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Abstract— Stochastic differential equations have been used
intensively in stochastic control. In this paper, we present
2-dimensional Poisson Counter Driven Stochastic Differential
Equation (PCSDE) models that lead to correlated bivariated
power law behaviors. We propose two types of 2D PCSDE
models and study their tail dependence behavior. The first
model generates tail dependence coefficient with values either
0 or 1; while the second model could have the values between
0 and 1. We discuss plausible application of our models in
complex network generative models.

I. INTRODUCTION

Power-law distributions have been observed for a variety
of phenomena [1], including word frequency of English
and other languages, size of earthquakes, firing pattern in
neural networks, wealth distribution, population of cities,
etc. The ubiquity of power-law distributions have motivated
researchers to search for mechanisms to explain their origins.
In [2], the author described several generative models for
power law distributions, including preferential attachment,
optimization, multiplicative models, and so forth. [3] at-
tempts a universal mechanism by showing that power-law
emerges when an exponentially growing process is stopped
at exponentially distributed random time. In [4], Jiang et al.
presented different Stochastic Differential Equation (SDE)
models in this spirit. The PCSDE models in this paper can
be used to generate power law at lower tail, upper tail, or
near a critical point.

In this work, we start with a 1D PCSDE model for upper
tail power law behavior [4] and then explore a bivariate
extension. Such extensions of the PCSDE model are very
useful since 2D power-law distributions have been found in
some directed real networks, such as some citation networks
(arXiv, CiteSeer, US patent), and some social networks
(Youtube, Flickr, Livejournal) [5]. Comparing to the citation
networks, strong correlations are shown between the nodes’
in-degree and out-degree in social networks, as shown in
Fig. 1. In this work, we study the generative mechanism for
the correlations between the observed data. In [6], Asimit et
al. proposed a new type of multivariate Pareto distributions.
The new distribution has arbitrarily parameterized margins
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comparing to the traditional multivariate Pareto distribution
of the second kind [7]. Meanwhile, the new distribution in
[6] is not differentiable everywhere and this phenomenon
is also observed in some real datasets with correlations,
like in the case of Youtube (as shown in Figure 1(b)). The
first a 2D PCSDE model with a shared Poisson counter
[8] is formulated on the basis of the bivariate power-law
distribution proposed by Asimit et al. This model generates
correlated bivariate power law distributions.

The tail behavior of a bivariate model can be studied by
computing the ’tail dependence coefficient’, which is defined
as lim

x→∞
P (X2 > x|X1 > x). The tail dependence coefficient

relates to the dependence among the extreme values and can
be used to predict how the system evolves in the future. The
2D PCSDE model with a shared Poisson counter, however,
has the limitation that the tail dependence coefficient is
always zero, regardless of the parameters. In this work, we
propose two types of modifications to allow nonzero tail
dependence coefficient. The first model introduces a Markov
on-off process to modulate the Poisson counters so that the
active sessions alternate between the independent and the
shared Poisson counters. Here the two growth processes are
uncoupled within each session, but their life times, which
measure the time between occurrence of the last jump of
the Poisson counter and the observation, are correlated.
The second model takes a complementary approach: the
two growth processes are coupled, but their life times are
independent.

In our point of view, the models in this work provide
possible explanations to the dependence observed among
large values in real data. With some further modifications,
such as adding Brownian motion part, PCSDE models can be
applied to fit real data and predict behaviors under extreme
values.

The rest of the paper is organized as follows. Section II
starts with a PCSDE model for upper tail power law behavior.
Then, a 2D extension with a shared Poisson counter is given
and the tail behavior is analyzed. The two modified models
are presented in Sections III and IV, respectively. In Section
V, we show applications of our models. The 1D model in
Section II and 2D model in Section III are connected to
the evolution of undirected and directed complex network
generative models. Section VI concludes the paper.

II. 1D PCSDE MODEL AND 2D EXTENSION

In this section, we review a 1D PCSDE model for upper
tail power law distribution and its 2D extension with a shared
Poisson counter.
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Fig. 1. 2D power-law data in citation network and social network.

A. 1D PCSDE Model

A simple PCSDE model that produces an upper tail power-
law distribution in steady state is as follows [4],

dX(t) = βX(t)dt+ (x0 −X(t−))dN(t), (1)

where β, x0 > 0. N is a Poisson process with rate λ. In this
model, X grows exponentially with rate β, and reverts to
x0 after an exponential distributed life time with rate λ. The
whole process then repeats.

