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Impact of In-Network Aggregation on Target
Tracking Quality Under Network Delays

Wei Wei, Ting He, Chatschik Bisdikian, Dennis Goeckel, Bo Jiang, Lance Kaplan, and Don Towsley

Abstract—In this paper, we investigate how in-network aggre-
gation approach impacts the target tracking quality in multi-
hop wireless sensor networks under network delays. Specifically,
we use the mean squared error (MSE) of the target location
estimate to quantify the target tracking quality, and investigate
how in-network aggregation affects the MSE. To obtain insights
without being obscured by onerous mathematical details, we
assume a Brownian motion mobility model for the target,
Gaussian measurement noise for the sensors, and independent
per-hop delays. Under the above assumptions, we first propose an
aggregation scheme that preserves a sufficient statistic for optimal
tracking under data aggregation at the intermediate nodes and
arbitrary network delays. We then analytically study the impact
of aggregation in three increasingly more complicated scenarios:
single task tracking with only transmission delay, single task
tracking with both transmission delay and queueing delay at
intermediate nodes, and multi-task tracking. Our results demon-
strate that in-network aggregation improves tracking quality in
all three scenarios. Furthermore, our analysis provides guidelines
on how to choose aggregation parameters in practice.

Index Terms—In-network aggregation, Target tracking, Brow-
nian motion, and Mean squared error.

I. INTRODUCTION

IN-NETWORK aggregation, i.e., aggregating packets at
intermediate nodes enroute to the sink(s), has been pro-

posed to reduce resource consumption in wireless sensor
networks [1]. The main idea is that aggregating packets
inside network through local computation (e.g., fusing sensor
readings related to the same event) reduces the amount of data
to be transmitted inside the network, and hence reduces en-
ergy consumption and network bandwidth usage. Furthermore,
from the data sink’s point of view, in-network aggregation
reduces the amount of data to be processed, and makes further
data processing more efficient [2]. Various issues related to
in-network aggregation have been studied in the literature,
including how to design routing protocols to provide efficient
in-network aggregation [3], [4], [5], [6], [7], [8], [9], how
to design aggregation functions [10], [11], [12], and how to
represent data [13], [14], [15].
In-network aggregation can lead to various tradeoffs in

resource efficiency, accuracy, timeliness and granularity of the
data [1]. In this paper, we study the impact of in-network
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aggregation on target tracking quality. Existing work on target
tracking mostly ignores the impact of network dynamics,
especially the random delays due to propagation and queueing,
on the efficiency of in-network aggregation. While it is known
that appropriate aggregation schemes can achieve optimal
tracking accuracy (e.g., by computing the sufficient statistic)
without network delay, it remains open whether the same
holds when there are substantial network delays: aggregation
induces extra delays at intermediate nodes (to wait for inputs
from upstream nodes), and the delays translate into additional
tracking errors due to target movement. Intuitively, one may
expect this phenomenon to be more prominent when delays
exhibit a higher level of randomness.
In this paper, we investigate the impact of in-network

aggregation on target tracking quality in the presence of
random network delays due to data transmission and queuing.
Specifically, we aim to answer the following questions: Can
optimal target location estimates be achieved in the presence
of aggregation inside the network? Does aggregation improve
or reduce target tracking quality in the presence of (possibly
random) network delays, and how much is the improvement
or reduction?
To answer the above questions, we quantify the target

tracking quality through the mean squared error (MSE), and
investigate how in-network aggregation affects the MSE. To
obtain insights without being obscured by onerous mathemat-
ical details, we consider a simple model where target move-
ment follows 1-D Brownian motion and sensor measurement
noise follows a Gaussian distribution, and analyze the impact
of in-network aggregation on target tracking quality in the case
that network resources are used for a single tracking task, and
where multiple tasks share the network resources. Our main
contributions are as follows.

• In one-shot single task tracking, we prove that for general
tree topologies and general network delay distributions,
the aggregation approach always improves the tracking
quality.

• In periodic single task tracking where measurement nodes
track a target periodically, we investigate the asymptotic
behavior of MSE, and show that aggregation can signif-
icantly outperform non-aggregation.

• In multiple task tracking, we show that the aggregation
approach leads to superior tracking quality relative to not
using aggregation provided that aggregation parameters
are carefully chosen. Our analysis also provides guide-
lines on choosing the optimal parameter in practice.

In related work, the studies of [16] and [17] evaluate
energy consumption and tracking accuracy of several data
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Fig. 1. Illustration of target tracking based on measurements from a sensor
network: the measurements are taken simultaneously at time 0 by the sensors
that detect the target, and are forwarded to the sink node along a routing tree.

aggregation schemes for single and multiple target tracking,
respectively. The evaluation assumes ideal target detection and
communication links. Contrary to these studies, we develop
an analytical framework to study the impact of data aggre-
gation on target tracking quality in the presence of network
delays and measurement noise. Several studies consider target
localization and tracking in sensor networks [18], [19], [20],
[21], [22]. They, however, do not consider data aggregation.
Several studies provide theoretical treatment on in-network
aggregation: Giridhar and Kumar [23] provide a theoretical
framework for in-network computation, Balister et al. [24]
designs policies for in-network function computation with
minimum energy consumption subject to a latency constraint;
Banerjee et al. [25] develop joint aggregation, routing and
scheduling algorithms. These studies differ in scope from ours.
To the best of knowledge, our work is the first that accounts
for random network delays in studying the impact of data
aggregation on target tracking quality in sensor networks.
Finally, the general topic of quality of information (of which
quality of tracking estimation is a subcase) has been presented
in [26].
The remainder of the paper is organized as follows. Section

II presents the problem setting. Section III analyzes the impact
of data aggregation on target tracking quality assuming a
single tracking task. Sections IV considers periodic single
task tracking. Section V considers the scenario with multiple
tracking tasks. Finally Section VI concludes the paper and
presents future work.

