t̂ if c for i ∈ H , but the inclusion of the other i gets rid of H .

Synchronization time. When i is the lowest layer of a partition, e.g., layer 2 for partition 2 in Fig.
3, the synchronization time of that partition is

t is = (1 − y1)

(
J∑
j=1

zi j
s̃i
Wj

· γ + tlat · δ

)
, (9)

where γ and δ are parameters that depend on the synchronization algorithm. For the pipelined
scatter-reduce, we have γ = 2 and δ = 2 + d by (2). The tilde operator is similar to the hat operator
in (4), except that it accumulates the quantities backwardly so that s̃i of the lowest layer equals the
size of the partition. The model update time is negligible and hence not included. Note t is is positive
only if the degree of data parallelism is more than 1, i.e. y1 , 1. When i is not the lowest layer of a
partition, we also define t is by (9). The inclusion of those quantities do not affect the value in (7),
since t is ≥ t i

′

s if i ′ ≥ i and layers i and i ′ belong to the same partition.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:12 Yunzhuo Liu et al.

4 IMPLEMENTATION

FuncPipe is implemented on top of Pytorch with 4012 lines of Python code. It provides easy-to-use
APIs and requires minimal changes to legacy training code on the user side. A code example for
using FuncPipe is given in Appendix D. FuncPipe currently supports two serverless platforms,
AWS Lambda and Alibaba Cloud Function Compute, and can be easily extended to other platforms
as the platform API design in FuncPipe is decoupled from the underlying SDK implementations,
e.g., boto3 for AWS Lambda and fc2 for Alibaba Cloud Function Compute.

Pipeline task overlap. The different tasks, upload, download, and computation have internal
dependencies and different resource requirements, i.e., downlink bandwidth, uplink bandwidth,
and CPU. These tasks are organized as Directed Acyclic Graphs (DAGs) and handled by different
threads in the Task Executor. Tasks of different types are processed in parallel; each is assigned a
unique ID and contains a set of IDs representing its dependencies. A task is immediately processed
once its dependencies are satisfied.

Communication collectives. FuncPipe performs storage-based communications, including send-
and-receive between different partitions and scatter-reduce among partition replicas. The data
communicated are serialized with the python library pickle and uploaded to the storage bucket as
files. Metadata information is included in the file name to distinguish different pairs and types of
communication. Workers periodically query the cloud storage bucket to check for download.

MIQP solution. For models with over a hundred layers, solving the MIQP problem can take
hours or even days, limiting its practical usage. As many model layers can have small memory
consumption and short computation time, they can be merged with other layers to reduce the
value of L, i.e. the total number of layers in optimization. By merging the layers, our method
ensures a minute-level solution time. Currently, we provide three options for the merging criterion,
computation time, parameter size, or activation size. For all the tested models, merging by balancing
the computation time achieves better performance and is adopted in our experiments.
FuncPipe provides two implementations for Partition/Resource Optimizer. The first one solves

the MIQP optimization using serverless functions. However, off-the-shelf solvers can have licence
limits that require additional support in order to be used in the serverless environment. For example,
Gurobi requires user to have a Gurobi token server that grants temporary license [23]. For users that
want to avoid such effort, we provide a second implementation that solves the MIQP optimization at
the client side. The information obtained byModel Profiler is retrieved by the client for optimization
and the results are uploaded back to the initial worker.

Limitation discussion. Currently FuncPipe does not support training models that contains a layer
that exceeds the maximum memory for a serverless function. A solution to this problem, and also a
possible direction for further optimization is to use tensor parallelism [33, 34, 50, 59, 60]. Tensor
parallelism partitions a tensor along specific dimensions, for example, Megatron [60] partitions
transformer layer by splitting its weight matrix and FlexFlow [34] partitions CNN layer in terms
of both channels and input length. The major benefit we expect from using tensor parallelism is
more fined-grained partition decision, which can potentially lead to more cost-efficient resource
choices and the avoid of memory overflow caused by super large-sized layers. However, using
tensor parallelism increases the complexity of the proposed co-optimization approach, as the extra
decision dimensions greatly expand the search space. In such case, techniques like approximation
may be required to make the solution of the MIQP practical. We leave extending FuncPipe to tensor
parallelism as future work.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:13

Model name Parameter size (MB) Activation size per sample (MB)

ResNet101 170 198

AmoebaNet-D18 476 432

AmoebaNet-D36 900 697

BERT-Large 1153 263

Table 1. Models used for evaluation. AmoebaNet-D18 and AmoebaNet-D36 are two AmoebaNet-D models

with 18 and 36 normal cell layers, respectively. Both have a filter size of 256.

5 EVALUATION

This section first presents the overall performance of FuncPipe by comparing it with state-of-the-art
serverless-based training designs (§5.2) and discusses its system scalability (§5.4). We then validate
the effectiveness of FuncPipe’s designs with component-wise study, including the evaluation of
our pipelined scatter-reduce algorithm (§5.5) and co-optimization of model partition and resource
allocation (§5.6). Next, we discuss the effect of resource availability on different serverless platforms
(§5.7). Finally, we evaluate the performance of FuncPipe with increased network bandwidth (§5.8).

5.1 Methodology

Cloud serverless testbed. Our evaluation uses two of the mainstream serverless platforms, AWS
Lambda [6] and Alibaba Cloud Function Compute [2], that provide different resource options.
AWS Lambda provides a maximum of 10 GBs of memory allocation for each serverless function.
Its corresponding cloud storage service, S3, grants unlimited bandwidth to concurrent access.
Alibaba Cloud Function Compute has different resource availability compared with AWS Lambda.
It allows a maximum memory allocation of 32 GBs, and its cloud storage OSS puts a limit on the
concurrent bandwidth, e.g., a total of 10 Gb/s for a normal customer. Most of our evaluations are on
AWS Lambda, and we leverage Alibaba Cloud Function Compute to study the impact of resource
availability on different serverless platforms.
Models and datasets. The DLmodels used for our evaluation are in Table 1. ResNet101,AmoebaNet-
D18, and AmoebaNet-D36 are popular Convolution Neural Network (CNN) models for computer
vision tasks. BERT-Large is a transformer model for natural language processing. We use the popular
image classification dataset CIFAR-10 to train the CNN models. To train BERT-Large, we run masked
language modeling on the datasetWikitext-2. We use synchronous Stochastic Gradient Descent
(SGD) optimizer with the same global batch size (further explained in §5.2) for all tested designs in
the evaluation, and we report the average per-iteration training time and cost.
Baselines.We compare FuncPipewith existing serverless-based training designs with two different
structures: the pure serverless-based structure and the hybrid PS structure (as introduced in §2.2).
LamdaML [35] is the state-of-the-art pure serverless-based training framework, and it also includes
an implementation of the hybrid design exemplified by Cirrus [11], an end-to-end serverless
framework for ML training. These two baselines are referred to as LambdaML and HybridPS. We
further integrate gradient accumulation, a commonly adopted technique for reducing the memory
consumption in training [14, 61, 62]. The resulting baselines are referred to as LambdaML-GA and
HybridPS-GA, both serving as baselines that have reduced worker memory allocation and better-
balanced computation to communication time ratio. The baselines and their resource allocation
strategies are summarized as follows.

• LambdaML follows a pure serverless-based training design. It uses the maximum memory
allocation and maximum local batch size within the memory limit for each worker. This
strategy reduces the number of workers used for training with a given global batch size.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:14 Yunzhuo Liu et al.

