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Abstract—Parallelism has often been used to improve the cent studies [7]-[10] show that, contrary to traditionaseom,
reliability and efficiency of a variety of different engineering when the probability of packet errors is a function of thekesc
systems. In this paper, we quantify the efficiency of parallelism length, retransmission-based protocols may cause power la

in systems that are prone to failures and exhibit power law t e durati d iol th hout
processing durations. We focus on the context of transmitting o 2SMISSION duralions and possibly even zero throughput.

a data unit in communication networks, where parallelism can Similar results have been reported in other contexts [Z].[1
be achieved by multipath transmission (e.g., multipath routing). A natural question to ask is whether and, if so, how, using

We investigate two types of transmission schemes: redundant parallelism can mitigate power law delays, which is the cu
and split transmission techniques. We find that the power-law of our study

transmission delay phenomenon still persists with multipath To f di . let ider th i f
transmission. In particular, we show that when the transmission o ‘?CUS_ our discussion, let us F:Oh;l er the noton o
delays of each path are characterized by the same power law, parallellsm in the context of communication networks, veher

redundant multipath transmission can only result in a constant a data unit can be transmitted using multiple paths (also
factor performance gain, while order gains are possible when known as multipath routing or more generally multipath
the delays are light tailed. We further compare the performance transmission). A data unit can be a file or packet (which

of redundant transmission and split transmission, and show that d interch blv. h f d d the trasimi
there is no clear winner. Depending on the packet size distribution are used interchangeably, henceforward), an € tragsmis

properties and the manner in which splitting is performed, one Needs to restart after a failure (i.e., there is no checktpoin
scheme results in greater performance over the other. Specifittg,  in the transmission). We consider two multipath transroissi
split transmission is effective in mitigating power law delays if the = strategiesredundantand split transmission that correspond
absolute value of the logarithm of the packet size probability tail respectively to the two aforementioned types of parafielis

is regularly varying with positive index, and becomes ineffective e . .
if the above quantity is slowly varying. Based on our analysis, More specifically, redundant transmission replicates &egiac

we develop an optimal split transmission strategy, and show that and sends each copy over a different path (we use the terms
this strategy always outperforms redundant transmission. channel and path interchangeably for the rest of the paper)

and therefore, the transmission is successful once theofirst
the packets arrives at the destination; split transmission

Parallelism is a common approach to improve reliability anthe other hand, breaks the data unit into several pieces and
efficiency in practice. For instance, in peer to peer systemsdispatches each piece along a different path, which coeplet
file is downloaded in parallel from multiple peers; in grichtco the transmission when all the pieces arrive at the destimati
puting, a job is allocated to multiple machines to be comgutasuccessfully.
simultaneously; and in computer communication networks, We aim to answer the following three questions: (I) Can
multipath routing can be used to improve the efficiency amédundant or split transmission eliminate power laws ingra
reliability of data transfer. In one type of parallelism, lefjopb mission delays, and how can the performance gain from
is fetched/computed in its entirety, and hence the conguletimultipath transmission be characterized? (Il) Is splib$rais-
time is the minimum of the completion times from/at theion or redundant transmission more beneficial in mitigatin
multiple locations. In another type of parallelism, a fibdyj power law delays? and (lll) What is the optimal strategy
is split into multiple pieces, fetched/computed indepertlge to split packets and dispatch those fragmented pieces to the
and hence the completion time is the maximum of the corappropriate paths.
pletion times of all the pieces. In practice, more compt#dat To address the above questions, we generalize the single
strategies can be developed by appropriately combiningethehannelmodel introduced in [9] to a multipath channel model.
two types of parallelism. In both cases, we expect bettEirst note that a channel can be viewed as a medium over
efficiency from using parallelism since the delay is either t which faults can occur causing jobs to be interrupted and
minimum one or because a smaller job needs to be completertransmitted. In the context of communication networkss t

