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Abstract—We analyze the tradeoff between the amount of
signaling overhead incurred in path selection in a MANET
with time-varying wireless channels and the application-level
goodput and end-to-end power expended on the selected path.
Here, increased overhead increases the accuracy of the link-
state estimates used in path selection but decreases the amount
of bandwidth available for application use. We develop an
information-theoretic, bounding approach to quantify the signal-
ing overhead. Specifically, we investigate (i) the time granularity
at which link state is sampled and communicated, and (ii)
the minimum number of bits needed to encode this link state
information, such that the expected power consumption within
a sampling interval is minimized subject to a fixed source-
destination goodput constraint. We formulate an optimization
problem that provides a numerically computable solution to these
questions, and quantitatively demonstrate that short sampling
intervals incur significant overhead while long intervals fail
to take advantage of the temporal correlation in link state.
Additionally, we find that using a small number of bits per
sample do not provide sufficient information about the network
while using too many bits provide little additional information
at the expense of increased overhead. Our work can be used by
network operators as a tool to determine parameters such as
the optimal state update frequency and the number of bits per
sample.

I. INTRODUCTION

The overhead of gathering state/control information (e.g.,

link states, node locations, queue lengths) can be significant

in a mobile ad-hoc wireless network (MANET) when band-

width is limited and network structure and state may change

frequently. In such dynamic scenarios, it is still advantageous

to collect state information, provided that this information

leads to better decisions that more than compensate for the

additional overhead incurred. For example, the decrease in

available path bandwidth as a result of state gathering overhead

may be more than compensated for by the choice of better

paths for routing data packets. Efficient bandwidth use is not

the only metric of concern in ad hoc networks; since nodes

are typically battery powered, minimizing power consumption

is also important.

Understanding the tradeoff between the cost incurred in

state information collection in a network and the resulting

performance is a fundamental, yet largely unexplored problem.

In this paper, we analyze this tradeoff between the amount of

state information collected (at what precision?, how often?)

and overhead incurred, and the resulting performance in wire-

less networks while providing goodput guarantees. We develop

an information-theoretic, bounding approach to analyze the

tradeoff between the amount of signaling overhead incurred

in path selection in a MANET with time-varying wireless

channels and the application-level goodput and end-to-end

power expended on the selected path.

We consider a network of n nodes with multiple source-

destination pairs. We assume each source has m disjoint paths

to the destination with k links on each path and that time

is divided into intervals. At the beginning of every interval,

each source collects ‘noisy’ estimates about the links in the

network. By ‘noise’ we refer to the quantization error arising

from finite precision representation of link states. The link

state estimates in our model characterize the (time-varying)

effect of shadowing on the received power.

We use the information-theoretic rate-distortion approach

to quantify the noise in the link measurements - as we use

more bits to encode time-varying link state, the fidelity of the

estimates increase, but the control overhead also increases.

Moreover, we assume each source also desires to achieve

a fixed amount of goodput, which is defined as the total

throughput (including control and data) minus the control

overhead. The source selects a path i among the m paths

such that the expected power consumed in that interval is

minimized. The problem can be then stated in the following

manner.

At what time granularity should links be sampled and at

what rate (bits) should link values be encoded such that the

expected power consumed in any interval is minimized subject

to a fixed source-to-destination goodput constraint? We for-

mulate an optimization problem which provides a numerically

computable solution to these questions. The optimization

problem takes as input the desired goodput, and leverages

the distribution and autocorrelation of the shadowing process

to determine the optimum value of the sampling interval and

the number of bits per sample such that minimum power is

consumed. Our optimization problem is solved off-line and

provides network operators a tool for determining optimal

operating points (state update frequency, number of bits per

sample).

As expected, our evaluation quantitatively demonstrates that

short sampling intervals incur significant overhead while long

intervals fail to take advantage of the temporal correlation in

link state. We also observe that using a small number bits per
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sample do not provide sufficient information about the network

while using too many bits provides little additional informa-

tion at the expense of increased overhead. Additionally, we

simulate a network with varying link states and compare the

performance of the numerical and simulation results.