• HybridPS follows a hybrid PS training design and requires the use of parameter servers.
We select the instance with the lowest cost that can perform our tasks without incurring
CPU or memory bottleneck at the parameter server, i.e., a c5.9xlarge instance on AWS and a
r7.2xlarge instance on Alibaba. The resource allocation of workers follows the same strategy
in LambdaML [35] for a fair comparison. Note that we replace the data serialization API in
the implementation of [35] with the python pickle module to utilize the worker network
bandwidth better. We observe that our modification improves training speed and cost. For
example, before this modification, HybridPS could only achieve a throughput of about 20
MB/s; the current implementation can fully utilize the bandwidth at about 70 MB/s.

• LambdaML-GA applies gradient accumulation to the LambdaML baseline. It uses the same
number of workers as LambdaML but allocates the minimum memory required after perform-
ing gradient accumulation for each worker. We use a batch size of 1 for each accumulation
step to minimize memory consumption.

• HybridPS-GA uses a similar resource allocation strategy and the same batch size for each
accumulation step as LambdaML-GA.

To validate the effectiveness of our co-optimization on model partition and resource allocation,
we compare it with two existing algorithms.

• TPDMP is the latest graph-based model partition algorithm for server-based pipeline train-
ing [63]. It maximizes the pipeline training throughput with a fixed amount of resources. To
apply TPDMP to the serverless scenario, we perform a grid search on the resource allocation
and optimize the model partition with TPDMP for each allocation. We select the configuration
that minimizes the objective function in (3).

• Bayes is a black-box optimization method that has been proved effective in deciding cloud
configurations [5]. It generates a configuration, measures its performance, and iteratively
refines the decision. Bayes can be used to optimize the model partition and resource allocation
jointly. However, with the large search space of our problem, Bayes can require many rounds
of optimization just to find a feasible configuration. For example, it fails to find configurations
that do not cause out-of-memory (OOM) errors for over half of our training tasks within 20
rounds of optimization. To reduce the prohibitive time cost of real-world measurement, we
evaluate each configuration with our performance model, which has a high accuracy of 88%
as shown in Appendix E. Using performance models in place of the actual measurement is
recently proposed and demonstrated to produce good optimization performance [69, 77]. We
run a total of 100 rounds of optimization to minimize the objective function in (3).

FuncPipe settings. For the evaluation, we use 8 discrete memory allocation choices, i.e., [512MB,
1024MB, 2048MB, 3072MB, 4096MB, 6144MB, 8192MB, 10240MB]. We empirically set the micro-batch
size to 4 as it achieves a generally better performance on the evaluation models. We use four
pairs of weights of (α1,α2), i.e., [(1, 0), (1, 216), (1, 219), (1, 222)], to locate the corresponding points
on the Pareto Frontier. These weights are chosen empirically because they can generate results
that represent very distinct speed and cost trade-offs. The same weights are used for the baseline
algorithms TPDMP and Bayes.

Recommendation. FuncPipe also recommends a configuration out of the optimized results,
labeled as Recommendation in subsequent figures. Denote by tmc and cmc the training time and cost
of the minimum cost configuration obtained using weights (1, 0). Assume the training time and
cost of a given configuration as tp and cp . We use δ = (

tmc
tp

− 1)/(cp
cmc

− 1) to represent how efficient
a configuration is by comparing its speedup with its cost increase over the cheapest configuration.
In our evaluation FuncPipe recommends the fastest configuration that satisfies δ ≥ 0.8.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:15

5.2 Overall Performance

The training performance of FuncPipe and its comparison with existing serverless-based training
designs are shown in Fig. 5. Generally, FuncPipe achieves better performance in both training
speed and cost over existing designs in most of the test cases (comparable or faster performance in
other cases). And the performance improvement increases with the model size and global batch
size. The results are obtained with three commonly adopted global batch size of 16, 64, and 256.
The performance of each baseline method is represented as a single point in the figure, and for
FuncPipe, it is a curve consisting of the points corresponding to the configurations obtained using
the four pairs of weights. Note that there can be fewer than four points on a curve as different
weights may lead to the same configuration. The configuration recommended by FuncPipe is also
highlighted in this figure. We make the following key observations.
First, FuncPipe achieves 1.3X-2.2X training speedup and 7%-77% cost reduction compared

with the best-performing baseline LambdaML when training AmoebaNet-D18, AmoebaNet-D36
and BERT-Large with global batch sizes of 64 and 256. The 2.2X speedup and 77% cost reduction
is achieved when training BERT-Large with global batch size 256. The improved training speed
and cost-efficiency come from the reduced communication time and increased computation to
communication ratio, as further illustrated in §5.3.
Second, when training on a single worker is feasible, i.e., training with batch size 16, existing

designs can achieve cost-efficiency similar to that of FuncPipe since no communication overhead ex-
ists. However, our follow-up experiments show that their training speed cannot be further improved
given more resources. This is because more resources change the training from a single worker
to multiple workers, which incurs prohibitive communication costs for the existing designs. In
contrast, FuncPipe can achieve up to 1.6X speedup (training BERT-Large) over the best-performing
serverless-based training baseline (LambdaML) when given more resources (2.4X cost).
Third, the hybrid design, HybridPS, achieves comparable or even better performance than

LambdaML when training ResNet101. However, with the increase in model size and global batch
size (leading to the use of more workers), the server node in this centralized structure can be
heavily burdened. As a result, we can observe noticeable performance gap between HybridPS and
LambdaML when training AmoebaNet-D36 and BERT-Large in Fig. 5(c). In addition, we see that the
use of gradient accumulation (LambdaML-GA and HybridPS-GA) can reduce the training cost at
the price of a longer training time. However, the reduction is neither significant nor guaranteed to
exist. We attribute it to the use of gradient accumulation, which reduces the memory allocation but
may incur higher costs due to the increased runtime.

5.3 Training Time Breakdown

Fig. 6(a) displays the time breakdown for training BERT-Large (Fig. 5(a)). The small batch size allows
the baseline methods to train the model on a single worker (no communication time) and thus
fully utilize the computation resource and achieve cost-efficient training. However, their training
speed cannot be improved any further. As their workers already have the maximum memory
allocation, increasing the resource usage means using more workers. Such scaling up incurs high
communication costs and stalls the training—synchronizing BERT-Large (1153MB) with 70MB/s
bandwidth can take tens of seconds, which is longer than the total computation time. This shows
that FuncPipe can be faster than existing designs even when training with a small batch size.

Fig. 6(b) shows the time breakdown of training ResNet101 with batch size 64 (i.e., Fig. 5(b)). The
improvement in training speed achieved by FuncPipe is relatively smaller than in Fig. 6(c) and
Fig. 6(d). This is because when the model size is small, the synchronization time of LambdaML and
HybridPS can be close to the sum of pipeline flush time and intra-stage model synchronization

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:16 Yunzhuo Liu et al.

10 20 30 40 50

8

9

C
os

t (
U

SD
) 1e−4 ResNet101

10 20 30 40 50 60 70

2.5
3.0
3.5

1e−3 AmoebaNet-D18

20 30 40 50

2.5

5.0

1e−2 AmoebaNet-D36

10 20 30

2.5

5.0
1e−3 BERT-Large

FuncPipe
Recommendation
LambdaML
HybridPS
LambdaML-GA
HybridPS-GA

Iteration time(s)

(a) Batch size = 16

10 20 30 40

1

2

C
os

t (
U

SD
) 1e−2 ResNet101

20 30 40 50

2.5

5.0

7.5
1e−2 AmoebaNet-D18

20 30 40 50 60

0.5

1.0

1e−1 AmoebaNet-D36

20 30 40 50 60 70

2.5

5.0

7.5
1e−2 BERT-Large

FuncPipe
Recommendation
LambdaML
HybridPS
LambdaML-GA
HybridPS-GA

Iteration time(s)

(b) Batch size = 64

10 20 30 40 50

2.5

5.0

7.5

C
os

t (
U

SD
) 1e−2 ResNet101

20 30 40 50 60

1

2

1e−1 AmoebaNet-D18

30 40 50 60 70 80

2.5

5.0

7.51e−1 AmoebaNet-D36

20 30 40 50 60 70 80 90

2

4
1e−1 BERT-Large

FuncPipe
Recommendation
LambdaML
HybridPS
LambdaML-GA
HybridPS-GA

Iteration time(s)

(c) Batch size = 256

Fig. 5. Overall performance. FuncPipe outperforms existing designs in both training speed and cost in

most of the test cases and achieves comparable or faster performance in other cases.