In this paper, we quantify the efficiency of parallelism ircorresponds to a wireless communication channel as inff9], i
mitigating power law tails, which have been shown to b#he context of grid computing the channel may correspond to
present when a job needs to be retransmitted after a faildihe processor over which the computations are completed, et
occurs. For example, in wireless communication networks, rHenceforth, we will focus on communication networks and

I. INTRODUCTION



consider the notion of a channel in that context. Specificallerrors is a function of the packet length, retransmissiased
consider a communication network where there Argaths protocols could cause heavy-tailed (specifically, powev) la
between a source and destination. The channel dynamicgrahsmission durations, even when the data units and channe
path j, 1 < j < K, are modeled as an on-off procesgharacteristics are light-tailed. Our study generalihessingle
{(A],U})}i>1 that alternates between available periof, channel model to the one with multiple paths. Multipath
and unavailable period;. Only in each time periodAg transmissions have also been studied in [1] using Extreme
when the channel becomes available, can a packet startViédue theory, but only when the number of paths goes to
transmission over the path. If the length df is longer infinity. In this work, we focus on the context of multipath
than the length of the packet, the transmission is congidetgansmissions in computer networks with a fixed (possibly
successful over patjy otherwise, we wait until the beginningsmall) number of paths, where multipath transmission has
of the next available periodl’, , and retransmit the packetlong been used to improve reliability and efficiency (e.d], [
from the beginning. The above model can be viewed as a fifs}, [11]). Here we want to emphasize that, the packet size
order approximation to channels that may fail. Channelifag distribution has been assumed to have an infinite suppdrtsn t
can happen due to many reasons. For instance, in a wirelsggly, which contradicts the reality that all packet neksor
network environment, failures occur due to channel fadin(from the Internet to wireless LANSs) impose the maximum
interference and contention with other nodes, multipabots, packet sizes at the different layers of the protocol statk. |
obstructions, and node mobility [12]. As a consequence, than be easily proved that eventually the transmission delay
signal to noise ratio (SINR) may vary in different time ssale distribution will be light-tailed under this condition. Mever,

The on periodg A? } in our model correspond to the situatioras has been shown in [14], [15], this light-tailed behavior
when SINR is high, while the off period&UZ} correspond to occurs with a power law main body of the delay distribution,

the situation when SINR is low. and this power law behavior may have dominating effects on
Our main contributions in this paper can be summarized ¢ system performance since it spans over a time interaél th
follows: increases very fast with respect to the length of the longest

« We show that, when all packets are of the same si acket size distribution allows us to study the main bodyhef t

reQundar:jt ltran.smtlrs;smn cantk?r;a?:]ly re;iucef :Ee éra} Pansmission delay distribution. While, similar to [14]5]1we
mission defdy In e sense hat the ralio ot In€ O€lay, extend our results to the case with packets having finite
distribution tail with and without redundant '[ransmlssmlguppOrt we feel that this would distract from the main isig
tends to zero (see Proposition I1l.1). However, in realit ained %rom the paper

packgt sizes are usually yarlable dug to_ many other ote that the specific investigation conducted in this paper
considerations, 9., reducing commumcguon costs aﬂg: been in the context of data transmission in wireless
extra overhead mdgced from encapsul'anon. we PrO¥S mmunication networks, especially for lower-power senso
that, when packet* sizes are random variables that S_at'ﬁ tworks where using complicated coding schemes is difficul
IQgP[L > o] & o log P[4 > af, redundant ransmis- 4 often simple operations are preferred to recover failed
sion does not change the order of the probability tail ata. However, the mathematical setting described in Gegti

the transmission delays (see Theorem 2), and can of yquite general, and the results can be extended to many othe

mgg\ﬁnthse) system performance by a constant factor (Sgi ations that involve parallelism and job failuresctsas