The rest of paper is organized as follows. We discuss related

work in Section II. In Sections III and IV we describe our

network model and the optimization problem respectively.

We then provide a solution for the optimization problem in

Sections V and VI. We present the numerical and simulation

results in Sections VII and VIII respectively and finally

conclude the paper in Section IX.

II. RELATED WORK

Most prior work has adopted simulation-based techniques

to study the overhead of routing protocols in mobile wireless

networks [1], [2]. Simulation has been used to study the per-

formance of AODV and OLSR protocols in both VANETs [1]

and MANETs [2]. Viennot et. al [3] perform a simple analysis

of the control traffic for reactive and proactive protocols in

MANETs considering parameters such as the average degree

per node, the average number of routes created/sec and then

compare analytical and simulation results for AODV, DSR and

OLSR.

Theoretical studies characterizing the overhead of routing

protocols in MANETs has been done by Abouzeid et. al [4],

[5], [6], [7]. Zhou and Abouzeid [4] mathematically analyze

the overhead of the reactive routing protocols and estimate

the overhead associated with route discovery and route failure.

They validate their numerical results via simulations of regular

and random topologies. Information-theoretic techniques have

been used to obtain lower bounds on memory requirements

and routing overhead for hierarchical proactive routing in

mobile ad hoc networks in [5]. The tradeoff between network

properties such as connectivity, unpredictability and resource

contention and state (control or data or both) information

collection has been studied by Manfredi et. al [8].

Our work is closest to [7] where the authors use rate-

distortion techniques (an information-theoretic approach) for

analyzing the protocol overhead of link state MANET routing.

They derive lower bounds on the minimum bit-rate at which

a node must receive link state information in order to route

data packets with a guaranteed delivery ratio. We differ

from the above mentioned works because we consider the

path selection problem and analyze the tradeoff between the

signaling overhead (state update frequency and the number

of bits per sample) and power consumption in time-varying

channels while providing goodput guarantees.

Power consumption in wireless networks is also a well

explored field [9], [10]. In [9] the authors consider the problem

of joint routing, scheduling and power control in wireless net-

works and provide an approximate algorithm with performance

guarantees to address it. Liu et.al [10] study the optimal power

allocation scheme which maximizes the throughput with delay

and average power consumption constraints. The primary dif-

ference between existing literature on power optimization and

our work is that we model state gathering overhead/costs and

are interested in determining the optimal sampling frequency

and number of bits for encoding samples so as to minimize

the power dissipation while maintaining a fixed goodput.

III. NETWORK MODEL

In this section we describe our network model and assump-

tions. We consider a network of n nodes with multiple source-

destination pairs where each source has m disjoint paths to

the destination with k links on each path. We assume time is

divided into intervals of duration Ts and at the beginning of

every interval, each source collects ‘noisy’ estimates about the

links in the network.

In our model these link state estimates characterize the

(time-varying) effect of shadowing on the received power.

Shadowing is assumed to be a lognormally distributed random

process (in dB it is normally distributed) [11]. Consider any

sampling interval and let t be a time of interest in that interval,

0 ≤ t < Ts. Let us consider the ith path and the jth link along

this path at some time t.

Let Lij(t) be the lognormal shadowing process and

X ′
ij(t) = 10 log10 Lij(t) be its value in dB. X ′

ij(t) is assumed

to be a stationary Gaussian random process with mean μ = 0
and autocorrelation function RX′(τ) = σ′2e−λτ [12]. The

autocorrelation coefficient function (ρ′(τ)) for any stationary

random process X ′(t) may be defined as ρ′(τ) = RX′ (τ)−μ2

RX′ (0)−μ2 .

Thus for the shadowing process, the autocorrelation coefficient

function is given by : ρ′(τ) = e−λτ .