① ② ③ ④ ⑤
0

10

20

30

Ti
m

e
(s

)

Computation
Model sync
Pipeline flush

(a) BERT-Large (BS=16)
① ② ③ ④ ⑤

0
10
20
30
40

Ti
m

e
(s

)

(b) ResNet101 (BS=64)
① ② ③ ④ ⑤

0

20

40

60

Ti
m

e
(s

)

(c) BERT-Large (BS=64)
① ② ③ ④ ⑤

0

20

40

60

Ti
m

e
(s

)

(d) AmoebaNet-D36 (BS=64)

Fig. 6. Training time breakdown. Labels: ➀FuncPipe, ➁LambdaML, ➂HybridPS, ➃LambdaML-GA,

➄HybridPS-GA. The multiple bars of FuncPipe correspond to different configurations on the Pareto Frontier.

Legend shared across figures.

time in FuncPipe. This suggests that we expect small improvement or comparable performance
from FuncPipe with small models.
Figs. 6(c) and 6(d) show the time breakdown for training BERT-Large and AmoebaNet-D36,

respectively (i.e., Fig. 5(b)). The breakdown shows that the performance improvement of FuncPipe
in Fig. 5(b) can be largely attributed to the reduced communication time, i.e., its pipeline flush
time and intra-stage model synchronization time are much lower than the synchronization time of
LambdaML. We can also see that FuncPipe has a larger computation to communication time ratio
compared with the baseline methods, making FuncPipe more cost-efficient.

5.4 System Scalability

Next, we evaluate the scalability of FuncPipe by comparing its performance to the best-performing
design, i.e., LambdaML, based on observations from §5.2. For this experiment, we use the total
amount of allocated memory to denote the system resource. Further, we use the global batch size to

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:17

200 400 600
(a)

2
4
6
8

10

1

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

32
64

128

256
512

32
64

128
256

512

AmoebaNet-D18

FuncPipe
LambdaML

0 500 1000
(b)

5

10

15

1 32
64
128

256
512

3264
128 256 512

AmoebaNet-D36

Total memory (GB)

Fig. 7. System scalability test. FuncPipe achieves

higher throughput and is more robust to bandwidth

contention. Each data point is annotated with the

global batch size.

2 4 8 16 32
(b)

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 sy
nc

 ti
m

e Non-pipelined Pipelined

24 8 16 32
(a)

1

3

5

7

9

N
or

m
al

iz
ed

 th
ro

ug
hp

ut Non-pipelined Pipelined

Level of data parallelism

Fig. 8. Performance of our pipelined scatter-

reduce method. (a) Our design achieves 2%-22%

higher training throughput and (b) 6%-26% lower

synchronization time.

specify the amount of work. As such, we are evaluating both FuncPipe and LambdaML’s ability to
handle more work (i.e., increased global batch size) given more resources (i.e., total memory). For
LambdaML, we increase the global batch size and resource usage by adding more workers. Each
worker is allocated the maximum memory and uses the maximum local batch size according to
the resource strategy of LambdaML. For FuncPipe, we increase the global batch size and use the
recommended configuration.
Fig. 7 reports the average training throughput, i.e., number of processed samples per second,

on model AmoebaNet-D18 and AmoebaNet-D36. The training throughput is normalized to that of
LambdaML with global batch size 32. We first observe that FuncPipe achieves higher training
throughput than LambdaML when given the same resource allocation. For example, when training
the AmoebaNet-D36 model, the throughput is 180% higher when both use 800 GB total memory.
Second, both FuncPipe and LambdaML exhibit a sublinear scaling up performance with FuncPipe
scaling better than LambdaML. We find that reduced per-worker network bandwidth causes the
sublinear scaling up performance. The per-worker bandwidth reduction was also observed in prior
work [65], and we suspect that it is because the serverless platforms schedule different serverless
functions to the same machine, and thus they share a bandwidth capacity. Additionally, we see
that FuncPipe is less affected by the bandwidth reduction than LambdaML, possibly due to the
effectiveness of FuncPipe’s designs in reducing the overall communication burden.

5.5 Scatter-Reduce Communication Efficiency

We compare our pipelined scatter-reduce designwith LambdaML’s non-pipelined scatter-reduce [35].
To perform the comparison, we use the recommended configuration for training AmoebaNet-D18
with a global batch size of 32. The configuration divides the model into three stages, each with a
data parallelism of 2. We gradually increase the level of data parallelism (the global batch size is
increased proportionally) from 2 to 32 and compare the training throughput. As shown in Fig. 8(a),
the two scatter-reduce methods achieve similar performance with small data parallel levels at the
beginning (pipelined scatter-reduce has 2% higher throughput). As the data parallel level increases,
we observe a growing performance gap, and pipelined scatter-reduce achieves a 22% higher training
throughput than non-pipelined scatter-reduce. This increased performance gap can be understood
in two ways. First, the increased data parallelism level increases the difference in transfer time
of the two algorithms, as seen by comparing (1) and (2). Theoretically, a reduction of up to 33%
in transfer time can be achieved. Fig. 8(b) shows that the gap between the synchronization time
gradually increases from 6% and reaches 26%. Second, the increased data parallelism level uses
more workers. Based on our observation in AWS Lambda, more workers can reduce the available

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:18 Yunzhuo Liu et al.

10.0 12.5 15.0

1

2

3

C
os

t (
U

SD
)

1e−2 ResNet101

20 30

0.5

1.0
1e−1 AmoebaNet-D18

20 30 40 50 60

1

2

1e−1 AmoebaNet-D36

20.0 22.5 25.0

0.5

1.0
1e−1 BERT-Large

Iteration time (s)

FuncPipe
TPDMP
Bayes

Fig. 9. Co-optimization performance evaluation. The global batch size is 64. The performances with

other batch sizes are similar.

25 50 75

1
2
3

C
os

t (
U

SD
) 1e−2

ResNet101 (b64)

100 200

1

2
1e−1

AmoebaNet-D36 (b64)

50 100

2.5

5.0

7.5
1e−2

ResNet101 (b256)

100 200

4

6

1e−1
AmoebaNet-D36 (b256)

FuncPipe
Recommendation
LambdaML
HybridPS
LambdaML-GA
HybridPS-GAIteration time (s)

Fig. 10. Performance on Alibaba Cloud.With the same limit on total communication bandwidth, FuncPipe

achieves up to 1.8X speedup and 49% cost reduction compared with the best-performing baseline HybridPS.

bandwidth per worker. As such, the communication time can take up a larger proportion of the
overall training time, thus emphasizing the benefit of communication optimization. In summary,
our pipelined scatter-reduce can effectively improve communication efficiency.

5.6 Co-optimization Performance

We evaluate the performance of our co-optimization design by comparing it with existing model
partition/resource allocation algorithms in terms of training performance and solution time.

Training performance. Fig. 9 compares the model partition and resource allocation policies found
by our co-optimization method and those by two existing algorithms [10, 63]. Note that some
methods in the figure contain fewer points as they generate the same configuration for different
pairs of weights. The results show that our design achieves the best overall performance. Compared
to TPDMP, our design has a comparable average training cost (within 3% difference) but an average
speedup of 1.8X when optimized for the same objective function. The performance gap between
our design and TPDMP suggests the benefit of co-optimizing the model partition and resource
allocation. Compared to Bayes, our co-optimization method achieves 7% higher average training
speed and 55% lower average cost. We observe that the policies generated by Bayes often have
higher monetary costs; we attribute Bayes’s cost-inefficiency to its tendency to over-provision the
resource to avoid infeasible solutions, i.e., policies that lead to OOM error.