II. PROBLEM SETTING

Consider a target tracking application using a sensor net-
work, as illustrated in Fig. 1. The sensor network contains
a set of sensor nodes deployed in a field. A mobile target
moves inside the field. At a certain point in time, the group of
sensors close to the target measure the location of the target
and send the measurements to the sink through a network
whose topology is a tree. We assume all intermediate nodes
in the tree aggregate or do not aggregate the packets from
their child nodes. The former is referred to as in-network
aggregation (or simply aggregation), and the latter is referred
to as non-aggregation. After receiving the measurements, the

sink estimates the location of the moving target using the
measurements.
Due to packet delays in the sensor network, the time when

the sink uses the measurements to infer the target location
differs from the time when the measurements are taken. In
addition, the sensor measurements have errors. These factors
may affect the quality of the target tracking. The goal of
this paper is to quantitatively and qualitatively investigate the
impact of aggregation on target tracking quality.

A. Assumptions

For ease of exposition, we assume the target moves along
a straight line (extending this mobility model to 2-D or 3-
D scenarios is straightforward). For analytical tractability, we
assume the target moves according to Brownian motion. As we
shall see, this mobility model allows us to obtain closed-form
results of the target location estimates, which provide valuable
insights on the impact of network and sensor measurement
qualities, and in-network aggregation on tracking quality.
Specifically, let θ(t) denote the target location at time t. The
location at time 0, θ(0) = θ0, is unknown. Under the Brownian
motion model, for t2 > t1, θ(t2) − θ(t1) follows a Gaussian
distribution N(0, c(t2−t1)), where c is a positive real number,
which scales the volatility of the Brownian motion, and is
assumed to be known.
We assume the sensor clocks are synchronized so that they

take measurements simultaneously. Without loss of generality,
we assume each of n sensors makes a measurement of the
target location at time 0. For each sensor, the measurement
error follows a Gaussian distribution with zero mean, and
the measurement errors from different sensors are indepen-
dent. Specifically, let zi denote the measurement of sensor i,
i = 1 . . . , n. We assume zi follows a Gaussian distribution
with mean θ0 and variance σ2

i , where θ0 is unknown and σi’s
are known. Last, we assume a measurement is encapsulated
in a packet (hence we use packets and measurements inter-
changeably in the rest of the paper).
Sensor measurements are sent to the sink via the inter-

mediate nodes along a routing tree (the sink is the root of
the tree, and the n sensors are the leaves of the tree). For
simplicity, we assume per-hop delays along the routing tree
are independent random variables and there is no packet loss;
considering correlated per-hop delays and packet losses is left
as future work.

B. Target scenarios

We consider both single task and multiple task tracking. In
single task tracking, all the measurements are about a single
tracking task, and the network resource is used only by this
tracking task. In multiple task tracking, the network resource
is shared by multiple tasks.
1) Single task tracking: Within this scenario, we consider

both one-shot tracking where a target is tracked only once,
and periodic tracking where a target is tracked periodically in
multiple rounds. In either case, when using the aggregation
approach, all intermediate nodes perform aggregation. More
specifically, an intermediate node waits for the packets from
all of its children to arrive, includes all measurements into a
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single packet, and then forwards the combined measurement
data to its parent. When using the non-aggregation approach,
none of the intermediate nodes perform aggregation, i.e., each
intermediate node simply forwards a packet to its parent
immediately after receiving the packet.
We next briefly describe target location estimation for

one-shot tracking; target estimation for periodic tracking is
deferred to Section IV. Let random variable T denote the
time by which all the measurements reach the sink (i.e., T
is the time when the last measurement reaches the sink since
measurements are made at time 0). Note that, since intermedi-
ate nodes perform different operations in the aggregation and
non-aggregation schemes, T may take different values under
these two schemes even under the same network conditions.
For simplicity, we assume the time required to aggregate
measurements is negligible compared to the network delays;
considering non-negligible aggregation delays is left as future
work.
When the sink receives all the packets from its children at

time T , it estimates the location of the target at time T , i.e., it
estimates θ(T ). Based on the sensor measurements (taken at
time 0), the minimum variance unbiased estimator (MVUE)
for location estimate of θ0 is∑n

i=1 zi/σ
2
i∑n

i=1 1/σ
2
i

,

with an MSE of

1∑n
i=1 1/σ

2
i

.