For ease of analysis we express lnLij(t) =
ln 10
10 X ′

ij(t) =
Xij(t) replacing the logarithm to base 10 with the natural

logarithm. Hence, Xij(t) is also Gaussian random process

with mean 0 and autocorrelation function RX(τ) = σ2e−λτ

where σ2 = ( ln 10
10 )2σ′2. Therefore, the autocorrelation coeffi-

cient function(ρ(τ)) of X(t) is given by ρ(τ) = ρ′(τ). The

correlation of Xij(t) indicates how the link state varies during

the sampling interval, given its value at the beginning of the

sampling interval. Knowledge of the correlation is essential

for computing the expected power expended in an interval.

At the beginning of the sampling interval the source receives

X̂ij(0), which are ‘noisy’ estimates of Xij(0). As Xij(0) are

drawn from a continuous distribution, encoding them exactly

will require an infinite number of bits. The ‘noise’ therefore

corresponds to the quantization error and thus X̂ij(0) are finite

precision representation of Xij(0). The number of bits used

to encode the values of Xij(0) determines the closeness of

X̂ij(0) to Xij(0); thus, the inaccuracy in X̂ij(0) decrease

as more bits are used for encoding. If ε is the noise or

quantization error then, X̂ij(0) = Xij(0) + ε.

We model ε as Gaussian noise with mean 0 and variance

σ2
e [13]. We consider that all the link state values are en-

coded together and sent to the source. We use rate-distortion

techniques [14] to upper bound σ2
e . In particular, define the

distortion as the squared-error distortion, d(x, x̂) = (x− x̂)2.

Then σ2
e = E[(X̂ij(0) − Xij(0))

2] ≤ D. The rate distortion

function R(D) for any N(0, σ2) source with squared-error

distortion is given in [14]:

R(D) =

{
1
2 log2

σ2

D 0 ≤ D ≤ σ2

0 D > σ2
(1)
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Equation (1) thus represents the minimum number of bits

required to encode each shadowing sample. It is also clear

that X̂ij(0) is a Gaussian random variable with mean 0 and

variance σ2
D given by σ2

D = σ2
e + σ2.

We assume that the path loss and thus the distance between

any two pairs of nodes in the network is the same. Later in

section VI we discuss how to relax this assumption.

IV. MINIMUM POWER PROBLEM

In this section we describe the Minimum Power Problem.

Each source desires a goodput G. Let Cb and Ct be the

control overhead and the overall throughput (combined control

and data) respectively. Therefore we have Ct = G + Cb. At

the beginning of each sampling interval, the source collects

noisy link state estimates. The source desires to minimize the

expected power spent in any interval to achieve goodput G.

Based on the noisy link state estimates collected, the source

calculates the expected power consumed along each of the M
paths to the destination in that sampling interval. It then selects

the path i for which the expected power consumed is least.

The goal of the Minimum Power Problem is to determine

Ts and D such that over all possible instantiations of link

estimates the expected power consumed (for transmitting both

control and data) in any sampling interval to achieve a goodput

requirement G is minimized.

Let Qi be the expected power dissipated along the ith path

in a sampling interval, given the sampling interval Ts, the dis-

tortion D and the link state estimates X̂ij(0) at the beginning

of the interval. The source selects the path which dissipates

the minimum expected power in the sampling interval and thus

the Minimum Power Problem can be formally stated as,

Objective: min
Ts,D

E[min
i
Qi]

subject to the constraint:

Ct − Cb = G

V. POWER CONSUMPTION AND CONTROL OVERHEAD

In this section, we begin by modeling the transmit power

expended along each path needed to achieve a fixed throughput

during a sampling interval. We model the control overhead as a

function of the total number of links in the network and the rate

distortion function. These models for power, control overhead

and shadowing are then used to obtain an approximate solution

to the Minimum Power Problem in Section VI.

A. Power Consumption

The transmitted power Pi(t) along the ith path at time t to

achieve a total throughput Ct (data and control) is obtained

by summing the per-link power of each hop. Let d, W and B
denote the distance between any two nodes, the transmission

rate at any node and the available channel bandwidth in Hz
respectively. Further consider a reference distance d0 and let

Pt(d0) and Pr(d0) be the transmit and received power between

two nodes separated by d0. Shannon’s formula [14] relates the

transmission rate, the shadowing, the AWGN and the power.