Solution time. We evaluate the algorithms on the client side using an Intel(R) Core(TM) i5-10210U
CPU. The average solution time for each configuration in Fig. 9 is 274s, 603s, 45s for FuncPipe,
TPDMP and Bayes respectively. The results show that FuncPipe achieves the best performance
with a reasonable solution cost, i.e., minute level. When the optimization problem is solved on the
client side, it incurs no cloud bills; when it is solved in the cloud, such minute-level solution cost is
negligible to the training cost.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:19

5.7 Impact of Different Resource Availability

We evaluate the performance of FuncPipe on the Alibaba Cloud to understand the potential impact
of different resource availability. The major difference between AWS and Alibaba cloud is that
the bandwidth of Alibaba Cloud storage OSS [4] has a total limit of 10Gb/s. The same bandwidth
limit exists for the VM server used by the HybridPS baseline. We study how the same bandwidth
bottleneck affects the performance of these methods. Due to the space limit, we only show the
results of training ResNet101 and AmoebaNet-D36 with global batch size 64 and 256 in Fig. 10.
Overall, we find that FuncPipe demonstrates similar benefits in Alibaba Cloud to AWS: comparable
performance or small improvement on small-sized models and better performance in both training
speed and cost as the model size and global batch size increase, with up to 1.8X speedup and 49%

cost reduction compared with the best-performing baseline HybridPS. Note that the best baseline
differs from AWS Lambda, as Alibaba cloud functions achieve higher throughput communicating
with VM than with the object storage as we observe. This result shows that FuncPipe can alleviate
the effect of the limited bandwidth.

Other platforms [45] may have similar limits on the storage-side bandwidth, e.g., Azure Storage
has a total limit of 25Gb/s [46]. Such storage-side bandwidth bottleneck may limit the ability
of FuncPipe to scale out, and FuncPipe may eventually be outperformed by HybridPS as the
bandwidth of the latter can be increased by scaling up the parameter server. One solution for this
is to use a VM-based storage design, like Pocket [37], and the total bandwidth can be increased
the same way as HybridPS. In this case, we expect FuncPipe to achieve better performance than
HybridPS, as the evaluation has demonstrated the performance benefits of FuncPipe under the
same bandwidth. Extending FuncPipe to VM-based storage and further comparing to the HybridPS
design is left as future work.

5.8 Impact of Increased Function Bandwidth

As our breakdown analysis in §5.3 shows that the improvement achieved by FuncPipemostly comes
from the reduced communication time, we are interested in the performance of FuncPipe when
the network bandwidth increases. We simulate the performance of FuncPipe with the performance
model proposed in §3.4 by changing the value of bandwidthW . We compare the performance with
that of the best-performing baseline LambdaML, which is simulated using its analytical model [35].
Fig. 11 reports the training speed and cost as we gradually increase the bandwidth to 20x of the
current function bandwidth in AWS Lambda, i.e., from about 0.5 Gb/s to 10 Gb/s, which is a common
bandwidth for a VM.

Generally, as the bandwidth increases, the performances of FuncPipe and LambdaML improve.
The performance improvement of LambdaML is larger than that of FuncPipe as LambdaML has a
higher communication cost. The relatively mild performance improvement of FuncPipe with the
increase of bandwidth suggests that FuncPipe is more robust to different network settings. With
20X the bandwidth, compared with LambdaML, FuncPipe achieves comparable performances on
ResNet101 and BERT-Large, i.e., 12.2% higher speed but 7.0% higher cost when training ResNet101,
12.9% higher speed but 6.3% higher cost when training BERT-Large. The trade-offs in speed and
cost are caused by the small differences in the tendencies of the policies of FuncPipe and Lamb-
daML. When training AmoebaNet-D18/AmoebaNet-D36, FuncPipe improves the training speed by
6.8%/14.0% while reducing the cost by 6.4%/38.6%. Such improvements are mostly attributed to
FuncPipe’s optimized function memory allocation. This shows that even with the communication
bottleneck removed, the memory allocation policy of FuncPipe can still benefit serverless-based
training, although by a smaller margin.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:20 Yunzhuo Liu et al.

5 10 15

0

2

4

C
os

t (
U

SD
)

1e−2

1X
20X 1X

2X4X8X20X

ResNet101

20 30
0

1

1e−1

1X2X20X

1X
2X

4X8X20X

AmoebaNet-D18

20 40
0.0

2.5

5.0

1e−1

1X
2X4X20X

1X
2X

4X
8X

20X

AmoebaNet-D36

20 40 60
0

2

4 1e−1

1X20X

1X
2X

4X
8X

20X

BERT-Large

Iteration time (s)

FuncPipe
LambdaML

GPU-VM
GPU-function

Fig. 11. Iteration time and cost with the increase of network bandwidth. We gradually increase the

bandwidth to 20X of the current function bandwidth. Note that each curve contains 5 points (some points are

overlapped), and they correspond to the results with 1X, 2X, 4X, 8X, and 20X bandwidth, respectively. We also

include a point of VM GPU-based training to demonstrate the performance gap with serverless CPU-based

training. Such gap can be greatly narrowed once GPU is enabled for serverless function.

Despite the improvements that FuncPipe achieves over existing serverless-based frameworks,
a performance gap still exists between training with FuncPipe and GPU-enabled VM instances
due to the lack of GPU support in serverless function. We conduct preliminary comparison by
training the models on a popular p3.2xlarge AWS instance (equipped with a V100 GPU). As none
of the models can be trained on the single GPU without causing memory overflow, we adopt
gradient accumulation to reduce the memory consumption. The micro-batch size used for gradient
accumulation is 4, the same as the micro-batch size in FuncPipe. The results reported in Fig. 11
show that GPU-based training can greatly outperform serverless CPU-based training in terms of
cost, i.e. up to 90% cost reduction. The cause is that the per data sample processing cost of a vCPU
can be tens of times higher than that of a GPU. Fortunately, some of the serverless platforms, e.g.
Alibaba Cloud, are recently equipping their serverless functions with GPU [3]. Similarly, we report
the performance of training with a single serverless GPU function in Fig. 11. Note that as GPU
function has yet not been made fully available to users, we evaluate the training speed on a GPU of
the same type as the GPU function and obtain the cost with the announced GPU function price. The
results show that GPU function greatly narrows gap in the per data sample processing cost with
VM GPU instance. It is our next step of work to extend FuncPipe to such GPU function, evaluate
its distributed training performance against VM GPUs and explore further optimization.