By the property of Brownian motion, the conditional prob-
ability distribution function f(θ(T ) | θ(0), T ) is Gaussian.
Therefore, the MVUE for θ(T ) is

∑n
i=1 zi/σ

2
i∑n

i=1 1/σ
2
i

, (1)

with an MSE of

1∑n
i=1 1/σ

2
i

+ cT, (2)

where c > 0 is the Brownian motion volatility parameter.
Since T is a random variable, the expectation of the MSE

in (2) is

1∑n
i=1 1/σ

2
i

+ cE[T ]. (3)

Throughout the paper, we use the MSE of the target location
estimate (3) to characterize target tracking quality.
2) Multiple task tracking: In multiple task tracking, the

measurements (packets) for the multiple tracking tasks are sent
through a routing tree, jointly using the network resources.
When using aggregation, an intermediate node aggregates the
measurements from the same tracking task (e.g., the multiple
tracking tasks are differentiated with IDs). The sink obtains
the target location estimate for each tracking task, based on
the measurements for that task. We describe the assumptions
under multiple tracking tasks in more detail in Section V.

C. Aggregation

Consider the following aggregation scheme that specifies
the operations of the leaf and intermediate nodes. A leaf
node j sends the pair (zj , σ2

j ) to its parent, where zj is its
measurement of the target location and σ2

j is the variance of
the measurement. An intermediate node i sends (zi, σ2

i ) to its
parent, where zi and σ2

i are calculated as

zi =

∑
j∈C(i) zj/σ

2
j∑

j∈C(i) 1/σ
2
j

(4)

σ2
i =

1∑
j∈C(i) 1/σ

2
j

, (5)

where C(i) is the set of the children of node i.
Assuming Brownian motion mobility model for the target

and Gaussian measurement noise for the sensors, the above
aggregation scheme preserves a sufficient statistic for the root
to make an optimal estimate (in the sense of MVUE) of θ(T ),
i.e., the target location at time T . The above statement is
established as follows.
First, we show that

∑n
i=1 zi/σ

2
i is a sufficient statistic for

estimating θ(T ) based on z = (zi)
n
i=1. Given θ(T ), each

sensor measurement zi can be written as zi = θ(T )−Δ+Wi,
where Δ := θ(T )− θ(0) is the change in target location from
time 0 to time T , and Wi the measurement noise at sensor i.
Under our model, we know that z given θ(T ) is Gaussian
distributed, with mean μ = 1θ(T ) and covariance matrix
Σ = cT ·1+ diag(σ2

1 , . . . , σ
2
n), where cT ·1 denotes an n×n

matrix with all elements equal to cT , and diag(σ2
1 , . . . , σ

2
n) a

diagonal matrix with diagonal elements σ2
1 , . . . , σ

2
n. Therefore,

the likelihood function of θ(T ) is

p(z|θ(T )) = c1exp

(
−1

2
(z− μ)TΣ−1(z − μ)

)
, (6)

where c1 is a constant independent of z and θ(T ). Rewriting
(6) shows that a transformation of the likelihood function
c2(log p(z|θ(T ))− log c1) is in the form of

f1(z) + f2(θ(T ))

+ θ(T )

⎛
⎝∑

i�=j

zi + zj
σ2
i σ

2
j

− 2
∑
i

zi
σ2
i

(1 +
∑
j �=i

1

σ2
j

)

⎞
⎠

= f1(z) + f2(θ(T ))− 2θ(T )
∑
i

zi
σ2
i

, (7)

where c2 is also a constant (i.e., independent of z and
θ(T )), f1(z) a function independent of θ(T ), and f2(θ(T )) a
function independent of z. By the Fisher-Neyman factorization
theorem, the sufficient statistic of θ(T ) is

∑n
i=1 zi/σ

2
i .

Next, we show that the proposed aggregation scheme (4)–
(5) preserves this sufficient statistic. We prove this through
induction on the depth of the routing tree. Let l denote the
depth of the tree. When l = 1, the statement is true based on
the definition of the aggregation scheme. We now show that
if the statement is true when the depth of the tree is at most
l, then it is also true when the depth of the tree is l + 1. For
simplicity, we first consider the case where the root has two
children: one aggregating measurements from a tree of depth
at most l with n − m sensors, and the other from a tree of
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depth at most l with m sensors (m > 1). Let (za, σ2
a) be the

aggregation result from the n−m sensors, and (zb, σ2
b ) be the

aggregation result from the m sensors. Then

za =

∑n−m
i=1

zi
σ2
i∑n−m

i=1
1
σ2
i

, (8)

σ2
a =

1∑n−m
i=1

1
σ2
i

, (9)

and

zb =

∑n
i=n−m+1

zi
σ2
i∑n

i=n−m+1
1
σ2
i

, (10)

σ2
b =

1∑n
i=n−m+1

1
σ2
i

. (11)

Hence, the final aggregation results at the root (zr, σ2
r ) can be

calculated as

zr =
zaσ

2
b + zbσ

2
a

σ2
a + σ2

b

, (12)

σ2
r =

σ2
aσ

2
b

σ2
a + σ2

b

. (13)

Substituting (8) to (11) into (12) and (13), we have

zr =

∑n
i=1

zi
σ2
i∑n

i=1
1
σ2
i

, (14)

σ2
r =

1∑n
i=1

1
σ2
i

, (15)

which preserves the sufficient statistic. In fact, zr already gives
the MVUE estimate of θ(T ). When the root has more than two
children, by following a similar procedure as above, we can
prove that the aggregation from all of the children provides
the same results as in (14) and (15).
Recall that target tracking quality is represented by the MSE

of the target location estimate in (3). Since the above aggre-
gation scheme preserves optimality in the sense of MVUE,
when using this scheme, the first term in (3) is the same as
that when not using aggregation. Therefore, the target tracking
quality when using and not using aggregation only differs in
the second term of (3), i.e., E[T ].