There is a subtle point to be noted here. Although the

transmission rate is W , the source can only achieve a lower

throughput Ct, as the wireless medium is a shared resource - if

multiple nodes transmit together, interference and packet loss

can occur. We assume that there is a scheduling algorithm

that determines the time periods during a sampling interval

when each source gets the opportunity to transmit. Each source

transmits for only a fixed fraction of time during a sampling

interval, e.g., it is allocated a fixed number of transmission

slots in an interval. Let T1 be the amount of time a source

transmits in an interval of duration Ts.

We abstract away the scheduling details and define the

scheduling factor as S = T1

Ts
. S depends on the scheduling

algorithm and the number of nodes and is a parameter in our

model. The details are available in [15]. Further, we consider a

MANET with fast moving nodes such that Ct is much smaller

than W . We also note that any arbitrary value of Ct is not

achievable, e.g., the achievable Ct is bounded by results such

as the Gupta-Kumar result [16].

Using the above model, the total power Pi(t) expended

along the ith path obtained as the additive sum of the per-

link power of each hop is given by

Pi(t) =
k∑

j=1

Pij(t) =
k∑

j=1

2Ct/SB − 1

Lij(t)
SFN0 (2)

where N0 is the noise, F = Pt(d0)
Pr(d0)

( d
d0
)α and α is the path

loss exponent.

B. Control Overhead

Following [7], we model the minimum overhead for gath-

ering link state information as,

Cb =
n(n− 1)

2

R(D)

Ts
(3)

The rationale behind this abstract model is that the total

number of links must be less than
n(n−1)

2 (the total number

of links is O(n2)), and a source must know the state of all

network links to compute its best path to the destination.

Hence, following [7]
n(n−1)

2
R(D)
Ts

represents the minimum

control overhead.

VI. SOLVING THE OPTIMIZATION PROBLEM

In this section we approximately solve the Minimum Power

Problem. All results used in this section are available in our

technical report [15]. We begin by expressing Pi(t) (2) as:

Pi(t) =
k∑

j=1

CYij(t) (4)

where C = (2Ct/SB − 1)SFN0 and Yij(t) =
1

Lij(t)
. There-

fore, Yij(t) is also a lognormal random process and we have

lnYij(t) = −Xij(t).
Recall that Qi is the expected power consumed along the

ith path in a sampling interval, given the sampling duration

Ts, the distortion D and the link state estimates X̂ij(0). Note

that the centralized solution to the optimization problem only

has X̂ij(0)
′s available to it and not Xij(0). Qi can be formally

expressed as,

Qi =
1

Ts

Ts∫
0

E[Pi(t)|X̂i1(0)X̂i2(0).....X̂ik(0);Ts, D]dt (5)
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Note that Ts and D are model parameters and are not random

variables: we thus omit them while expressing conditional

expectations. The expression for Qi can be rewritten as,

Qi =
1

Ts

Ts∫
0

E
[
E[Pi(t)|Xi1(0), .....Xik(0)]

|X̂i1(0), .....X̂ik(0)
]
dt (6)

The above simplification can be done because given Xij(0),
Pi(t) is independent of X̂ij(0), i.e., the underlying process

itself does not depend on the observation X̂ij(0). We first de-

termine Hi = E[Pi(t)|Xi1(0), .....Xik(0)] which can be done

in the following way (7). At any given time t, Xij(t)|Xij(0)
is a Gaussian random variable with mean μx(t) = ρ(t)Xij(0)
and variance σ2

x(t) = σ2
(
1− ρ2(t)

)
[15]. Hence at any given

time t, Yij(t)|Xij(t) is a lognormal random variable with

mean e−μx(t)+
σ2
x(t)

2 [15].