6 RELATEDWORK

Pipeline in serverless-based training. Dorylus [65] is a pipelined framework with a hybrid
structure, i.e., CPU servers with serverless functions, for training Graph Neural Network (GNN)
models. It exploits the inherent features of GNN to separate the computation tasks and uses
serverless functions only for lightweight linear algebra operations. In contrast, our work exploits a
serverless-based pipeline for training DNN models, which cannot be easily separated and trained
the same way using Dorylus because they require much heavier computation and communication.
Hydrozoa [21] proposes a pipelined framework that enables distributed training on GPU-enabled
container instances. As serverless function has more stringent resource limits than container
instance, our work focuses on providing more efficient communication design and careful co-
optimization of model partition and resource allocation to tackle such resource challenges. Note
that our optimization designs have the potential to benefit distributed training in other environments
like the GPU-enabled container instances, as our preliminary experiments have demonstrated the
benefits of our co-optimized model partition and resource allocation policy in GPU-based training.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:21

Serverless communication. Feng et al. propose two centralized storage-based methods for model
synchronization [18]. However, such a design is generally of low efficiency due to the bandwidth
bottleneck of the central nodes. LambdaML proposes a more efficient decentralized scatter-reduce
method, but it fails to utilize the available bandwidth fully [35]. In parallel, other works focus
on improving the performance of storage systems for higher communication efficiency. Pocket
proposes a distributed data store that provides better elasticity and latency [37]. Shredder designs
a low-latency cloud store that supports in-storage computing [74]. This line of work could be
integrated with our pipelined storage-based communication approach to improving the network
performance potentially. Another choice is to use common NAT-traversal techniques to enable
direct communication among functions [19, 71]. Direct communication can allow existing commu-
nication algorithms, e.g., ringAllreduce [55], to be used. However, NAT-traversal usually requires
external servers that can cause communication bottlenecks. The performance of using existing
communication designs for serverless-based training with NAT-traversal remains unclear.
Model partition and resource allocation in serverless. Recent works have studied the model
partition and resource allocation problem for serverless-based inference serving [30, 73]. These
works aim at satisfying Service Level Objectives in latency while minimizing cost or further improv-
ing throughput. Gillis fixes the per-function memory allocation and optimizes model partition to
lower inference cost with a reinforcement learning approach [73]. AMPS fixes the number of func-
tions/partitions and co-optimizes the partition and memory allocation with a MIP formulation [30].
Compared with inference, the optimization for distributed training, which is the focus of this work,
includes more decision factors such as inner-stage data parallelism and synchronization cost and
makes it more challenging to generate efficient model partition and resource configuration.

7 CONCLUSION

In this paper, we presented the design and implementation of a novel pipelined serverless training
framework called FuncPipe. With the ever increasing interests in truly taking advantage of server-
less computing, many researchers have looked at utilizing serverless functions to build scalable
applications and improving serverless platforms [56, 57, 65, 67]. Our key goal can be simply boiled
down to understand how to allow DL practitioners to train models on serverless platforms in a fast
and low-cost manner, regardless of model size and training hyperparameters such as batch size that
impact memory consumption. With three key designs—(i) the pipeline parallelism for model parti-
tions, (ii) the communication-efficient scatter-reduce, and (iii) the co-optimization of partition and
resource allocation policy, FuncPipe was able to overcome the memory and bandwidth limitations
of serverless platforms. We demonstrated the benefits of FuncPipe, i.e. 1.3X-2.2X training speedup
and 7%-77% cost reduction compared to state-of-the-art serverless training frameworks [35], by
testing with four commonly used models and on two popular serverless providers in numerous
settings. Interestingly, we observed that the benefits of FuncPipe remain even if the bandwidth of
serverless functions increases to a level comparable to today’s VM bandwidth. This observation
suggests the relevance of FuncPipe techniques even as the cloud providers continue to improve
serverless infrastructure.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China (No. 42050105,
62072302, 62020106005, 62061146002, 61960206002), the Program of Shanghai Academic/Technology
Research Leader under Grant No. 18XD1401800, the US National Science Foundation under Grant
NGSDI-2105564, and VMWare. We thank our shepherd Michael Ferdman, and the anonymous
reviewers.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:22 Yunzhuo Liu et al.

REFERENCES

[1] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat Aditya, and Volker
Hilt. 2018. SAND: Towards High-Performance Serverless Computing. In 2018 Usenix Annual Technical Conference
(USENIX ATC 18). 923–935.

[2] Alibaba. 2022. Alibaba Cloud Function Compute. https://www.aliyun.com/product/fc.
[3] Alibaba. 2022. Alibaba Cloud Function Compute Instance Type. https://help.aliyun.com/document_detail/179379.html.
[4] Alibaba. 2022. Alibaba Cloud Object Storage Service. https://www.aliyun.com/product/oss.
[5] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan Yu, and Ming Zhang. 2017.

CherryPick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics. In 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17). 469–482.

[6] Amazon. 2022. AWS Lambda. https://www.aliyun.com/product/fc.
[7] Ammar Ahmad Awan, Arpan Jain, Quentin Anthony, Hari Subramoni, and Dhabaleswar K Panda. 2020. HyPar-Flow:

exploiting MPI and Keras for scalable hybrid-parallel DNN training with tensorflow. In International Conference on
High Performance Computing. 83–103.

[8] Zhengda Bian, Qifan Xu, Boxiang Wang, and Yang You. 2021. Maximizing Parallelism in Distributed Training for Huge
Neural Networks. arXiv preprint arXiv:2105.14450 (2021).

[9] Shaileshh Bojja Venkatakrishnan, ShreyanGupta, HongziMao,MohammadAlizadeh, et al. 2019. Learning Generalizable
Device Placement Algorithms for Distributed Machine Learning. Advances in Neural Information Processing Systems 32
(2019).

[10] Eric Brochu, Vlad M Cora, and Nando De Freitas. 2010. A tutorial on Bayesian optimization of expensive cost functions,
with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010).

[11] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz. 2019. Cirrus: A serverless framework
for end-to-end ml workflows. In Proceedings of the ACM Symposium on Cloud Computing. 13–24.

[12] Chi-Chung Chen, Chia-Lin Yang, and Hsiang-Yun Cheng. 2018. Efficient and robust parallel dnn training through
model parallelism on multi-gpu platform. arXiv preprint arXiv:1809.02839 (2018).

[13] Ching-Hsiang Chu, Pouya Kousha, Ammar Ahmad Awan, Kawthar Shafie Khorassani, Hari Subramoni, and Dha-
baleswar K Panda. 2020. Nv-group: link-efficient reduction for distributed deep learning on modern dense gpu systems.
In Proceedings of the 34th ACM International Conference on Supercomputing. 1–12.

[14] Aditya Devarakonda, Maxim Naumov, and Michael Garland. 2017. Adabatch: Adaptive batch sizes for training deep
neural networks. arXiv preprint arXiv:1712.02029 (2017).

[15] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding up automatic hyperparameter optimization
of deep neural networks by extrapolation of learning curves. In Twenty-fourth international joint conference on artificial
intelligence.

[16] Simon Eismann, Joel Scheuner, Erwin Van Eyk, Maximilian Schwinger, Johannes Grohmann, Nikolas Herbst, Cristina L
Abad, and Alexandru Iosup. 2020. Serverless applications: Why, when, and how? IEEE Software 38, 1 (2020), 32–39.

[17] Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping Long, Jun Yang, Lixue
Xia, et al. 2021. DAPPLE: A pipelined data parallel approach for training large models. In Proceedings of the 26th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming. 431–445.

[18] Lang Feng, Prabhakar Kudva, Dilma Da Silva, and Jiang Hu. 2018. Exploring serverless computing for neural network
training. In 2018 IEEE 11th international conference on cloud computing (CLOUD). IEEE, 334–341.

[19] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia, and Keith
Winstein. 2019. From laptop to lambda: Outsourcing everyday jobs to thousands of transient functional containers. In
2019 USENIX Annual Technical Conference (USENIX ATC 19). 475–488.

[20] Jinkun Geng, Dan Li, and Shuai Wang. 2019. Horizontal or vertical? a hybrid approach to large-scale distributed
machine learning. In Proceedings of the 10th Workshop on Scientific Cloud Computing. 1–4.

[21] Runsheng Guo, Victor Guo, Antonio Kim, Josh Hildred, and Khuzaima Daudjee. 2022. Hydrozoa: Dynamic Hybrid-
Parallel DNN Training on Serverless Containers. Proceedings of Machine Learning and Systems 4 (2022), 779–794.