III. ONE-SHOT SINGLE TASK TRACKING

In this section, we consider one-shot single task tracking
in a sensor network. As we showed in Section II-C, the
target tracking qualities when using the aggregation and non-
aggregation approaches only differ in E(T ), i.e., the expected
delay for the measurements to reach the sink. To provide some
intuition, we first obtain E(T ) using these two approaches for
several examples. We then present the main results, and results
when incorporating queuing delays.

A. Motivating examples

The examples are based on a single tracking task and
exponential delay distributions; a more formal treatment in
more generalized settings is deferred to later sections.

7 

5 

2 1 3 

6 

4 

Fig. 2. A binary tree example to illustrate the impact of aggregation on
target tracking quality.

As described in Section II, when using aggregation, an
intermediate node needs to wait for the packets from all
its children to aggregate them together. Therefore, one may
intuitively think that aggregation leads to larger delays for the
measurements to reach the sink, and hence an inferior target
tracking quality. As we shall see, perhaps surprisingly, this is
not the case. In the following, we first describe results for a
simple three-level binary-tree example (i.e., depth of 3) with
seven nodes, and then describe large-scale simulation results
in trees with more nodes and larger depths. Theorem 1 in
Section III-B then provides a formal statement that generalizes
such behavior to many scenarios of interest.
1) A binary tree example: In this example, we assume that

four sensors, 1, 2, 3, and 4, measure the target location
simultaneously at time 0, as shown in Fig. 2. The
measurements from sensors 1 to 4 are sent to the sink
(node 7) via intermediate nodes 5 and 6. For sensor i, the
measurement error follows a Gaussian distribution N(0, σ2

i ),
i = 1, 2, 3, 4. Let Xi be the delay on the link from node i
to its parent. In this example, for simplicity, we assume the
delays for the links are i.i.d. and each follows an exponential
distribution with mean 1/η. Let fX(x) and FX(x) denote
respectively the probability density distribution (PDF) and
cumulative distribution function (CDF) of the link delay.

Aggregation case.When using aggregation, the measurements
from nodes 1 and 2 are aggregated at node 5 on their route
to the sink. Similarly, the measurements from nodes 3 and 4
are aggregated at node 6. Let Ti be the cumulative delay to
reach node i from leaf nodes. We have

T5 = max{X1, X2}, T6 = max{X3, X4}.

The cumulative distribution function (CDF) of T5 is

FT5(x) = P (T5 ≤ x) = P (max{X1, X2} ≤ x)

= P (X1 ≤ x)P (X2 ≤ x)

= (P (X ≤ x))2

= (1− e−ηx)2

Similarly, we can calculate the CDF of T6, which is the same
as the CDF of T5.
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Next, we calculate the CDF of T7, i.e., the delay to reach
the sink (node 7).

FT7 (x) = P (T7 ≤ x)

= P (max{X5 + T5, X6 + T6} ≤ x)

= (P (X5 + T5 ≤ x))
2

=

(∫ x

0

FT5(y)fX(x− y)dy

)2

=

(∫ x

0

(1− e−ηy)2ηe−η(x−y)dy

)2

=
(
(e2ηx − 2xηeηx − 1)e−2ηx

)2
= (1 − 2ηxe−ηx − e−2ηx)2

Hence the expected cumulative delay to reach the sink is

ET7(x) =

∫ ∞

0

(1− FT7(x)) dx

=

∫ ∞

0

(
1− (1− 2ηxe−ηx − e−2ηx)2

)
dx

=
119

36

1

η
≈ 3.31

1

η
.

That is, in this example, when using aggregation, the expected
cumulative delay to reach the sink is approximately 3.31
times the mean one-hop delay.

Non-aggregation case In the absence of aggregation, each
measurement travels two links to reach the sink. The sink
infers the target location and calculates the MSE of the
target location after receiving all the four measurements. We
calculate the CDF of the delay, T7, to reach the sink as

FT7(x) = P (T7 ≤ x)

= (P (X1 +X5 ≤ x))4

=

(∫ x

0

FX1(y)fX5(x− y)dy

)4

=

(∫ x

0

(1− e−ηy)ηe−(x−y)dy

)4

= (1− e−ηx − ηxe−ηx)4.

Hence

ET7(x) =

∫ ∞

0

(1− FT7(x)) dx

=

∫ ∞

0

(
1− (1− e−ηx − ηxe−ηx)4

)
dx

=
12259

3456

1

η
≈ 3.55

1

η
.

Comparing the results for aggregation and non-aggregation
cases, we observe the aggregation approach outperforms the
non-aggregation approach. This is surprising since one would
conjecture that the delay incurred at an intermediate node in
order to aggregate all measurements from its children would
slow down the aggregation approach, and hence lead to worse
target tracking quality.

