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GENPass: A Multi-Source Deep Learning Model for
Password Guessing
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Abstract—The password has become today’s dominant method
of authentication. While brute-force attack methods such as
HashCat and John the Ripper have proven unpractical, the
research then switches to password guessing. State-of-the-art
approaches such as the Markov Model and probabilistic context-
free grammar (PCFG) are all based on statistical probability.
These approaches require a large amount of calculation, which is
time-consuming. Neural networks have proven more accurate and
practical in password guessing than traditional methods. However,
a raw neural network model is not qualified for cross-site attacks
because each dataset has its own features. Our work aims to
generalize those leaked passwords and improves the performance
in cross-site attacks. In this paper, we propose GENPass, a multi-
source deep learning model for generating “general” password.
GENPass learns from several datasets and ensures the output
wordlist can maintain high accuracy for different datasets using
adversarial generation. The password generator of GENPass is
PCFG+LSTM (PL). We are the first to combine a neural network
with PCFG. Compared with Long short-term memory (LSTM), PL
increases the matching rate by 16%–30% in cross-site tests when
learning from a single dataset. GENPass uses several PL models
to learn datasets and generate passwords. The results demonstrate
that the matching rate of GENPass is 20% higher than by simply
mixing datasets in the cross-site test. Furthermore, we propose
GENPass with probability (GENPass-pro), the updated version
of GENPass, which can further increase the matching rate of
GENPass.

Index Terms—Neural networks, natural languages, data
analysis, text processing.

Manuscript received July 22, 2018; revised January 6, 2019 and April 14,
2019; accepted August 21, 2019. Date of publication September 11, 2019;
date of current version April 23, 2020. This work was supported in part by
the National Natural Science Foundation of China under Grants 61571290,
61831007, and 61431008, in part by the National Key Research and Devel-
opment Program of China under Grants 2017YFB0802900, 2018YFB0803503,
and 2017YFB0802300, in part by The NSFC-Zhejiang Joint Fund for the Inte-
gration of Industrialization and Informatization U1509219, in part by Informa-
tion Network Security Key Laboratory of the Ministry of Public Security Open
Project Support C18611, and in part by the National Science Foundation Grants
CNS-1539047 and CNS-1652669. The associate editor coordinating the review
of this manuscript and approving it for publication was Qing Fang. (Correspond-
ing author: Ping Yi.)

Z. Xia, P. Yi, Y. Liu, and B. Jiang are with the School of Elec-
tronic Information and Electrical Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China (e-mail: x56981973@sjtu.edu.cn; yiping@sjtu.edu.cn;
lyywenwen@gmail.com; bjiang@sjtu.edu.cn).

W. Wang and T. Zhu are with the Department of Computer Science and
Electrical Engineering, University of Maryland, Baltimore County, MD 21250
USA (e-mail: ax29092@umbc.edu; zt@umbc.edu).

Color versions of one or more of the figures in this article are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2019.2940877

I. INTRODUCTION

D EEP learning [1] astonished the world after AlphaGo [2]
beat Lee Sedol. The result proves that computers can em-

ulate and surpass human beings after establishing a suitable
model. Therefore, we try to explore a method to apply deep
learning to password guessing in this paper.

The password is the main trend [3] for authentication. People
are used to setting passwords with a certain combination (e.g.,
abc123456) instead of commonly used sequences (e.g., 123456).
There have been many large-scale password leaks [4]–[7] in
major companies. These leaked passwords provide us with rich
training and testing datasets and allow us to learn more about
the logic behind human-set combinations.

Many researches as well as open source tools aim to gen-
erate a large wordlist to match larger numbers of real pass-
words. HashCat [8] and John the Ripper(JtR) [9] are two
remarkable password cracking tools, but they both rely on ba-
sic rules such as reversing, appending, truncating, etc. They
can only generate a finite wordlist, which is far from useful
for users to crack most passwords. Markov models [10] and
probabilistic context-free grammar [11] are widely used tech-
niques for password guessing. Both are based on probability
models. Therefore, they are often computationally intensive and
time-consuming [12]. Melicher et al. [13] first introduced a neu-
ral network to guess passwords and Hitaj et al. [14] recently pro-
posed passGAN, using a generative adversarial network (GAN)
to increase accuracy. However, both Melicher et al. and Hitaj
et al. only focused on one-site tests. For example, RockYou is
used for both training and testing datasets. The cross-site at-
tack is a common method to crack a database. Although their
performances are good, the generated password lists are not
general.

To generate a general wordlist, we proposed a new model
called GENPass. GENPass can enhance both accuracy and gen-
erality. Accuracy is improved by using the PCFG+LSTM model,
the generator of GENPass. PCFG+LSTM is abbreviated as PL
hereafter. We use PCFG rules to replace sequences with tags.
The tagged-sequences are fed to a LSTM network for training
and generation. The LSTM network has been proven effective
at password guessing [13]. By using PCFG rules, the number
of guesses can be reduced by 5-6 orders of magnitude when
achieving a 50% matching rate. Generality means that the output
wordlist can achieve a relatively high matching rate for differ-
ent datasets. Our results also indicate that if we simply use the
model trained with one dataset to estimate another, the matching
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rate will be much lower. Thus, we propose GENPass to improve
generality.