[22] Gurobi. 2022. Gurobi - The Fastest Solver. https://www.gurobi.com.
[23] Gurobi. 2022. Setting up and using a Floating license. https://www.gurobi.com/documentation/9.5/quickstart_mac/

setting_up_and_using_a_flo.html.
[24] Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, and Zhenhua Liu. 2021. Towards optimal placement and scheduling of

DNN operations with Pesto. In Proceedings of the 22nd International Middleware Conference. 39–51.
[25] Scott Hendrickson, Stephen Sturdevant, Tyler Harter, and Venkataramani. 2016. Serverless Computation with Open-

Lambda. In 8th USENIX Workshop on Hot Topics in Cloud Computing (HotCloud 16).
[26] Qinghao Hu, Peng Sun, Shengen Yan, Yonggang Wen, and Tianwei Zhang. 2021. Characterization and prediction

of deep learning workloads in large-scale gpu datacenters. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. 1–15.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

https://www.aliyun.com/product/fc
https://help.aliyun.com/document_detail/179379.html
https://www.aliyun.com/product/oss
https://www.aliyun.com/product/fc
https://www.gurobi.com
https://www.gurobi.com/documentation/9.5/quickstart_mac/setting_up_and_using_a_flo.html
https://www.gurobi.com/documentation/9.5/quickstart_mac/setting_up_and_using_a_flo.html

FuncPipe: A Pipelined Serverless Training Framework 47:23

[27] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V Le, Yonghui Wu, et al. 2019. Gpipe: Efficient training of giant neural networks using pipeline parallelism.
Advances in neural information processing systems 32 (2019).

[28] Arpan Jain, Ammar Ahmad Awan, AsmaaMAljuhani, JahanzebMaqbool Hashmi, Quentin G Anthony, Hari Subramoni,
Dhableswar K Panda, Raghu Machiraju, and Anil Parwani. 2020. Gems: Gpu-enabled memory-aware model-parallelism
system for distributed dnn training. In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–15.

[29] Arpan Jain, Ammar Ahmad Awan, AsmaaMAljuhani, JahanzebMaqbool Hashmi, Quentin G Anthony, Hari Subramoni,
Dhableswar K Panda, Raghu Machiraju, and Anil Parwani. 2020. Gems: Gpu-enabled memory-aware model-parallelism
system for distributed dnn training. In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–15.

[30] Jananie Jarachanthan, Li Chen, Fei Xu, and Bo Li. 2021. AMPS-Inf: Automatic Model Partitioning for Serverless
Inference with Cost Efficiency. In 50th International Conference on Parallel Processing. 1–12.

[31] Beomyeol Jeon, Linda Cai, Pallavi Srivastava, Jintao Jiang, Xiaolan Ke, Yitao Meng, Cong Xie, and Indranil Gupta.
2020. Baechi: fast device placement of machine learning graphs. In Proceedings of the 11th ACM Symposium on Cloud
Computing. 416–430.

[32] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian,Wencong Xiao, and Fan Yang. 2019. Analysis
of Large-Scale Multi-Tenant GPU Clusters for DNN Training Workloads. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 947–960.

[33] Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. 2018. Exploring Hidden Dimensions in Parallelizing Convolutional
Neural Networks. In Proceedings of the 35th International Conference on Machine Learning, Vol. 80. 2279–2288.

[34] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2019. Beyond Data and Model Parallelism for Deep Neural Networks.
Proceedings of Machine Learning and Systems 1 (2019), 1–13.

[35] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso, Ana Klimovic, Ankit Singla, Wentao Wu, and Ce
Zhang. 2021. Towards demystifying serverless machine learning training. In Proceedings of the 2021 International
Conference on Management of Data. 857–871.

[36] Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, and Animesh Trivedi. 2018. Under-
standing ephemeral storage for serverless analytics. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
789–794.

[37] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and Christos Kozyrakis. 2018. Pocket:
Elastic ephemeral storage for serverless analytics. In 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18). 427–444.

[38] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-tzur, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. 2020. A System for Massively Parallel Hyperparameter Tuning. In Proceedings of Machine
Learning and Systems, Vol. 2. 230–246.

[39] Shigang Li and Torsten Hoefler. 2021. Chimera: efficiently training large-scale neural networks with bidirectional
pipelines. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. 1–14.

[40] Shijian Li, Oren Mangoubi, Lijie Xu, and Tian Guo. 2021. Sync-Switch: Hybrid Parameter Synchronization for
Distributed Deep Learning. In 2021 IEEE 41th International Conference on Distributed Computing Systems (ICDCS).

[41] Shijian Li, Robert J. Walls, and Tian Guo. 2020. Characterizing and Modeling Distributed Training with Transient
Cloud GPU Servers. In 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS).

[42] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian Vaughan,
Pritam Damania, and Soumith Chintala. 2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
Proc. VLDB Endow. 13, 12 (2020), 3005–3018.

[43] Ryan McDonald, Keith Hall, and Gideon Mann. 2010. Distributed training strategies for the structured perceptron.
In Human language technologies: The 2010 annual conference of the North American chapter of the association for
computational linguistics. 456–464.

[44] Garrett McGrath and Paul R Brenner. 2017. Serverless computing: Design, implementation, and performance. In 2017
IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). IEEE, 405–410.

[45] Microsoft. 2022. Microsoft Azure Cloud Computing. https://azure.microsoft.com/.
[46] Microsoft. 2022. Microsoft Azure Storage. https://azure.microsoft.com/services/storage.
[47] Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean. 2018. Hierarchical Planning for

Device Placement. In ICLR.
[48] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad

Norouzi, Samy Bengio, and Jeff Dean. 2017. Device placement optimization with reinforcement learning. In International
Conference on Machine Learning. PMLR, 2430–2439.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

https://azure.microsoft.com/
https://azure.microsoft.com/services/storage

47:24 Yunzhuo Liu et al.

[49] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger, Phillip B
Gibbons, and Matei Zaharia. 2019. PipeDream: generalized pipeline parallelism for DNN training. In Proceedings of the
27th ACM Symposium on Operating Systems Principles. 1–15.

[50] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vijay Korthikanti, Dmitri
Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar Phanishayee, and Matei Zaharia. 2021. Efficient
Large-Scale Language Model Training on GPU Clusters Using Megatron-LM. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.

[51] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. 2005. Pareto multi objective optimization. In Proceedings of the
13th International Conference on, Intelligent Systems Application to Power Systems. IEEE, 84–91.

[52] Pitch Patarasuk and Xin Yuan. 2007. Bandwidth efficient all-reduce operation on tree topologies. In 2007 IEEE
International Parallel and Distributed Processing Symposium. IEEE, 1–8.

[53] Pitch Patarasuk and Xin Yuan. 2009. Bandwidth optimal all-reduce algorithms for clusters of workstations. J. Parallel
and Distrib. Comput. 69, 2 (2009), 117–124.

[54] Thomas Rausch, Waldemar Hummer, Vinod Muthusamy, Alexander Rashed, and Schahram Dustdar. 2019. Towards a
serverless platform for edge AI. In 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19).

[55] Baidu Research. 2017. baidu-allreduce. https://github.com/baidu-research/baidu-allreduce.
[56] Francisco Romero, Gohar Irfan Chaudhry, Íñigo Goiri, Pragna Gopa, Paul Batum, Neeraja J Yadwadkar, Rodrigo

Fonseca, Christos Kozyrakis, and Ricardo Bianchini. 2021. Faa$T: A Transparent Auto-Scaling Cache for Serverless
Applications. (2021).

[57] Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos Kozyrakis. 2021. Llama: A Heterogeneous &
Serverless Framework for Auto-Tuning Video Analytics Pipelines. In Proceedings of the ACM Symposium on Cloud
Computing (Seattle, WA, USA) (SoCC’21).