We give the corresponding characteristic function
ΦX(k, t) = E[ejkX(t)] by Ito’s rule,

(
∂

∂t
− βk ∂

∂k
)ΦX(k, t) = −λΦX(k, t) + λejkx0 . (2)

Solve the Equation (2) as in [4],

ΦX(k, t) = e−λtΦX(keβt, 0)

+ λ

∫ t

0

e−λ(t−s)ejx0ke
β(t−s)

ds. (3)

Change variable with x = x0e
β(t−s) and let t→∞,

ΦX(k,∞) =
λ

βx0

∫ ∞
x0

(
x

x0

)−λβ−1
ejkxdx. (4)

The steady-state density of X gives by taking the inverse
Fourier transform,

fX(x) =
λ

βx0

(
x

x0

)−λβ−1
, x ≥ x0, (5)

and the Complementary Cumulative Distribution Function
(CCDF) is,

F̄X(x) =

(
x

x0

)−λβ
, x ≥ x0. (6)

B. 2D PCSDE Model

A 2D extension of the 1D model in Section II-A with a
shared Poisson Counter [8] is in (7). The model is simplified
by letting β1 = β2 = 1 and the initial values to be 1.

dXi(t) = Xi(t)dt+ (1−Xi(t−))(dN0(t) + dNi(t)), (7)

where i = 1, 2. N0, N1, and N2 are independent Poisson
counters with rates λ0, λ1, and λ2. The marginal steady-
state density is computed,

fXi(xi) = (λ0 + λi)x
−(λ0+λi+1)
i , xi ≥ 1; (8)

and the marginal CCDF is

F̄Xi(xi) = x
−(λ0+λi)
i , xi ≥ 1, i = 1, 2. (9)

For the joint case, let

Φ(k1, k2, t) = E[ej
∑
i kiXi(t)],

Φi(ki, t) = E[ejkiXi(t)].

Applying Ito’s rule yields:(
∂

∂t
− ki

∂

∂ki

)
Φ

=− λ+Φ + λ0e
j
∑
i ki + λ1e

jk1Φ2 + λ2e
jk2Φ1, (10)

where λ+ = λ0 + λ1 + λ2. Solve the equation (10) and let
t→∞, we have

Φ(k1, k2,∞) =

∫ ∞
1

x−λ+−1λ0e
j
∑
i kixdx

+

∫ ∞
1

x
−λ+−1
1 λ1e

jk1x1Φ2(k2x1,∞)dx1

+

∫ ∞
1

x
−λ+−1
2 λ2e

jk2x2Φ1(k1x2,∞)dx2,

(11)

and the inverse Fourier transform gives

fX1,X2
(x1, x2) = λ0x

−λ+−1
1 u(x1 − 1)δ(x1 − x2)

+ λ1x
−λ+−1
1 fX2(x2x

−1
1 )x−11 u(x1 − 1)

+ λ2x
−λ+−1
2 fX1

(x1x
−1
2 )x−12 u(x2 − 1),

(12)

where u(x) = 1 when x ≥ 0; otherwise, u(x) = 0; δ(x) is
the Dirac delta function. The two variables in this model are
not independent since fX1,X2(x1, x2) 6= fX1(x1)fX2(x2).

The joint CCDF of the model is computed from (12),

F̄X1,X2
(x, x)

=

∫ ∞
x

dx1

∫ ∞
x

dx2fX1,X2
(x1, x2)

=λ0

∫ ∞
x

dx1x
−λ+−1
1

+λ1

∫ ∞
x

dx1x
−λ+−1
1

∫ ∞
x1

dx2fX2
(x2x

−1
1 )x−11

+λ2

∫ ∞
x

dx2x
−λ+−1
2

∫ ∞
x2

dx1fX1(x1x
−1
2 )x−12

=x−λ+ . (13)

With the marginal CCDF in (9), we have the tail dependence
coefficient of this model,

P (X2 > x|X1 > x) =
F̄X1,X2

(x, x)

F̄X1
(x)

= x−λ2
x→∞−−−−→ 0.