. L .. .. computing jobs in grid computing, file downloading in peer
« We show that split transmission is effective in mitigatin pting | 9 puting ginp

power delays if the absolute value of the logarithm Oé;::hpeedeurligstworks, parallel experiment planning, and palrall

thoes.?agkgr: dse|ze g:%babkzgtgni! IS r?fgultgtrly \l;art)r/llng Vk;”th The rest of the paper is organized as follows. Section 2
P Inlt\|/t : |X;N| varvin "_;_f erc Ir\r/1e '4 n?j g OVBresents the model description and some results on sintile pa
quantity is slowly varying (see Theorems 4 a ): ansmission. Redundant transmission and split trangmniss

|IIu_strate th? pomt, we calculate the _effec_tlve_nes_s %Ure investigated in Sections 3 and 4, respectively. Fipally
split transmission for different packet size distribugon Section 5 concludes the paper
s :

Furthermore, we provide a solution for optimal split whe
we have heterogeneous paths, and show that this optimall. M ODEL DESCRIPTION AND PRELIMINARY RESULTS
strategy always oquerforms redundant transmission (Seq_et L be a random variable that denotes the length of a
Theorem.6). To refine the'result,' we also denye an exe écket. Assume that there afé > 1 paths between the
asympt_on_c for packet delivery time under optimal spli ource and destination, as shown in Figure 1. The channel
transmission (see Theorem 7). dynamics of pathj, 1 < j < K are modeled as an on-off
In terms of related work, it was observed in [13] thaprocess{(A],U;/)}i>1 that alternates between availabig
power law processing times can arise in a system whead unavailablé/] periods, respectively.
jobs need to restart once a failure occurs. This observationPacket transmission can only be initiated at the start of
was rigorously addressed in [2], [8]-[10] for a single chaeinnan available period. For a packet transmission startedeat th
model. The result reveals that, when the probability of packbeginning of A/, if A7 > L, the transmission is considered

zr%acket. Thus, our assumption on the infinite support of the



successful over patjy otherwise, we wait until the beginningneed not be identically distributed, which represents #mec
of the next available periodl! , and retransmit the packetof heterogenougaths.
from the beginning. Throughout this paper, a positive measurable funcfias
We study two multipath transmission schemes, nameballed regularly varying (at infinity) with indey if
redundant transmission and split transmission. Underrredu ) o
dant transmission, the same packet is transmitted ovek all Jim f(Az)/f(z) = A
paths, and the transmission is successful as soon as ong,pfy \ =~ 0. It is called slowly varying ifp = 0 [3].
the K duplicates arrives at the destination. Split transmiSSi%ditionally, for any two real functionsf(t) and g(t), we
represents the strategy where a packet is split itpieces | 5o f(t) ~ g(t) to denotelim; ., f(t)/g(t) = 1. Similarly,
and each piece is sent over a different path. The transmissjp, say thatf(t) > g(t) if lim, ,__ f(t)/g(t) > 1 and
is complete once all thd{ pieces arrive at the destinationf(t) < g(t) if Timye f(t)/%t) %" 1. Furthermore, we
successtully. say that f(f) = o(g(t)) if limie f(t)/g(t) = 0 and
(t) = O(g(t)) if lim;_,o f()/g(t) < co. Also, we use the
andard definition of an inverse functigii™(z) £ inf{y :
f(y) > =} for a non-decreasing functiorfi(x); note that
N; £ inf{i : A{ > L}, the notationf(z)~* represents/f(x). We useV to denote

) o ) . max, i.e., z Vy = max{z,y}, and A to denotemin, i.e.,
and, the corresponding transmission time over this path is, = min{z, y}.

defined as

Definition 1.1 The number of (re)transmissions of a pack
of lengthL; over pathj, 1 < j < K, is defined as

N;—1
J . . 1 y1
T2 Y (Al +UD) + Ly, o

— 721 1277
« Redundant transmissio.{ = L): the transmission com- L / ((AZ,U2 )} \
A e AN

pletes when the first packet is successfully transmitted XX ———
over one of thei( paths. Therefore, the total transmission  source destinatior
time T;. for this scheme satisfies :