2) Large-scale simulation results: We next use large-scale
simulation to further compare the cumulative delays to reach
the sink when using and not using aggregation. Specifically,
we construct binary trees of larger depths (with 3 to 6 levels).
The individual link delays follow exponential distributions
with mean 1. For each tree, we obtain the expected cumulative
delays to reach the sink through 10, 000, 000 simulation runs.
Table I lists the results (the 95% confidence intervals are
tight and hence are not presented). We observe that, for
all topologies, the cumulative delays under the aggregation
approach are shorter than those under the non-aggregation
approach. We also explored non-binary tree topologies (in
particular, the number of children can vary from 2 to 5), and
obtained similar results. Next, we compare the performance of
aggregation and non-aggregation approaches in a general tree
topology assuming a general delay distribution, and formally
prove that indeed aggregation leads to better target tracking
qualities.

B. Main Theorem

For simplicity, we assume that there is no queuing delay at
the intermediate nodes in the non-aggregation case. That is,
when multiple packets arrive at an intermediate node simul-
taneously, they can be forwarded to the parent independently
without incurring any queuing delays. Section III-C relaxes
this assumption and considers the scenario where a packet
needs to be queued at an intermediate node when previous
packets have not been transmitted by the intermediate node.
Specifically, consider a routing tree. Inside the tree, consider

a parent node P with α children, indexed 1, 2, . . . , α. Let Xi

be the delay between node i and the parent node P . When
using aggregation, let Ti be the cumulative delay to reach node
i from the leaves, i = 1, . . . , α. Then we have the following
relationship

TP = max
i=1,...,α

{Ti +Xi}. (16)

For any given tree, the above stochastic relationship can be
applied recursively to obtain the cumulative delay to reach
the root. The CDF of the cumulative delay to reach the parent
node, P , based on the CDF of the cumulative delay and the
per-hop delay distribution of each child node can be calculated
as

FP (x) =

α∏
i=1

FTi+Xi(x)

=

α∏
i=1

∫ x

0

FTi(y)fXi(x− y)dy (17)

Applying the above formula recursively, we can obtain the
CDF of the cumulative delay to reach the root. Therefore, we
can obtain the expected cumulative delay to reach the root
when using aggregation.
The theorem below shows that under a general tree topology

and a general per-hop delay distribution, the expected cumula-
tive delay of the aggregation scheme is smaller than that under
non-aggregation.
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TABLE I
THE EXPECTED CUMULATED DELAYS FOR THE MEASUREMENTS TO REACH THE SINK FROM MONTE CARLO SIMULATIONS FOR BINARY TREES.

aggregation non-aggregation
7 sensors, 3 levels 3.31 3.55
15 sensors, 4 levels 5.31 5.84
31 sensors, 5 levels 7.44 8.25
63 sensors, 6 levels 9.67 10.73

Theorem 1. Assuming per-hop delays are independent, the
aggregation scheme generates a smaller expected cumulative
delay than a non-aggregation approach.

Proof: Let n denote the number of sensors. Let Ei denote
the set of links on the path from the i-th sensor to the sink,
and E =

⋃
1≤i≤n Ei the set of all links in the routing tree.

In the non-aggregation scheme, for e ∈ Ei, let Xe,i

be the single-hop delay experienced on link e by a packet
originated from the i-th sensor. The total delay from the i-
th sensor to the sink is Yi =

∑
e∈Ei

Xe,i. Note that Xe,i

and Xe′,i′ are independent if i �= i′ or e �= e′, so the
Yi’s are also independent. The cumulative delay for all of
the measurements to reach the sink T = max1≤i≤n Yi. For
example, in Fig. 2, the total delay from sensor 1 to the sink
is Y1 = X(1,5),1 +X(5,7),1 and T = max{Y1, Y2, Y3, Y4}.
In the aggregation scheme, for e ∈ E, let X̂e be the single-

hop delay experienced by all aggregated packets through link
e. The total delay from the i-th sensor to the sink is Ŷi =∑

e∈Ei
X̂e. Note that X̂e and X̂e′ are independent if e �=

e′. Since X̂e and Xe are identically distributed for all e ∈
Ei, so are Ŷi and Yi. Furthermore, it can be shown that the
cumulative delay for all of the measurements to reach the sink
T̂ = max1≤i≤n Ŷi, which is a consequence of the basic fact
that, for a random variable Z , maxi{Xi}+Z = maxi{Xi +
Z}. For example, in Fig. 2,

T̂ = max{max{X̂(1,5), X̂(2,5)}+ X̂(5,7),

max{X̂(3,6), X̂(4,6)}+ X̂(6,7)}
= max{X̂(1,5) + X̂(5,7), X̂(2,5) + X̂(5,7),

X̂(3,6) + X̂(6,7), X̂(4,6) + X̂(6,7)}
= max{Ŷ1, Ŷ2, Ŷ3, Ŷ4}.

Being independent, the random variables X̂e (e ∈ E) are
positively associated by Theorem 2.1 in [27]. Clearly, each
Yi is a nondecreasing function of the X̂e’s. By Theorem 5.1
in [27],

P(T̂ ≤ y) = P(Ŷ1 ≤ y, . . . , Ŷn ≤ y)

≥
n∏

i=1

P(Ŷi ≤ y)

=

n∏
i=1

P(Yi ≤ y) = P(T ≤ y).

It then follows that

ET̂ =

∫ ∞

0

P(T̂ > y)dy ≤
∫ ∞

0

P(T > y)dy = ET.

Remark III.1. Our proof in Theorem 1 assumes that the per-
hop delays when using and not using aggregation are the

7 

5 

2 1 3 

6 

4 

Fig. 3. Illustration of the setting for single tracking task with queueing
delays at the intermediate nodes.

same. This is conservative since the traffic reduction through
aggregation can further reduce delays in the network (e.g.,
through shorter media access time due to less contention).
Therefore, we expect even more delay reduction when using
aggregation in practice.