Hi = C

k∑
j=1

E[Yij(t)|Xi1(0), .....Xik(0)]dt

= C

k∑
j=1

A(t)e−ρ(t)Xij(0)dt (7)

where A(t) = e
σ2

2 (1−ρ2(t)). Substituting (7) in (6) we have,

Qi =
C

Ts

k∑
j=1

Ts∫
0

E[A(t)e−ρ(t)Xij(0)|X̂ij(0)]dt

=
C

Ts

Ts∫
0

A(t)e
ρ2(t)σ2

e
2

k∑
j=1

e−ρ(t)X̂ij(0)dt (8)

Equation (8) uses the fact that the quantization error ε is

independent of X̂ij(0). Moreover, at any given time t, ρ(t)ε is

a Gaussian random variable with mean 0 and variance ρ2(t)σ2
e .

Therefore, at any given time t, eρ(t)ε is a lognormal random

variable with mean e
ρ2(t)σ2

e
2 [15].

We would like to further simplify the expression for Qi.

We approximate the sum of lognormal random variables by

a lognormal random variable [15]. In (8), at any given time

t, Y ′
ij(t) = e−ρ(t)X̂ij(0) is a lognormal random variable with

mean μy′(t) = e
ρ2(t)σ2

D
2 and variance σ2

y′(t) = (eρ
2(t)σ2

D −

1)eρ
2(t)σ2

D . Therefore, Y ′
i (t) =

k∑
j=1

Y ′
ij(t) is approximated by

a lognormal random variable with mean μ1(t) = kμy′ and

variance σ2
1(t) = kσ2

y′ . Let Zi(t) be the Gaussian variable

corresponding to Y ′
i (t). We can express its variance σ2

z(t) =

ln
[
eρ

2(t)σ2
D−1

k + 1
]

and mean μz(t) = ln k +
ρ2(t)σ2

D

2 − σ2
z(t)
2

[15]. Further, let A1(t) = A(t)e
ρ2(t)σ2

e
2 = e

ρ2(t)σ2
e+σ2(1−ρ2(t))

2 .

We then express (8) as,

Qi =
C

Ts

Ts∫
0

A1(t)
k∑

j=1

Y ′
ij(t)dt ≈

C

Ts

Ts∫
0

A1(t)e
Zi(t)dt (9)

We define H ′ = min
i
Qi. H

′ can be expressed as,

H ′ = min
i

C

Ts

Ts∫
0

A1(t)e
Zi(t)dt >

C

Ts

Ts∫
0

A1(t)e
−max{−Zi(t)}dt

(10)

The inequality is due to the fact that minimum of a summation

is greater than the summation of the minimum. For solving the

Minimum Power Problem we then need to determine E[H ′]
which can be written as,

E[H ′] >
C

Ts

Ts∫
0

A1(t)E[e
−max{−Zi(t)}]dt (11)

The next step is to determine the distribution of U =
max{−Zi(t)}. It is clear that {−Zi(t)} are i.i.d Gaussian

random variables with mean −μz(t) and variance σ2
z(t).

The maximum of i.i.d Gaussian random variables follows a

Gumbel distribution asymptotically, as m the number of paths

goes to ∞ with scaling factor am = σz(t)√
2 lnm

and location factor

bm = σz(t)(
√
2 lnm− ln lnm+ln(4π)

2
√
2 lnm

)−μz(t) respectively [15].

Let us consider the random variable V such that lnV = U . V
follows a log-Gumbel distribution with the same parameters as

U [15]. Therefore as Zi(t) are Gaussian, the mean of the log-

Gumbel distribution exists and it follows a gamma function

multiplied by an exponential.

But, we are interested in U ′ = −U which follows a negative

Gumbel distribution. Define lnV ′ = U ′. It can be easily shown

that E[V ′] = e−bmΓ(1 + am).

E[H ′] ≈ C

Ts

Ts∫
0

A1(t)E[e
U ′

]dt =
C

Ts

Ts∫
0

A1(t)e
−bmΓ(1+am)dt

(12)

E[H ′] computed from (12) will be an approximation

to E[min
i
Qi]. The optimization problem thus reduces to

min
Ts,D

C
Ts

Ts∫
0

A1(t)e
−bmΓ(1 + am)dt, which can be easily com-

puted numerically.