T. = min T.
CoamEs (AKX, UK )}

///;] P///l

o Split transmissionX:fi1 L; = L): the transmission com-
pletes when allK” pieces of the packet are successfully 5 1 mutipath transmission ovek™ channels with failures
transmitted. Therefore, the total transmission tifeor
this scheme satisfies

N A. Single path transmission
T, = max Tj, . . L.
1<G<K For the caseK = 1, there is only a single transmission

and the total number of retransmissions ofépaths is Path in the system, hence we ldt = A. The total number
X of transmissionsV and transmission tim& = T, = T, has
N2 ZN' been studied in [2], [9], [10].
7 Below we quote Propositions 11.1 and 1.2 from [9], [10],
=t which show that bothV andT" can follow power law distri-
In this paper, we assume tha{ U7, Uij}jzl and butions regardless of how heavy or light the tails/Afind L

{A7,Al};>1, 1 < j < K are mutually independent i.i.d. might be.

sequences of random variables, which are also independent

of the packet sizel.. A sketch of the model depicting theProposition 1.1 If there existsae > 0 such that

system is shown in Figure 1. _ logP[L > g

We use the following notation to denote the complementary Jim. m =q,
cumulative distribution functions fod’/, 1 < j < K and L, &
then,

Gi(x) £ PlAY log P[N

GJ (I) [ > I’], hm 0og [ > n} = —q. (1)
and noee  logn

F(z) 2 P[L > z], Additionally, if E [UVD+] < oo, E[A] < oo and

_ a+6

with F'(z) being continuous eventually. We sdy paths are E [L ] < oo for somef > 0, then,
homogeneousf 47 £ A andU7 £ U for 1 < j < K, lim log P[T' > t] _ —a. @)

where “2” denotes equal in distribution. Accordingly, we use t—o0 logt

G(x) £ P[A > z]. In general { AT} <<k (@nd{U7}1<;<k)



propostton 12 1 E[LoH] < oo, E [UMVH] < o0 and E [AMY] < oo for
P[L > 2" ~ @ (P[A > 2]7}) somef > 0, then,

log P[T). > ]
where ®(-) is regularly varying with indexx > 0, then, as e T ==
n — 0o,
INa+1) Remark I1l.1 Comparing the above theorem and Proposi-
PIN >n] ~ ®(n) ®3)  tion 1.1, we observe that, the power law exponent of thel tota

transmission time under redundant transmission is the same
that under single path transmission. Informally speakthis
is becausdl’}, Ts, ..., Tk are not independent, since packets
(o +1)(E[U + A~ (4) ‘Sentover these paths are of the same size.

o(t) '

and, under the same conditions as in Proposition I.1f as
OO,

P[T > t] ~
This theorem is a direct consequence of Theorem 2, which
Remark 1.1 Proposition 1.2 provides more refined resultdvestigates a more general scenario.
than Proposition 1.1 under more restrictive conditions1eO
can easily check that (3) and (4) imply (1) and (2) by taking. Heterogenous paths

logarithms. For heterogenous paths, we have the following result when

. ) ) i using redundant transmission.
Remark 1.2 As mentioned in the introduction, note that the

results in the preceding two propositions as well as the 'cmesTheorem 2 If
the rest of the paper can be readily extended to include packe ~
with bounded sizes using similar techniques as in [14],.[15] lim log F'(x)

T—00 log Gj (SC) Y (5)

. * A
I1l. REDUNDANT TRANSMISSION for1 <j <K, ande”™ = max;<;j<k a; > 0, then, under the

. . L following three conditions I)-IIl), for somé > 0,
In this section we study redundant transmissions. We beglnl) E[L+?] < 0o

with K homogeneous paths, which is followed by the study of ) Ok (Uj)
the general case of heterogenous paths. We investigatbevhet '~ X 1<i<K

sending packets oveK paths can mitigate the power law Ill) max;<j<x E (Aj)
suffered from single path transmission. we have