(14)
As indicated in (14), although the model in (7) is useful in

generating correlated 2D power-law data, the tail dependence
coefficient is always 0. In the next two sections, we pursue
modifications to the model in (7) to produce nonzero tail
dependence coefficient.



III. MODULATED 2D PCSDE MODEL OF TYPE I

The model in (7) is asymptotically independent due to
the existence of two independent Poisson counters. In our
first modulated model, we consider shutting down the two
independent Poisson counters occasionally.

A. 2D Models with Markov On-off Modulation

Define a Markov on-off process,

dY (t) = (1− Y (t))dM1(t)− Y dM2(t) (15)

where M1 and M2 are independent Poisson counters with
rate µ1 and µ2. Our modified 2D PCSDE model as follows,

dXi(t) =Xi(t)dt+ (1−Xi(t−)) (16)
· ((1− Y (t))dN0(t) + Y (t)dNi(t)) , (17)

where i = 1, 2. Thus, the two independent Poisson counters
are effective when the Markov on-off process is “on” and
the shared Poisson counter N0 is effective when the Markov
on-off process is “off”. Define

Φ(k1, k2, t) = E[ej
∑
i kiXi(t)], Φi(ki, t) = E[ejkiXi(t)],

Ψ(k1, k2, t) = E[Y (t)ej
∑
i kiXi(t)], Ψi(ki, t) = E[Y (t)ejkiXi(t)],

and let m(t) = E[Y (t)]. For the marginal, Ito’s rule yields:(
∂

∂t
− ki

∂

∂ki

)
Hi = −AiHi + bie

jki , (18)

where

Hi =

(
Φi
Ψi

)
, Ai =

(
λ0 λi − λ0
−µ1 λi + µ1 + µ2

)
,

and

bi =

(
λ0(1−m(∞)) + λim(t)

λim(t)

)
.

Equation (18) can be solved as

Hi(ki, t) = e−AitHi(kie
t, 0)

+

∫ t

0

e−Ai(t−s)bi(s)e
jkie

t−s
ds. (19)

Changing variables by letting xi = et−s,

Hi(ki, t) = e−AitHi(kie
t, 0)

+

∫ et

1

e−Ai log xibi(t− log xi)e
jkixix−1i dxi.

(20)

With t→∞,

Hi(ki,∞) =

∫ ∞
1

e−Ai log xibi(∞)ejkixix−1i dxi. (21)

Taking inverse Fourier transform, the marginal steady-state
density can be computed as

fXi(xi) = ax−Aii bi(∞)x−1i , xi > 1 (22)

where a = (1, 0). Let γ = (1,m(∞))T = A−1i bi(∞), the
marginal CCDF can be computed as

F̄Xi(x) =

∫ ∞
x

ax−Aii bi(∞)x−1i dxi

= ax−AiA−1i bi(∞),

= ax−Aiγ. (23)

For the joint case, Ito’s rule yields:(
∂

∂t
−
∑
i

ki
∂

∂ki

)
H

=−AH + bej
∑
i ki + cλ1e

jk1Ψ2 + cλ2e
jk2Ψ1. (24)

where

H =

(
Φ
Ψ

)
, A =

(
λ0

∑
i=1,2 λi − λ0

−µ1

∑
i=1,2(λi + µi)

)
,

and
b =

(
1−m(t)

0

)
λ0, c =

(
1
1

)
.

The solution to equation (24) at t→∞ is

H(k1, k2,∞)

=

∫ ∞
1

dxe−A log xb(∞)ej
∑
i kixx−1

+

∫ ∞
1

dx1e
−A log x1cλ1e

jk1x1Ψ2(k2x1,∞)x−11

+

∫ ∞
1

dx2e
−A log x2cλ2e

jk2x2Ψ1(k1x2,∞)x−12 . (25)

Taking inverse Fourier transform, we have the joint density

fX1,X2
(x1, x2)

=ax−A1 b(∞)x−11 u(x1 − 1)δ(x1 − x2)

+ax−A1 cλ1fX2
(x2x

−1
1 )m(∞)x−21 u(x1 − 1)

+ax−A2 cλ2fX1
(x1x

−1
2 )m(∞)x−22 u(x2 − 1). (26)

Let γ = (1,m(∞))T = A−1[b(∞)+λ1cm(∞)+λ2cm(∞)],
we have

F̄X1X2
(x, x)