C. Incorporation of Queuing Delays

We now relax the assumption in Section III-B and consider
the scenario where there is a buffer at each intermediate node
(we assume the buffer is of sufficient size so that no packet will
be lost at the node), and packets can be queued up in the buffer,
as illustrated in Fig. 3. Therefore, a one-hop delay contains
two components: the transmission delay (i.e., the actual delay
for a packet to reach its parent after being transmitted) and
queuing delay (i.e., the delay for a packet to wait in the buffer
before being transmitted). Again, we assume that transmission
delays on the hops (links) are independent of each other. We
then have the following result comparing the aggregation and
non-aggregation approaches under general tree topologies and
general delay distributions.

Corollary III.1. For the scenario with queuing delays, assum-
ing per-hop delays are independent, the aggregation approach
generates a shorter expected cumulative delay than a non-
aggregation approach.

Proof: In a given setting (fixed tree topology, per-hop
delays), the cumulative delay under the aggregation scheme
when considering queuing delays at the intermediate nodes is
the same as that when not considering queuing delays (since
in either case an intermediate node needs to wait for the
packets from all its children and then aggregate them, and
there is no other traffic for either case), while in the non-
aggregation case, considering queuing delays leads to larger
expected cumulative delay since the packets might be queued
at intermediate nodes. We know non-aggregation already leads
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to larger expected cumulative delay than aggregation in the
non-queueing setting (see Theorem 1). When considering
queuing delays, the expected cumulative delay under non-
aggregation is larger than that under aggregation.

D. Analysis Under Constant Delays

Next, we discuss under what conditions aggregation
achieves the best performance. For aggregation, the tree topol-
ogy and the packet flow form a fork-join queueing network,
where packets from all the children nodes are joined at a
parent node. By applying results from fork-join queueing
networks [28], we know that when per-hop delay is a constant
(i.e., each hop has the same constant delay since we assume
per-hop delays follow the same distribution), the expected
cumulative delay is minimized. That is, given link delays
with arbitrary distributions, E[T ] can be lower bounded by
E[T ′] for a system where the link delays are constant with
values equal to the expected link delays of the first system.
We next use a simple example to illustrate the benefits of
the aggregation approach compared to the non-aggregation
approach under constant transmission delays.
Consider a complete binary tree with l levels. The num-

ber of leaf nodes of the tree is therefore 2l. Suppose the
transmission delay on each hop is a constant, denoted as d.
For the aggregation approach, the delay for the root node to
receive all the measurements is ld. For the non-aggregation
case, before time ld, the root node receives no measurements;
starting from ld, the root node receives 2 measurements every
d time units. Therefore, the total delay for the root to receive
all the measurements is 2l/2d+ (l− 1)d = 2l−1d+ (l− 1)d.
The above analysis demonstrates for this example that

the MSE increases linearly with the depth of the tree un-
der aggregation, while it increases exponentially under non-
aggregation, highlighting the benefits of aggregation. We can
further determine good stopping times (i.e., when the sink
should estimate the target location without waiting for any
additional sensor measurements) for both approaches. It is
easy to see that for aggregation, since all of the measurements
arrive at time ld, the optimal stopping time is ld. For non-
aggregation, the MSE at time (l + x − 1)d, x = 1, 2, · · · ,
is

σ2

2x
+ (l + x− 1)cd.

It is easy to show that the optimal value of x is ( σ√
2cd

+ l −
1)d, which indicates that under the non-aggregation approach,
lower measurement quality and deeper tree lead to a larger
optimal stopping times, while higher volatility of the target
motion leads to a shorter optimal stopping times.

IV. PERIODIC TRACKING

In Section III-C, we have shown that aggregation out-
performs non-aggregation in one-shot single task tracking
when considering queuing delays. In periodic tracking where
sensors take measurements periodically, measurements can
be queued up at an intermediate node, leading to increasing
queuing delays over time. Therefore, an interesting question
is: what are the asymptotic behaviors of aggregation and non-
aggregation approaches in periodic tracking when considering

queuing delays? We next answer this question. Our inves-
tigation focuses on a scenario where links have the same
constant transmission delay, motivated by the observation that
the aggregation approach achieves the best performance under
this scenario (see Section III-C).
Suppose that each sensor takes measurements periodically

with period τ . Accordingly, we divide time into intervals of
length τ , called rounds; assume measurements are taken at
the beginning of each round. When the root receives all the
measurements taken in round m (m = 1, 2, . . .), it estimates
the target location at the beginning of this round. Let σ2

m

denote the MSE for estimating the target location in round m,
which also gives the target’s variance given measurements up
to round m. At the beginning of round m + 1, the target’s
variance increases to σ2

m + cτ due to its mobility, which
establishes a prior for the estimation in round m+ 1. Let σ2

0

denote the aggregate noise variance of all the measurements,
i.e., 1

σ2
0
=

∑n
i=1

1
σ2
i
. Since both the prior and the measurement

noise are Gaussian, the MSE for the (m+ 1)-th round is

σ2
m+1 =

(σ2
m + cτ)σ2

0

σ2
m + σ2

0 + cτ
,

where c is the volatility parameter of the target mobility model.