1v 0
(ve) 01 . and

146
+}<oo,

A. Homogeneous paths lim w = —a*. (6)

. t—o0 logt
In this part, we present results for homogeneous paths. We - ©8
first consider packets of the same size, and then study the Mg mark 1112 The above theorem implies that the tail behav-

realistic case where packet sizes can be variable. ior of the delay distribution under redundant transmissn

determined by the best paths (i.e., the paths with the larges
Proposition IIl.1 If all packets are of constant size = | ;).

andU = 0, then,
Proof of Theorem 2:First, we establish a lower bound
log P[T}. > t] _ , _
tlggo - = —Kr, by constructing a new system that has longer available grio
_ _ . than those found on all of th& paths. The construction is as
where~y is the solution of[; e7*dP[A < z] = 1. follows. The new system has an on-off channel characterized

by alternating i.i.d. sequencdsi,;} and{U;}, where
This result can be easily derived using Corollary 3.2 in [2].y g q dst} (Ui

From this result, we see that using redundant transmission f A; =  max Al

equal size packets greatly improves performance, since the =7=

decay rate of the delay distribution increaseskasncreases, andU; = 0. Denote byN the number of transmissions of a
and thus in this case we obtain order improvements in delagcket of lengthl, over this newly constructed channel.
performance when using redundant routing. In reality, how- Now, since4!,1 < j < K are independent, we obtain

ever, packets are not of equal size. We next present a theorem K
for the case where the packet size is a random variable. PA; >a]=1— H P[A? < z).
j=1
Theorem 1 If Therefore, .
3 P Al 3
lim log F'(z) —a lim [A; > ] —1,

z—00 log G(z) w00 S G (x)



coupled with (5), yields
log P[L > z]
m —-7
z—o0 logP[4; > x]

_ *
9

which, by Proposition 1.1, yields
. logP[N > n] .
lim ————— = —a*.

n—o0 logn

()

Define 4, = min;<;<x A} andX; 2 A,1(z; < A; < 22).
Choosingz, 22 such thatE[X;] > 0, we obtain
N—1

T, > Z X;+ L. (8)
=1

Therefore,

N-1

4 N t
P|T.>—|>P X > —
[ >1ogt}_ l; >logt]
N—1 ¢

P X1>7,E>t

> [z ]
N

PN > t] - [Z >t1

Z i S logt

=1

P[N > t] — )

SinceE[e/X
bound, for some; > 0,

[¢]
> Xi <t/logt

i=1

[t]
<P [Z (E[X] — X3) >

i=1

(erxi- 1) ]

<O (e™), (10)
which, in combination with (7) and (9), implies
fim 08P >4 (11)
t—oo logt

Next, we prove the upper bound. Sine& £ max; << a; >

0, there existd < j < K such thaty; = o*. For thejth path,

we haveT, < T sinceT, = min{T,Ts,--- ,Tk}. Using
Proposition 1.1, we obtain
— logP[T,. >t . logP[T; >t
Tm log P[T; > 1] < lim log P[T; > 1] _ ot (12)
t—00 logt t—o00 logt

By combining (11) and (12), we complete the proof. ®

Our preceding result characterizes the performance insterm

i] < oo for somed > 0, we obtain, by a Chernoff

to investigate the performance improvement for redundant
transmission, we need a more refined asymptotic result. For a
set of regularly varying function;(-), 1 < j < K, we can
compute the exact asymptotic tail of the distributionZof

Theorem 3 If F(z)~! ~ ®; (G;(x)"!) and
xl;ngo q;é)) =(; >0, (13)

where®(-) is regularly varying with indexx > 0, then, under
the conditions 1)-1ll) in Theorem 2, as— oo,

I'a+1) .
(SIS ®la + U)o

P[T, > t] ~ (14)

Remark 1.3 From the preceding result, we see that, re-
dundant transmission improves the system performance by
reducing the tail of the distribution by a constant factdr. |
theseK channels are i.i.d., this constant is equali6.

In order to prove the theorem, we need the following lemma.

Lemmal Forn; >0,1<j <K,

]P[Nl > ’Iht, N2 > 772t, v
I'a+1) 1

NCATEDAED

The proof of this lemma can be found in the Technical
Report [16].