Equation (12) holds for the equal path loss scenario. But if

this assumption is relaxed, the above analysis holds with minor

modification until (11) - we only need to model the Gaussian

variable Zi(t) to take into account the different values of C
for the different links resulting from the unequal path loss

assumption. If the Minimum Power Problem is to be solved in

an unequal path loss scenario, one can obtain the distribution

of max{−Zi(t)} numerically (which is easy as Zi(t) are

Gaussian) and then determine E[H ′]. However, note that such

a procedure will be computationally expensive.

VII. EVALUATION

In this section we present numerical results obtained by

solving the optimization problem using (12). We first study

the tradeoff between the sampling interval and the number

of bits per sample for a specific set of parameters and then

proceed to investigate the impact of the various parameters

on this tradeoff. We consider a network of 100 nodes with
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Fig. 1. Numerical: Bits per sample vs. Sampling interval tradeoff
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(b) Sampling Interval =2 sec

Fig. 2. Simulation: Bits per sample vs. Sampling interval tradeoff

G = 75Kbps, B = 10MHz, S = 0.05 and λ = 1
5 . The

variance of shadowing is 25 dB. Further, we assume m = 5
and k = 5, i.e., the source has 5 disjoint paths with 5 links

each. The results are obtained by increasing the number of

bits per sample at a granularity of 0.5. In order to facilitate the

comparison between G and Cb, we note that when R(D) = 2
and Ts = 1, Cb ≈ 10Kbps (Equation (3)). We also use this

same configuration when we study the effect of the different

parameters on the sampling interval and number of bits per

sample (except for the parameter under investigation).

Figure 1 shows the variation of the transmit power with

the number of bits per sample for different values of sam-

pling interval. We observe that with a small number of bits

per sample (very little information about the network), the

expected power consumed is high irrespective of the length of

the sampling interval. In particular, when the number of bits

per sample is 0 (equivalent to choosing a path at random), the

power consumed is very high. Conversely, when the number

of bits per sample is high, the additional information is of

marginal use in determining the minimum power path, but the

overhead expended in transmitting these control bits is high.

We are interested in obtaining the global minima of the

power consumed considering the entire range of the sampling

interval and number of bits per sample. We observe that for

the parameter values considered, the optimal value of the

sampling interval is 1 second and the number of bits per

sample is 1.5. Although the results in Figure 1 are obtained

for S = 0.05, similar figures were obtained for other values

of S. In the throughput range of interest (when Ct is small),

the factor (2Ct/SB − 1) in (2) linearizes, making the power

almost independent of S and vary linearly with Ct.

We have also studied the impact of the various parameters

(number of nodes, shadowing correlation ( 1λ ), goodput, num-

ber of links in a path, number of paths) on the tradeoff between
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Fig. 3. Variation of Bits/Sample and Sampling Interval with Shadowing
Correlation ( 1

λ
)

the number of bits per sample and the sampling interval. We

present few results here while the remaining are available in

[15]. As these results are obtained by increasing the sampling

interval and the number of bits per sample at a granularity of

0.5, the graphs are discontinuous.

We study the variation of the number of bits per sample and

the sampling interval with the correlation of the shadowing

process ( 1λ ) in Figures 3(a) and 3(b) respectively. Figures 3(a)

and 3(b) show that both the number of bits per sample and

the sampling interval increase with the shadowing correlation.

This is because as shadowing correlation increases, the op-

timal configuration takes advantage of this by sampling at a

lower frequency (longer sampling interval). Simultaneously,

the number of bits per sample also increases as the decrease

in overhead due to a longer sampling interval provides the

network an opportunity to gather high fidelity samples.

VIII. SIMULATION

In this section we report on our use of simulations using

(8) to drive the simulation, to validate our numerical results.

Specifically, we study the impact of the inequality in (10) and

the two main assumptions of the model - (i) approximating

the sum of lognormals by a lognormal and (ii) approximating

the maximum of i.i.d Gaussian random variables by a Gumbel

distribution - on the accuracy of our numerical results.