A. Asymptotic Behavior

When the period is too short (i.e., measurements are taken
too frequently), packets can be queued indefinitely inside
the network, leading to infinite queuing delays. We instead
consider the scenario where the queuing delays inside the
network are bounded. The following theorem summarizes the
asymptotic behavior of σ2

m.

Theorem 2. When the tracking period is sufficiently long
so that the queuing delays in the network are bounded, σ2

m

converges as m → ∞, and

lim
m→∞ σ2

m = −1

2
cτ +

1

2

√
cτ(cτ + 4σ2

0). (18)

Proof: We prove the convergence by proving that

f(x) =
σ2
0(x+ cτ)

x+ σ2
0 + cτ

is a contraction mapping.
Note

|f(x)− f(y)|
= σ2

0

∣∣∣∣ (x+ cτ)(y + cτ + σ2
0)− (y + cτ)(x + cτ + σ2

0)

(x+ cτ + σ2
0)(y + cτ + σ2

0)

∣∣∣∣
=

σ4
0

(x+ cτ + σ2
0)(y + cτ + σ2

0)
· |x− y|,

where

0 <
σ4
0

(x+ cτ + σ2
0)(y + cτ + σ2

0)
< 1.

This implies that f(x) is a contraction mapping and hence has
a fixed point. Therefore, σ2

m converges as m → ∞.
Next, we calculate σ̃2 = limm→∞ σ2

m. Let m → ∞, we
have

σ̃2 =
σ2
0(σ̃

2 + cτ)

σ̃2 + σ2
0 + cτ

.
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Fig. 4. Optimal asymptotic MSE for aggregation and non-aggregation under
periodic tracking with binary tree topology.

Hence,

σ̃4 + cτσ̃2 − cτσ2
0 = 0.

By solving the equation, we have

σ̃2 = −1

2
cτ +

1

2

√
cτ(cτ + 4σ2

0).

Based on this theorem, it can be shown that limm→∞ σ2
m

is an increasing function of τ . Therefore, the optimal τ is the
minimum value so that queue lengths inside the network are
finite. Although we have only considered estimating the target
location at the beginning of each round, the above analysis
applies to arbitrary points of inception, with an asymptotic
MSE of − 1

2 cτ +
1
2

√
cτ(cτ + 4σ2

0) + cT , where T is the time
from the beginning of each round m to the corresponding
inception point (i.e., the time to estimate the target location
for, using measurements up to round m).

B. Periodic Tracking under Aggregation and Non-aggregation

We next consider periodic tracking under aggregation and
non-aggregation approaches when measurements are routed
along a complete binary tree. As mentioned before, we assume
the transmission delay on each hop is a constant, denoted as
d. To achieve the the optimal asymptotic MSE, we need to set
the measurement period, τ , to be d when using aggregation.
This is because of pipelining. When n > l, the sink will
receive one set of measurements from all of the sensors in each
round. Therefore, we can set the measurement period to be d
without overflowing the network. This is not the case for non-
aggregation, where we need to set τ to 2l−1d. This is because
it takes 2l−1 rounds for the sink to receive the measurements
from all of the sensors. Since d 	 2l−1d when l is large,
the optimal MSE for aggregation is much smaller than that of

non-aggregation, indicating that aggregation can dramatically
improve the tracking quality for periodic tracking.
We now use an example to illustrate the tracking quality un-

der aggregation and non-aggregation. Suppose c = d = σ2 =
1, where σ2 is the measurement MSE of each leaf node. Since
there are 2l−1 sensors that take measurements in a complete
binary tree of l layers, σ2

0 = σ2/2l−1. Fig. 4 plots the optimal
asymptotic MSEs versus l for both aggregation and non-
aggregation approaches. Observe that for non-aggregation, the
optimal asymptotic MSE increases exponentially with l, while
for aggregation, it is a constant (independent of l).
Compared with one-shot tracking, aggregation provides

more benefit under periodic tracking due to pipelining. More-
over, the performance of aggregation is independent of degree
of a complete tree. If we apply the above analysis to a
complete tree with degree d0, the optimal τ for aggregation
is still d, while the optimal τ for non-aggregation becomes
dl−1
0 d. Furthermore, for any routing tree with an arbitrary
topology, the optimal τ for aggregation is d despite the
topology difference.
In summary, when the per-hop transmission delay is a

constant, under periodic tracking, the optimal MSE when
using aggregation is independent of the tree topology, while
the optimal MSE when not using aggregation depends heavily
on the topology. When the sensor network is deployed in a
battlefield or in an ad hoc manner, topology control is not
always possible. In such scenarios, tracking quality when not
using aggregation can be significantly inferior to that when
using aggregation.
In closing this section, it should be noted that what was

presented can serve as a basis for future investigation under
more advanced aggregation process. For example, sensors may
preconstruct multiple aggregation trees and dynamically select
one such tree for each measurement based on network condi-
tions (e.g., queue sizes at intermediate nodes) and also which
other measurements they have intersected for improved quality
of target location estimation. System analysis for such time-
shared, interleaved multi-tree aggregation may be performed
along the same lines as presented earlier. It is anticipated
that the performance characteristics per aggregation tree will
be similar as before, calculated for the selected subset of
measurements.
Specifically, the expected per-tree delay remains the same

for the case of independent per-hop delays, while its value is
reduced for the case involving queueing delays due to reduced
load. In both cases, the overall expected cumulative delay
is a weighted average of the per-tree delays, with weights
proportional to the time shares of using the trees. While quan-
titative analysis of the delays will require a separate study, we
point out that the qualitative comparison between aggregation
scheme and non-aggregation scheme remains valid for each
tree and also for the overall delay, given that both schemes
follow the same time-sharing schedule.