[58] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E. Dahl. 2019.
Measuring the Effects of Data Parallelism on Neural Network Training. Journal of Machine Learning Research 20, 112
(2019), 1–49.

[59] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin Tran, Ashish Vaswani, Penporn Koanantakool, Peter Hawkins,
et al. 2018. Mesh-tensorflow: Deep learning for supercomputers. Advances in neural information processing systems 31
(2018).

[60] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and BryanCatanzaro. 2019. Megatron-
lm: Training multi-billion parameter language models using model parallelism. arXiv preprint arXiv:1909.08053 (2019).

[61] Nimit Sharad Sohoni, Christopher Richard Aberger, Megan Leszczynski, Jian Zhang, and Christopher Ré. 2019. Low-
memory neural network training: A technical report. arXiv preprint arXiv:1904.10631 (2019).

[62] Liuyihan Song, Pan Pan, Kang Zhao, Hao Yang, Yiming Chen, Yingya Zhang, Yinghui Xu, and Rong Jin. 2020. Large-
scale training system for 100-million classification at alibaba. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2909–2930.

[63] Jakub M Tarnawski, Amar Phanishayee, Nikhil Devanur, Divya Mahajan, and Fanny Nina Paravecino. 2020. Efficient
algorithms for device placement of dnn graph operators. Advances in Neural Information Processing Systems 33 (2020),
15451–15463.

[64] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. 2005. Optimization of collective communication operations in
MPICH. The International Journal of High Performance Computing Applications 19, 1 (2005), 49–66.

[65] John Thorpe, Yifan Qiao, Jonathan Eyolfson, Shen Teng, Guanzhou Hu, Zhihao Jia, Jinliang Wei, Keval Vora, Ravi
Netravali, Miryung Kim, et al. 2021. Dorylus: Affordable, Scalable, and Accurate GNN Training with Distributed CPU
Servers and Serverless Threads. In 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI
21). 495–514.

[66] Parichehr Vahidinia, Bahar Farahani, and Fereidoon Shams Aliee. 2020. Cold start in serverless computing: Current
trends and mitigation strategies. In 2020 International Conference on Omni-layer Intelligent Systems (COINS). IEEE, 1–7.

[67] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht, Dimitrios Skourtis, Vasily Tarasov, Feng Yan,
and Yue Cheng. 2020. InfiniCache: Exploiting Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache.
In 18th USENIX Conference on File and Storage Technologies (FAST 20). usenix.org, 267–281.

[68] Hao Wang, Di Niu, and Baochun Li. 2019. Distributed machine learning with a serverless architecture. In IEEE
INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, 1288–1296.

[69] Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. 2020. Learning Search Space Partition for Black-box Optimization
using Monte Carlo Tree Search. In Advances in Neural Information Processing Systems (NeurIPS), 2020 (online).

[70] Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael Swift. 2018. Peeking behind the curtains
of serverless platforms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). 133–146.

[71] Ingo Wawrzoniak, Mike and Fraga Barcelos Paulus Bruno. 2021. Boxer: Data Analytics on Network-enabled Serverless
Platforms. In 11th Annual Conference on Innovative Data Systems Research.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

https://github.com/baidu-research/baidu-allreduce

FuncPipe: A Pipelined Serverless Training Framework 47:25

[72] Fei Xu, Yiling Qin, Li Chen, Zhi Zhou, and Fangming Liu. 2021. λDNN: Achieving Predictable Distributed DNN
Training With Serverless Architectures. IEEE Trans. Comput. 71, 2 (2021), 450–463.

[73] Minchen Yu, Zhifeng Jiang, et al. 2021. Gillis: Serving Large Neural Networks in Serverless Functions with Automatic
Model Partitioning. In 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS). IEEE, 138–148.

[74] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. 2019. Narrowing the gap between serverless and its state with
storage functions. In Proceedings of the ACM Symposium on Cloud Computing. 1–12.

[75] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-Aware Async-SGD for Distributed Deep Learning.
In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI’16). 2350–2356.

[76] Zhen Zhang, Chaokun Chang, Haibin Lin, Yida Wang, Raman Arora, and Xin Jin. 2020. Is network the bottleneck of
distributed training?. In Proceedings of the Workshop on Network Meets AI & ML. 8–13.

[77] Yiyang Zhao, Linnan Wang, Kevin Yang, Tianjun Zhang, Tian Guo, and Yuandong Tian. 2022. Multi-objective
Optimization by Learning Space Partitions. 10th International Conference on Learning Representations, ICLR (2022).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:26 Yunzhuo Liu et al.

A NOTATIONS IN §3.4

Notation Definition

s0 basic memory consumption of a serverless worker
M total number of micro-batches
L number of model layers.
P unit price of serverless function
tlat latency from serverless worker to cloud storage
si model size of layer i
ai size of activations of layer i per micro-batch
oi size of output of layer i per micro-batch
дi size of gradients from layer i to layer i − 1 per micro-batch
β slowdown factor for computation due to resource contention

K number of data parallelism options
Dk value of k-th data parallelism option
J number of resource allocation options
Mj memory size of j-th resource option
Wj bandwidth of j-th resource option
T
i , j
f c forward computation time of layer i with j-th resource option

T
i , j
bc backward computation time of layer i with j-th resource option

xi {0, 1}, 1 means model is partitioned between layers i and i + 1
yk {0, 1}, 1 means the k-th data parallelism option D j is chosen
zi , j {0, 1}, 1 means layer i workers have j-th memory sizeMj

titer iteration time
citer iteration cost
tf forward time for full forward pipeline
t0f time for one micro-batch traverse forward pipeline
∆f lag between micro-batches at end of forward pipeline
t ib backward time until layer i completes computation
t is model synchronizing time at layer i
t if u time for layer i to upload its output to storage.
t if d time for layer i + 1 to download input from storage.
t ibu time for i to upload gradient output to storage.
t ibd time for layer i − 1 to be download gradient from storage.
d degree of data parallelism, d =

∑K
i=1 ykDk

µ number of micro-batches per worker, µ = M/d

mi memory size of layer i worker,mi =
∑J
j=1 zi , jMj

wi bandwidth of layer i worker,wi =
∑J
j=1 zi , jWj

âi accumulated activation size at layer i (accumulated forwardly).
ŝi accumulated model size at layer i (accumulated forwardly).
s̃i accumulated model size at layer i (accumulated backwardly).
t̂ if c accumulated forward computation time at layer i (accumulated forwardly).
t̃ ibc accumulated backward computation time at layer i (accumulated backwardly).

Table 2. Notations in §3.4

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:27

B BACKWARD TIME

The backward computation time t ibc of layer i , the upload and download time t ibu , t
i
bd between

layers i and i − 1 are given by

t ibc = β

J∑
j=1

zi , jT
i , j
bc , 1 ≤ i ≤ L,

t ibu = xi−1

(
J∑
j=1

zi , j
дi
Wj
+ tlat

)
, 2 ≤ i ≤ L,

t ibd = xi−1

(
J∑
j=1

z(i−1), j
дi
Wj
+ tlat

)
, 2 ≤ i ≤ L,

where дi is the gradient size from layer i to layer i − 1. We introduce a tilde operator similar to the
hat operator in (4), except that it accumulates the quantities backwardly. The cumulative backward
computation time t̃ ibc from the previous partition boundary down to layer i is given by

t̃Lbc = tLbc , t̃ ibc = t ibc + t̃
i+1
bc (1 − xi), 1 ≤ i ≤ L − 1. (10)

For each 1 ≤ i ≤ L, define

t ib =
L∑
k=i

tkbc +
L∑

k=i+1
(tkbu + t

k
bd) + (µ − 1)∆i

b , (11)

where
∆i
b = max

{
t̃ i :Lbc , t

(i+1):L
bu , t (i+1):Lbd

}
.