Proof of Theorem 3: Due to limited space, we only
present the proof of the upper bound. The proof of the lower
bound is similar to the upper bound and can be found in [16].

For0 < e <1 andn; = 1/E[A? + U’], we obtain,

(15)

K

=P |[({T) > (1 +20)t}

Jj=1

P[T, > (1 + 2€)1]

1(14{+U3)+L>(1+2e)t

(AJ +]E[U7]> }]

o]

N;

%

Il
-

= 1

J

hfs
|0

+ P[L > et].

N
~
H'DN

.

=1

2

3

(16)

of the “logarithmic asymptotics”. Basically, it only coima Then, ysing union bound, we derive
information about the power law exponent, but yields no

information about the pre-factor before the power law term.
As a consequence, this result cannot distinguish between
redundant transmission and single path transmission.daror

P[T, > (1+2€)t] <P ﬂ {N; > (1 - €)n;t}

=1



K [Q—omt , Theorem 5 If there exista;, 3;, j = 1,2,..., K such that
+SP| Y (AgAL+1E[UJ])>t A
= pt log F(z)
L im ——=——+ = aj, (20)
© [(w a—oo log G ()
=1 i=1 im —————= = f3;, (21)
! L e—o0 log F'(v;z)
+ P[L > et .
N [ } with o° £ min1<j<K ﬁjOéj > 0, then,
Eh+L+13+ 1 17) o
. logP[N > n] R
Using the result (4.20) in [10], we knods + I3 + I, = R

o (1/®(t)), which, in view of Lemma 1, yields
INa+1) .
(S, Ew +ui)~ ¢)" o0

and, under the conditions I)-11l) in Theorem 2,
log P[Ts > t] o
m —— = —« .
logt

P[T, > t] < (18)

t—o0

[ |
Remark IV.2 When paths are heterogeneous, the packet
IV. SPLIT TRANSMISSION transmission delay is determined by the best paths under
Next, we study the case when a packet is split into sevefaundant transmission and by the worst paths under split
pieces and sent ovet independent paths. Using the derivegransmission. On the other hand, split transmission onygise
results, we will determine which of the two strategies, tspla fraction of the packet on each path. Comparing this to
transmission or redundant transmission, results in adightrheorem 2, we see that, iifiin < j< x ja; > max; << a;,
distribution tail. split transmission is more beneficial than redundant trésism
We begin with homogeneous paths, and then investigafien in minimizing the tail behavior; otherwise, redundant
heterogenous paths. A fraction of the packetL is sent over transmission is more beneficial. We will show later that, by
pathj, Z 17 =1,0<v; <1,1 <5< K. We derive the carefully choosing the way to split packets, split transiois
optimal spllttlng strategy that minimizes the exponentiwé t can always result in tail performance that is no worse than
transmission time tail. redundant transmission.

A. Homogeneous paths Proof of Theorem 5: We begin with proving the result
We have the following theorem for split transmission ovefor T,. Since

homogenous paths, where each packet is evenly splitinto

pieces. Its proof is a special case of that for heterogeneous

T, = max Tj,

1<j<K

paths (see Theorem 5), and hence is omitted.

Theorem 4 Under the same conditions in Theorem 1, if there

exists3 > 0, such that

. log F(Kz)
2 e F @ P o

then,
log P(Ts > t)

lim
logt

t—o0

= —fo.

Remark IV.1 Sinceg > 1, comparing the results in Proposi-

we obtain, using a union bound,

K
<
1I<r;ax]P’[T>t] P[T, > t] < Z_: T, >t], (22

Next, using (20) and (21), we derive

B log F‘(m)

log P(v;L > x) ;
om0 log Gi(x)

a0 log P(A; > ) = i,

which, by Proposition 1.1, yields
log P(T; > t)

lim
logt

t—o0

= —Bjaj.

tion 11.1 and Theorem 1, we see that, for homogeneous pathsThus, fore > 0, there existg, > 0 such that for alt > ¢,

split transmission is no worse than redundant transmission
when packets are split evenly. Split transmission is not ben
eficial wheng = 1, e.g., whenlog F'(z) is a slowly varying

function.