=

∫ ∞
x

dx1ax
−A
1 b(∞)x−11

+

∫ ∞
x

dx1ax
−A
1 cλ1x

−1
1

∫ ∞
x1

dx2fX2(x2x
−1
1 )m(∞)x−11

+

∫ ∞
x

dx2ax
−A
2 cλ2x

−1
2

∫ ∞
x2

dx1fX1
(x1x

−1
2 )m(∞)x−12

=ax−AA−1[b(∞) + λ1cm(∞) + λ2cm(∞)]

=ax−Aγ. (27)

Let ξi± be the eigenvalues of Ai and ξ± be the eigenvalues
of A, we have

ξ
(1)
± =

λ0 + λ1 + µ1 + µ2

2

±
√

(λ1 − λ0 + µ2 − µ1)2 + 4µ1µ2

2
, (28)



and

ξ± =
λ0 + λ1 + λ2 + µ1 + µ2

2

±
√

(λ1 + λ2 − λ0 + µ2 − µ1)2 + 4µ1µ2

2
. (29)

It is easy to check that ξ− − ξ(1)− > 0, which implies

P (X2 > x|X1 > x) ∼ Cx−(ξ−−ξ
(1)
− ) x→∞−−−−→ 0. (30)

As indicated in (30), this model is still asymptotically
independent.

B. Modulated Model with ‘Manually Reverting’

In this subsection, we consider manually reverting the
variables to their initial values whenever the Markov on-off
process changes its state. Thus, for any individual growth
process between two successive reverting, the Markov on-
off process is either in “on” or “off” state during the whole
period. The new model is as follows:

dXi =Xidt+ (1−Xi−)

· ((1− Y )(dN0 + dM1) + Y (dNi + dM2)) , (31)

where i = 1, 2. We omit the t in parentheses in this and the
following equations. Use the same method in Section III-A,
we have

F̄Xi(x) = ax−Aiγ F̄X1,X2(x, x) = ax−Aγ, (32)

where in this model,

Ai =

(
λ0 + µ1 λi − λ0 + µ2 − µ1

0 λi + µ2

)
,

and

A =

(
λ0 + µ1

∑
i=1,2 λi − λ0 + µ2 − µ1

0
∑
i=1,2 λi + µ2

)
.

a and γ are the same as in Section III-A.
Let λ1 = λ2 , λ and do the eigen-decomposition to Ai

and A. The marginal and joint CCDF of this model become:

F̄Xi(x) = x−(λ+µ2)m(∞) + x−(λ0+µ1)(1−m(∞)), (33)

and

F̄X1,X2
(x, x) = x−(2λ+µ2)m(∞) + x−(λ0+µ1)(1−m(∞)),

(34)
Denote ∆µ = µ1 − µ2. The tail dependence coefficient of
this model is

lim
x→∞

P (X2 > x|X1 > x) =


1 λ > λ0 + ∆µ
µ2

µ1+µ2
λ = λ0 + ∆µ

0 λ < λ0 + ∆µ.

(35)

Modulated model in this subsection successfully generates
nonzero tail dependence coefficient. However, it seems that
the case when fractional tail dependence coefficient appears
is unstable. When a parameter is perturbed, the coefficient
goes to 1 or 0. In the next Section, we propose a model
which can generate fractional tail dependence coefficients in
a more natural way.

IV. MODULATED 2D PCSDE MODEL OF TYPE II

We propose the following model where the growth pro-
cesses of the two variables are coupled,

d

(
X1

X2

)
=

(
1 β
β 1

)(
X1

X2

)
dt

+

(
1−X1−

0

)
dN1 +

(
0

1−X2−

)
dN2. (36)

For the marginal tail, we prove that the stationary state
of variables X1 and X2 satisfy the following stochastic
recursion,

X
d

== AX +B, (37)

where A is defined in Equation (38). Denote the rates of
Poisson counters N1 and N2 to be λ1 = λ2 , λ. Let (Tj) be
i.i.d. exp(2λ) random variables, independent of a Ge(1/2)
random variable N . Then:

A =


eT1(1+β)+eT1(1−β)

2 N = 0
eT1(1+β)−eT1(1−β)

2 · e
T2(1+β)−eT2(1−β)

2

·
∏N+1
j=3

eTj(1+β)+eTj(1−β)

2 N ≥ 0

(38)

With equation (37), we have

P (X > x) ∼ Cx−α, x→∞, (39)

where α > 0 is such that E[Aα] = 1. Let

I1 = E

[(
eT1(1+β) + eT1(1−β)

2

)α]

=

∫ ∞
0

2λe−2λt
(
et(1+β) + et(1−β)

2

)α
dt,

I2 = E

[(
eT1(1+β) − eT1(1−β)

2

)α]
.