We consider the same set of parameters used in the numer-

ical evaluation. For a particular value of sampling interval and

number of bits per sample, we generate shadowing measure-

ments for all links to emulate the link state values collected

at the beginning of the sampling interval. We determine the

expected power consumed for the entire interval along each of

the m paths and then select the path for which the expected

power consumed is minimum. For each pair of values of

sampling interval and number of bits per sample, we repeat

this process 500 times to obtain the mean power consumed.

Simulation results depicting the tradeoff between the num-

ber of bits per sample and sampling interval with the transmit

power are shown in Figure 2 and should be comparable to the

numerical results in Figure 1. As in the case of our numerical

evaluation, the simulation results also show that the expected

power decays rapidly with an increasing number of bits per

sample and then begins increasing again.

We note that the power consumption is higher in case of

simulation, particularly so for a small number of bits per
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sample (approaching 0). This is because our numerical analysis

is an approximation that becomes better as the number of bits

per sample increases. A careful examination of Figures 1 and

2 reveals that when the number of bits per sample is 0, the

expected power consumed increases for numerical evaluation

and decreases for simulation with increasing sampling inter-

val. The intuitive explanation as to why the expected power

decreases with an increase in the sampling interval in case of

a real system (i.e., in our simulation) is the following.

Let us consider for the sake of simplicity that paths are

of two types - good and bad; paths are classified as good

when the power consumed at the beginning of the sampling

interval is low and bad when it is high. The expected power

consumed in any sampling interval is thus the additive sum

of the conditional expected power consumed given a path of

a specific quality (good or bad), multiplied by the probability

that the selected path is of the specified quality. The above fact

holds true irrespective of the duration of the sampling interval.

Let us next consider the probability of selecting a good or

bad path. As shadowing is Gaussian distributed, the probability

of a path being good or bad is same and is independent of

the sampling interval. As the number of bits per sample is

zero (equivalent to selecting a path at random), the chance of

selecting good and bad paths is the same. Further, because of

the exponential dependence of power on path quality, expected

power expended during a sampling interval is higher when the

selected path is bad in comparison to when it is good.

So far we have only considered the effect of path quality on

expected power consumption. We will now reason about the

impact of the sampling interval on expected power consump-

tion. When the selected path is bad, expected power expended

during a sampling interval will be higher for a shorter sampling

interval than for a longer sampling interval since shadowing

correlation decays exponentially. Similarly, when a good path

is selected, expected power expended during the sampling

interval will be lower for a shorter sampling interval.

But, the positive difference in the expected power expended

between small and large sampling interval when the selected

path is bad, is not compensated by the negative difference

in expected power expended between them when the selected

path is good. Thus, when the number of bits per sample is

zero, expected power consumed when the sampling interval is

small is higher than when the sampling interval is long.

Note that, although there is a mismatch between the nu-

merical and simulation results when the number of bits per

sample is small, our goal is not to study any specific scenario,

but rather to determine the optimal sampling interval and

the number of bits per sample. From our simulation, we

find that the minimum expected power is consumed for bits

per sample=2.5 and sampling interval=2 seconds, which is

comparable to the numerical results (bits per sample=1.5;

sampling interval=1 second). Hence we conclude that the

approximations in Section VI help in modeling the system

accurately. We have also studied the tradeoff between the

number of bits per sample and sampling interval for a network

with unequal path loss via simulation and observed that a

tradeoff similar to the equal path loss case.

IX. CONCLUSION

In this paper, we formulated an optimization problem to

determine the frequency at which a source should gather

link state estimates and the number of bits used to encode

these estimates such that the expected power consumed over a

sampling interval is minimized subject to goodput constraints.

We observe that long sampling intervals fail to take advantage

of the temporal correlation of link state estimates while short

sampling intervals incur significant overhead. Similarly, small

number of bits per sample provide very little information about

the network state while large number of bits provide marginal

additional information. Our work can be used by network

designers as a a tool for determining optimal operating points

(state update frequency, number of bits per sample).
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