V. MULTIPLE TRACKING TASKS

In this section, we consider a sensor network used for
multiple tasks. For instance, the sensor network is used to
track the location of a target as well to keep track of en-
vironmental characteristics (e.g., temperature, humidity, wind
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Fig. 5. Setting of multiple tracking tasks.

level, etc.). The packets corresponding to the multiple tasks
share the resources of the sensor network. In the following, we
consider specifically the target tracking task, and investigate
target tracking quality in the presence of other tasks under
aggregation and non-aggregation.

A. Network Model

In this multiple task setting, it is intractable to model each
link individually. We therefore adopt a simplified model that
models the entire network as an M/M/1 queue, as illustrated
in Fig. 5. We assume there are an infinite number of sensors,
and, for each task, all of the measurements are made at the
same time at the sensors, but are sent to an aggregation point
according to a Poisson process with rate λ/M , where M is
the number of simultaneous tracking tasks. Measurements for
different tasks are sent to different aggregation points to satisfy
that only packets that belong to the same tracking task can be
aggregated together. The Poisson arrival process models the
delays that packets experience while being transmitted in the
network to reach the aggregation point.
Now consider specifically the aggregation point for the

tracking task. We assume all sensor measurement errors follow
the same Gaussian distribution with mean 0 and variance σ2.
A packet of the tracking task is aggregated with previous
packets that have not been sent out, and with probability p,
the aggregated measurements are sent to the network (i.e. the
M/M/1 queue). This implies that, on average, 1/p packets are
aggregated together. Note that the non-aggregation approach
is a special case of the above model with p = 1 (since
p = 1, a packet is sent out immediately, and does not
aggregate with other packets). Following the above model,
each aggregation point sends out packets to the M/M/1
queue following a Poisson process with rate pλ/M , where the
processing delay for a packet at the queue models the delay
the packet encounters after its aggregation point to reach the
sink. Combining the packets from the M tracking tasks, the
aggregate arrival rate at the M/M/1 queue is pλ.

Fig. 6. Multiple tracking tasks, MSE versus p, where M = 2, 5, 10, λ =
0.9, μ = 1, c = 1, and σ2 = 1000.

B. Target Location Estimate

Under the above assumptions, the probability that n aggre-
gated measurements are sent out to the M/M/1 queue by a
tracking job is p(1− p)n−1. The average time to accumulate
these n measurements is nM/λ. The average time to wait in
the queue is 1/(μ−pλ) according to the property ofM/M/1
queue, where μ is the service rate of the queue. Therefore,
following (3), when the sink receives the measurements, the
MSE of the target location estimate is calculated as

∞∑
n=1

p(1− p)n−1(cnM/λ+ c/(μ− pλ) + σ2/n)

= c/(μ− pλ) +
∞∑

n=1

p(1− p)n−1(cnM/λ+ σ2/n)

=
c

μ− pλ
+

cM

pλ
− σ2p ln p

1− p
. (19)

Note that the second term in (19) increases linearly with
M , indicating that tracking quality decreases linearly with
the number of tracking tasks. Further note that the first and
third terms in (19) increase with p, while the second term
decreases with p, indicating that for a fixed M the optimal
p is somewhere between 0 and 1. Specifically, the optimal p,
denoted as p∗, can be obtained by solving

cλ

(μ− pλ)2
− cM

p2λ
− σ2(1 + ln p)

1− p
− σ2p ln p

(1− p)2
= 0. (20)

Recall that p = 1 corresponds to non-aggregation. There-
fore, the MSE when using aggregation with the optimal p
outperforms that when not using aggregation. Fig. 6 plots an
example, where p is varied from 0 to 1, andM is set to 2, 5 or
10. We observe that, for the same p, the MSE indeed increases
withM , and for the sameM , the optimal p is indeed between
0 and 1.
The above analysis, although conducted under simplifying

assumptions, provides useful guidance on parameter selection
when designing aggregation approaches for multiple tracking
tasks. For instance, when measurements errors have variance
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σ2, for a network that has capacity μ, average arrival packet
rate λ, and serves M simultaneous tracking tasks, our results
indicate that aggregating every 1/p∗ measurements together
for each tracking task is a reasonable choice in order to achieve
good tracking quality.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated how commonly used
in-network aggregation approaches impact the target tracking
quality in multi-hop wireless sensor networks. Specifically, we
use the MSE of target location estimates to quantify the target
tracking quality, and investigate how in-network aggregation
affects the MSE. We started with proposing an aggregation
scheme that preserves sufficient statistic for making an optimal
estimate, and then explored the impact of aggregation in
several examples to provide intuition. We then analytically
studied the impact of aggregation in three increasingly more
complicated scenarios.
As future work, we plan to study the impact of various

delays (e.g., delays to aggregate packets and delays to differ-
entiate different tracking tasks) on target tracking quality, and
scenarios with correlated per-hop delays and packet losses.
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