=

∫ ∞
0

2λe−2λt
(
et(1+β) − et(1−β)

2

)α
dt. (40)

We have

E[Aα] =
1

2
I1 + I22

∞∑
n=1

1

2n+1
In−11 . (41)

Equation (41) converges to

E[Aα] =
1

2
I1 + I22

1

4− 2I1
(42)

with I1 < 2. By changing the variables, we have

I1 =
λ2−α

β

∫ 1

0

z
2λ−α(1+β)

2β −1(1 + z)αdz, (43)

and

I2 =
λ2−α

β
B

(
2λ− α(1 + β)

2β
, α+ 1

)
, (44)

where B(x, y) is the beta function. We use MATLAB to
approximate the integration in (43) numerically and solve α
with a given β.



(a) α value as a function of β

(b) Tail dependence coefficient as a function of β

Fig. 2. Numerical results of α and tail dependence coefficient as a function
of β, λ = 1/4, 1/2, 1, and 2.

For the joint case, let T be an exp(2λ) random variable.
Given T = t, u ∼ U(0, t). Denote

V =
eu(1+β) − eu(1−β)

2
;

W =
eu(1+β) + eu(1−β)

2
. (45)

In the stationary regime, we have:

(X1, X2)
d

==

{
(XV +W,XW + V ) w.p. 1

2

(XW + V,XV +W ) w.p. 1
2

, (46)

where X is the same as in Equation (39).
The tail dependence coefficient of this model can be

computed by Breiman’s lemma [9],

lim
x→∞

P (X2 > x|X1 > x) =
2E[V α]

E[V α] + E[Wα]
. (47)

EV α and EWα can be estimated by generating i.i.d. samples
from distribution in equation (45) and computing the sample
mean. Since 0 < V < W for any β > 0, the tail dependence
coefficient of this model is between 0 and 1.

Let λ = 1/4, 1/2, 1 and 2, the numerical results are plotted
in Fig. 2. As we know, when β = 0, the tail exponent α = λ
and the tail dependence coefficient is 0. As shown in Fig. 2,
α decreases as β increasing, which means the tail becomes
heavier. Meanwhile, the tail dependence coefficient increases
with the increasing of β value and reaches 1 at the same time
when α reaches 0. For larger Poisson rate λ, the critical β
value that makes the tail exponent α approach 0 is also larger.

Fig. 3. Tail dependence coefficients as a function of β2 (λ = 0.25, β1 =
0.001)

Consider the model in a more general form:

d

(
X1

X2

)
=

(
1 β1
β2 1

)(
X1

X2

)
dt

+

(
1−X1−

0

)
dN1 +

(
0

1−X2−

)
dN2. (48)

Use the same method, we prove X1 and X2 both satisfy
the stochastic recursion in (37), where A is the same as in
(38) with β =

√
β1β2.

For the joint case, let V1 =
√

β1

β2
V and V2 =

√
β2

β1
V ,

where V is the same as in Equation (45). Then we have

(X1, X2)
d

==

{
(XV1 +W,XW + V2) w.p. 1

2

(XW + V1, XV2 +W ) w.p. 1
2

. (49)

and the tail dependence coefficients become

lim
x→∞

P (X1 > x,X2 > x)

P (Xi > x)

=
E [min (V1,W )

α
] + E [min (W,V2)

α
]

E[V αi ] + E[Wα]
, i = 1, 2. (50)

This model generates different tail dependence coefficients
with X1 or X2 given. Let λ = 1/4, fix the value β1 =
0.001 and increase β2 value to compute the tail dependence
coefficients in (50). As shown in Fig. 3, lim

x→∞
P (X2 >

x|X1 > x) < lim
x→∞

P (X1 > x|X2 > x) when β1 > β2
and vice versa.