B. Heterogenous paths

For heterogenous paths, a packet of sizés split into K
smaller fragments of sizes;L,vL,...

following result on packet transmission delay.

, v L, respectively,
where 3" 7, = 1,0 < 9; < 1,1 < j < K. We have the

log P[T; > ]
logt
Hence, fort > ¢y, we have

—Bjaj — < —ﬁjaj + €.

max P[T; >t] >t~ a®
1<j<K

and
K
S P[Ty > ] < Kt
j=1



which, combined with (22) and passing— 0, yields the optimal fraction on each path is specified by (24). In this
log P(T, > 1) case, one can easily check that the optimal tail exponent is
Jim gt ér;igK{Bjaj} =—-a’. indeed achieved whefi, o, = Ba2 = -+ - = Brak.

Now, we derive the result faV. SinceN, = Z;il N;, we K 1/p\” _
have Remark IV.4 Note thata, = (Zi:lai ) > o with

% equality if and only ifp = 0, wherea™ = maxi<;j<x o; > 0,
max P[N; >n] <P[N >n] < Z]P {N]— > Q] . (23) & defined in _Theorem_ 2_. Thus,_ under the assumption of
1<G<K = K Theorem 5, split transmission achieves a better exponant th

" . redundant transmission jf > 0.
Proposition 1.1 implies

Proof of Theorem 6: (i) Note that/3(y) > 1 on (0, 1).
logP[N; >n/K
og P[N; > n/K] = —Bjay, If B(y) =1 forall v € (0,1), theng(y) = ~v~* for p = 0.
_ _ _ _ o Now assume3, = 3(vyp) > 1 for somey, € (0,1). Observe
which, combined with (23) and using a similar argument as tRat 5(7172) = B(71)B(72) for any v1, 72 € (0,1). Thus, for

proving the result forTs, yields lim,, o “27=" = —a°.  any positive integern, n,

lim

n—o0 logn

[ |
1) Optimal split transmissionFrom Theorem 5, we can seeg(y"/") = (5(73/")) i (5 (('yé/")")) " B,
that in order to optimize the power law delay tail, we need to

chooseyy, 72, . .., vk SO thatmini << fB;a; is maximized. Sinceg is monotonically decreasing and the positive rationals
To achieve this, we may speculate that we need to chod¥€ dense iR™,
V1,725 - -+ VK SO thatBiag = Beag = -+ = Brak. The fol- B(v) =By, TeRT

lowing theorem confirms that this is true whesg (1/F(z)) _
is not slowly varying. [6] is a related work on optimal file gpl or, equivalently,
under a different problem setting. B(7) = A8 Bo/logvo — n=P € (0,1)

Theorem 6 Suppose we use split transmission ovérhet- wherep = —log 8y/logvo > 0. It is clear thatp is unique.

erogeneous paths, each satisfying (20). If the limit (i) Let {~;} be an optimal split scheme anda, the
log F(x) corresponding optimal exponent. By Theorem 5,
= lim ————~ . .
exists for all0 < v < 1, then (i) there exists a unique constant If »=0 then '
p > 0 suchg(v) = ~v~*; and (ii) the optimal splitting scheme p="5
that minimizes the power law exponent®f’; > ¢| satisfies: o, = min o; < max a; =a
P iy>0 ) T <<k
a) If p > 0, then Y ==
. %1_/9 with equality if and onl_y ify; = 0 whenevera; # o*.
V= W. (24) If p > 0, then (26) gives
i=1 %
* 1/ 1/p -
b) If p = 0, then lety; = 0 for a; # max<,;<x a; and the 1) P <0yt j=1,2,. K
other~; can take arbitrary values. Summing overj and notinng v =1, we have(a*)1/? <