When i is the lowest layer of a partition, t ib is the computation completion time of that partition,
and ∆i

b is the corresponding lag between consecutive micro-batches. Note that t ib ≥ t i
′

b if i ′ ≥ i and
layers i and i ′ belong to the same partition.

C LINEARIZATION

First we present the major linearization techniques used to convert the non-linear binary integer
programming to MIQP:

Technique 1: Linearizing the multiplication of two binary variables. x,y ∈ {0, 1}, xy can be
linearized as follows:

f = xy

f ≤ x

f ≤ y

f ≥ x + y − 1
f ∈ {0, 1}

Technique 2: Linearizing the multiplication of a continuous variable and a binary variable. x ∈

{0, 1}, y ∈ [a,b] is a continuous variable, xy can be linearized as follows:
f = xy

f ≤ y

f ≥ y − b(1 − x)

ax ≤ y ≤ bx

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:28 Yunzhuo Liu et al.

Technique 3: Linearizing of the max operator. x,y, z are continuous variables, max{x,y, z} can be
linearized as follows:

f = max{x,y, z}
x ≤ f ,y ≤ f , z ≤ f

x ≥ f − H (1 − l1)

y ≥ f − H (1 − l2)

z ≥ f − H (1 − l3)

l1 + l2 + l3 ≥ 1
l1, l2, l3 ∈ {0, 1}

where H is a large constant. Next we introduce how we linearize the formulation in detail.
(1) Linearizing the equality constraint for the cumulative values t̂ if c , t̃

i
bc , ŝi , s̃i and âi .We introduce

t̂ if c , t̃
i
bc , ŝi , s̃i and âi as continuous variables and linearize their equality constraints. We use

t̃ ibc in (10) as an example and it is similar with the others. We can write t̃ ibc as:

ri = 1 − xi

t̃ ibc = t ibc + t̃
i+1
bc ri

=

L∑
q=i

t
q
bc

q−1∏
p=i

rp

Since ri is a binary variable,
∏q−1

p=i rp can be converted to a new binary variable Ûri ,q by
recursively performing linearizationwithTechnique 1. Then continuous variable t̃ ibc satisfies
the following constraint

t̃ ibc =
L∑
q=i

t ibc Ûri ,q

= β
L∑
q=i

J∑
j=1

zi , j Ûri ,qT
i , j
bc

zi , j and Ûri ,q are both binary variables, thus zi , j Ûri ,q can be linearized applying Technique 1.
(2) Linearizing the equality constraint for t if u , t

i
f d , t

i
bu and t ibd . We introduce t if u , t

i
f d , t

i
bu and t ibd

as continuous variables and linearize their equality constraints. We use t if u as an example
and it is similar with the others. We can write t if u in (8) as:

t if u =

J∑
j=1

xizi , j
oi
Wj
+ xitlat

xi and zi ,k are both binary variables, thus xizi , j can be linearized applying Technique 1.
(3) Linearizing forward time tf and backward time t ib .We use t ib as an example and it is similar

with tf . Linearizing t ib in (11) is equal to linearizing (µ − 1)∆i
b . Since ∆

i
b is the max of a set of

continuous variables, it can be presented as a continuous variable with linear constraints
using Technique 3. Expand (µ − 1)∆i

b , we have

(µ − 1)∆i
b =

K∑
k=1

∆i
byk

M

Dk
− ∆i

b

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

FuncPipe: A Pipelined Serverless Training Framework 47:29

Since ∆i
b is a continuous variable and yk is a binary variable, ∆i

byk can be linearized applying
Technique 2.

(4) Linearizing t is . Expand (9), we have

t is =

J∑
j=1

(zi j s̃i − y1zi j s̃i)
γ

Wj
+ (1 − y1)tlat · δ ,

zi j and y1 are binary variables, s̃i is a continuous variable, thus we can first linearize zi j s̃i
using Technique 2 and then further linearize y1zi j s̃i by applying Technique 2 again.

(5) Linearizing full iteration time titer . So far we have linearized tf , t ib and t
i
s in (7). We can further

remove the max operator using Technique 3.
(6) Linearizing total memory allocation cmem . Expand (5), we have

cmem =

L−1∑
i=1

K∑
k=1

J∑
j=1

xiykzi , jDkMj +

K∑
k=1

J∑
j=1

ykzL, jDkMj

Since xi , yk , and zi , j are all binary variables, xiykzi , j and ykzL, j can be linearized using
Technique 1.

(7) Linearizing memory constraint.At last, we linearize the memory constraint, the first constraint
in (3). Expand the constraint, we have

K∑
k=1

âiyk
M

Dk
+ 4ŝi − 2ŝiy1 + s0 ≤

J∑
j=1

zi , jMj

âiyk and ŝiy1 can both be linearized with Technique 2.
After linearization, titer , cmem and the constraints in (3) are all in linear form. citer ((6)) and the

objective function are quadratic. The formulation becomes a mixed-integer quadratic program. It
has a total of max{o(JL2),o(JKL)} integer variables, max{o(JL),o(KL)} continuous variables and
max{o(JL2),o(JKL)} linear constraints.

D A FUNCPIPE FUNCTION EXAMPLE

Below is a code example for training with FuncPipe. As highlighted in orange, only minimal
changes to the Pytorch training code are required.

Step1: get input training configurations

batch_size = int(event['batch_size'])

loss_func = ...

...

Step2: build user-defined model and dataloader (Pytorch code)

model = ...

data_loader = ...

Step3: wrap the model with FuncPipe API

Platform.use(platform type) # Choose serverless platform

model = FuncPipe(model, loss func=loss func, ...) # Config training

model.init(event) # Initialize pipeline

Step4: start training

for epoch_id in range(epochs):

for batch_id, (inputs, targets) in enumerate(data_loader):

model.pipeline train(inputs, targets)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

47:30 Yunzhuo Liu et al.

E PERFORMANCE MODEL ACCURACY

Table 3 displays the prediction error in training time for the measured points of FuncPipe in Fig. 5.
The results show that our performance model achieves an average prediction error of less than 12%.
The largest error happens when training Amoebanet-D36 with a global batch size of 256. We note
that this error is mainly caused by the unexpected bandwidth variation; other model training is less
impacted as they use fewer serverless workers and are less subject to the performance interference
among workers. We leave the consideration of such interference in our performance model as part
of future work.

Model

Batchsize 16 64 256 Average

ResNet101 5.9% 11.2% 15.4% 10.8%
Amoebanet-D18 13.3% 9.0% 10.6% 11.0%
Amoebanet-D36 10.8% 4.0% 18.1% 11.0%
Bert-large 9.8% 11.0% 16.4% 12.4%
Average 9.9% 8.8% 15.1% 11.3%

Table 3. Prediction error of FuncPipe training tasks. Our performance model achieves an average pre-

diction error of less than 12%.

Received August 2022; revised October 2022; accepted November 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 47. Publication date: December 2022.

	Abstract
	1 Introduction
	2 Background
	2.1 Serverless Computing
	2.2 Distributed Training
	2.3 Pipeline Training and Model Partition

	3 FuncPipe Design
	3.1 Overview
	3.2 Training Pipeline
	3.3 Pipelined Scatter-Reduce
	3.4 Co-optimization of Model Partition and Resource Allocation

	4 Implementation
	5 Evaluation
	5.1 Methodology
	5.2 Overall Performance
	5.3 Training Time Breakdown
	5.4 System Scalability
	5.5 Scatter-Reduce Communication Efficiency
	5.6 Co-optimization Performance
	5.7 Impact of Different Resource Availability
	5.8 Impact of Increased Function Bandwidth

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Notations in §3.4
	B Backward Time
	C Linearization
	D A FuncPipe function example
	E Performance Model Accuracy