To get a whole picture of the joint distribution of the sec-
ond modified mode, we generate samples pairs of (X1, X2)
in (46), and draw the CCDF of the samples. With λ = 2,
β = 0.2, we have α = 1.9203. 100, 000 samples are
generated and the CCDF is shown in Fig. 4. As we can see,
the CCDF has a shape of a saddle on top and this feature
actually is not discovered in 2D power-law data we know.

V. PCSDE MODEL FOR COMPLEX NETWORKS

The PCSDE models we proposed can be used to explain
power law data in complex networks potentially. In the net-
work generative algorithm with preferential attachment, the
network grows by adding new nodes and new edges in each
step. Preferential attachment means, when adding new edges,
the target node is selected with a probability proportional to
the node’s current degree. For directed graphs, the node is



Fig. 4. CCDF of N = 100, 000 i.i.d. samples of (X1, X2) in (46).

selected according to the node’s current in-degree or out-
degree.

Let EM be the expectation of the total degree (in-degree
or out-degree for directed graph) added in each step, with
(1) EM1: the degree associated with the new nodes; and (2)
EM2: the degree associated with the existing nodes in the
original graph. Assume the number of nodes in the network
grows exponentially with rate λ. Then the life time of the
nodes, which is defined as the time period between the instant
when the node is born and the observation instant, follows
exponential distribution with rate λ. Then with preferential
attachment, we prove that, the expected degree that a node
gets in the network also grows exponentially with time, and
the rate β has the following relationship to λ,

β =
EM2

EM
λ. (51)

So, in the generative models, expected degree grows
exponentially, while the life time follows exponential dis-
tribution, which means the PCSDE model in (1) provides an
interpretation to the power-law behavior in some network
generative models with preferential attachment. For B-A
model in [10], the algorithm attaches half of the undirected
edges to the new node and half to the nodes in the existing
network in each step. With EM2 = 1

2EM , we have β = 1
2λ

for B-A model.
While univariate PCSDE models are useful, 2D PCSDE

model can also be used to model the expected in- and out-
degree growths in directed networks, such as the Bollobás
model in [11]. In this model, with probability p one appends
a new node with a directed edge (with p1, introducing in
a new in-degree; with p2, introducing in a new out-degree);
with probability q = 1−p one appends a directed edge to the
existing graph with preferential attachment. Each new node
is given a bias to in-degree εin and a bias to out-degree εout
to avoid 0 initial in- and out-degree. We give the following
2D PCSDE model,

dX1 = β1X1dt+ (1 + εin −X1)dN1 + (εin −X1)dN2

dX2 = β2X2dt+ (εout −X2)dN1 + (1 + εout −X2)dN2,
(52)

with Poisson rates λ1 + λ2 = λ and λ1/λ2 = p1/p2.
The expected in-degree added in each step is EM in =

1 + pεin and the expected in-degree added with preferential
attachment is EM in

2 = p1 + q. So, the growth rate of
expected in-degree β1 has the following relationship to λ:
β1 = p1+q

1+pεin
λ. Similarly, we have EMout = 1 + pεout and

EMout
2 = p2 + q, which gives β2 = p2+q

1+pεout
λ.

By adding Brownian motion component into the PCSDE
model, our stochastic model may be used to describe degree
growth of a single randomly selected node in complex
networks, like the model below:

dX = βXdt+ g(X)dW + (x0 −X−)dN, (53)

where W is a standard Brownian motion. The model with
g(X) = σX is already discussed in [4], which produces
double Pareto distribution. The 2D extension of the SDE
model with both Browian motion and Poisson counter, thus
could be used to describe the in-degree and out-degree
growth of a single node in a directed network. This part
contains in our further work.

VI. CONCLUSIONS

We develop two types of 2D PCSDE models to generate
correlated bivariate power-law distributions. We study the tail
dependence of these models. The results indicate that the
model of Type II might be the more interesting one since
it generates fractional tail dependence coefficients. However,
fractional tail dependence coefficient may not be the case in
real data, since this model has a joint distribution that does
not fit the body part of existing data. In our model of Type
I, a shared Poisson counter implies that the two variables
start their growth processes at the same time, which further
implies a common cause behind. When the empirical data
indicates dependence in the regions of very large values we
might want to infer that there is a common cause for the
very large values observed.
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