The corresponding optimal power law exponent F§F; > ¢]

K 1/p P .
is —a,, where > =1 ;" with equality if v} is given by (24). [ ]

J
2) Optimal split transmission exampledo illustrate the
results obtained in the preceding section, we compute the op

K P
<Z @ /p> s p>0, timal split transmission scheme for some typical distiitos.
Qp = i=1

(25, Weibull distribution. If
max «;j, p=0. _ b
Isj<k F(z)=P(L >z)=e 2"
_ . )P
Remark IV.3 In the preceding result, we only minimize the Gj(z) = P(A? > z) = e~ ")

power law exponent. Whep = 0, we haveg(v) = 1, and
log (1/F(z)) is a slowly varying function. In this case, we
should only use the best paths, and the scheme in (24) is to log F'(x) —(Ax)® A\’
split arbitrarily among the best paths. For this case, wel mee 4 = log G () = —(pjm)? = (M) )
more refined asymptotic result that accounts for not only the

power law exponent but also the exact pre-factors to dehige t _

optimal split strategy. Due to limited space, we do not study (y) = M - i,
this problem. Wherp > 0, all the channels are utilized, and log F(yz) ~°

whereX > 0, 1; > 0, andb > 0, then,




and effective in mitigating power delays if the absolute valdi¢he
logarithm of the packet size probability tail is regularigrying

with positive index, and becomes ineffective if the above

p=—logB(y)/logy =b.

Therefore, the optimal split is
—1/b

Hj _ M_]

sEL (2)" Ehw

=1\ ps

v = j=1,....K.

quantity is slowly varying. Last, we provide an optimal spli
transmission strategy when the paths are heterogeneadss, an
further derive an exact asymptotic result for packet dejive
time under this scheme. Our results can be extended to many
other applications that involve parallelism and job faalsyr

« Pareto distribution. Consider the case where the size ®fch as computing jobs in grid computing, file downloading

the packet,L, and the available time period on path

in peer to peer networks, parallel experiment planning, and

A, follow Pareto distributions. In this case, we hav@arallel scheduling.

B(v) = 1. The optimal split transmission strategy is to
split among the best paths.

3) Exact asymptotic result for optimal split transmission: [q
Our proposed optimal split transmission minimizes the gowe
law exponent ofP[T, > t]. In other words, Theorem 6 only [?]
characterizes the tail behavior in the logarithmic scakxt\to
refine the result, we present a theorem on the exact asymptoti
result for optimal split transmission. The proof is presenin (]
the Technical Report [16]. 4]

Theorem 7 If log(F(z)~!) = 2*l(z) wherep > 0 and (z)

is slowly varying with Bl

(6]

@) o )
for v > 0, and
F(a)™ ~ ¢ (2 (Gy(a) 7)™,

where o;,¢; > 0 and ®(-) is regularly varying with index
a > 0, then, under the conditions I)-1ll) in Theorem 2, as'®
t — o0,

(7]

(9]

P[Ts > t] ~
K T(a,+1) 1
Z(fl)lJrl Z £ 1\ @ Dt ap [10]
=1 {re G YL, K} (Zi_1 nj. J%) (t)=
2 j j A K 1/p\" [11]

wheren; = 1/E[A? + U?], ap = (ZFI % ) .

[12]

V. CONCLUSION [13]

Parallelism is a common approach to improve reliability and
efficiency in practice. In this paper, we investigate whetimed  [14]
how parallelism can be used to improve network performance.
Specifically, we study whether and how multipath transroissi [15]
can mitigate power law delays. We show that, when all packets
are of the same size, redundant transmission can greatigeed
the transmission delay in the sense that the ratio of theydelas]
distribution tail with and without redundant transmisstends
to zero. However, when packet sizes are random variables
such thatlogP[L > z] a*logP[A7 > z], we prove
that, maybe counter intuitively, redundant transmissiannot
change the order of the probability tail of the transmission
delays, and can only improve the system performance by
a constant factor. We also show that split transmission is

~
~
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