GENPass implements the adversarial idea in the process of
generation. It enables the model to generate a wordlist based on
several sources. Therefore, the new generated wordlist is more
eclectic. The model consists of several generators and a classi-
fier. Generators create passwords from datasets, namely leaked
passwords, and the task of the classifier and the discriminator is
to make sure the output does not belong to a specific dataset so
that the output is believed to be general to all training datasets.
Furthermore, we take the importance of each training dataset
into consideration and propose the updated version of GENPass
which we call GENPass with probability. It performs even better
than the original version of GENPass.

The contributions of this paper are as follows.
� We propose the PCFG+LSTM(PL) model. It can elevate

the model from character-level (char-level) to word-level
and thus significantly increase the matching rate of LSTM.

� We propose the GENPass model. It can generate a “gen-
eral” wordlist by learning several leaked password datasets.
With GENPass, we can extend the scale of training sets
from one to many.

The remainder of this paper is structured as follows. Section II
briefly introduces traditional approaches and previous research
in the password guessing field. Section III describes the model
design of GENPass. In Section IV, we evaluate GENPass by
comparison with state-of-art methods and other neural network
models. We conclude the paper and discuss further work in
Section V.

II. RELATED WORK

Today, cyberspace security [15]–[26] has become a frontier
research area. The deep learning model in AI is widely used in
the fields of network security [27], artificial intelligence security
[28], medicine [29] and so on.

In this section, we first describe traditional approaches to
crack passwords and analyze their disadvantages. Then we in-
troduce the recent development of deep learning and its use in
password guessing.

A. Traditional Password Guessing Methods

Plain text passwords are never allowed to be transferred in a
network or be stored in databases [30] in a secure system. Hash-
ing passwords is a common guessing method. This is the reason
why HashCat and JtR became popular. They can greatly acceler-
ate hash code computing. HashCat even supports GPU acceler-
ation [8]. However, such password crackers must be based on a
given password wordlist. The size of the wordlist determines the
upper limit for one cracking attempt. HashCat uses a rule-based
attack mode to enlarge the password list. Rules involve lower-
casingreversing, appending, or truncating characters. As far as
we know, no single wordlist has been widely regarded as the best
one to crack passwords. We consider that the final goal of pass-
word guessing is to establish a general wordlist that can crack
more passwords.

In recent years, text password authentication alone has
been considered unsafe, and other methods, such as the short

message service authentication code, are used as assisting tac-
tics. However, in some specific areas, a text password is the only
way to verify a user’s identity. For instance, WPA-PSK [31] is a
common WI-FI authentication protocol [32]. Attackers can eas-
ily capture users’ handshake packages by using a monitor-mode
network card. The password in the handshake package is hashed.
Attackers can use Aircrack-Ng [33] or Pyrit [34] to crack pass-
words, just as HashCat and JtR do. With current computing ca-
pability, cracking an 8-length password by a brute-force method
may take years. So studying a general password wordlist is an
essential task.

The Markov model was used for password guessing in 2005
by Narayanan et al. [35] for the first time and an improvement
has been proposed recently [10]. The core concept of the Markov
model is a time-space tradeoff, using very large amounts of space
to calculate the probability of the next character based on previ-
ous or current context.

Probabilistic Context-Free Grammar(PCFG) was introduced
in password guessing in 2009 by Weir et al. [11]. PCFG de-
rives from word-mangling rules based on a training set of leaked
passwords. The grammar examples then generate passwords
with a trained probabilistic model. PCFG is practical because
users seldom set random characters as their password. Instead,
they set their passwords with short strings for convenience, such
as “iloveyou,” “password123” and “123456”. Thus, passwords
contain a certain regularity [36]. Regularity can be preserved by
encoding these passwords with PCFG rules. PCFG rules change
passwords like “password123#” to a tagged-sequence such as
“L8 D3 S1,” where ‘L’ stands for letters, ‘D’ stands for digits,
‘S’ stands for special chars and the number stands for the length.
This approach was extended to targeted password guessing [37],
[38], which means the grammar is not only at the char-level, but
also involves personally identifiable information(PII). However,
it is difficult to build the relationship between a person’s infor-
mation to his passwords. Furthermore, it is illegal to collect a
large amount of personal information for research.

B. Password Analysis

Password analysis aims to gain an insight into human habits
for setting passwords. By observing passwords from leaked
datasets, we discover that users do not set combinations ran-
domly, but instead tend to create meaningful strings as a part
of a password or the complete password. Li Y. et al. [38] stud-
ied the relationship between personal information and human-
chosen passwords. Their test on the 12306 dataset showed that
24.10% of Chinese users used their dates of birth when creating
passwords. Meanwhile 23.60% and 22.35% of users created
passwords using account names and real names, respectively.
Pearman et al. [39] recorded the statistics of 154 participants
over 147 days. When browsing websites in different categories,
nearly 85% of participants reused over 70% of their passwords
and 61% of participants exactly or partially reused passwords
across websites. Substrings with length 4 are most used, fol-
lowed by length 7 and 8. Li Z. et al. [36] studied different patterns
in passwords between English and Chinese. According to their
statistical data, Chinese prefer digits while English users prefer
letters when setting passwords. Additionally, Chinese Pinyin
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and English words vary in character composition. Li et al. pre-
sented that adding Pinyin into PCFG can increase the accuracy of
password guessing by 34%. Analyzing passwords is a very im-
portant task to learn the patterns of creating passwords. It guides
us to design the models for password guessing.

C. Development of Neural Networks

A neural network is inspired by human neurons. It can per-
form tasks by learning examples without requiring task-specific
coding. Deep learning generally involves neural networks with
multi-layers, exemplified by the extraordinary work by LeCun
Yann, Yoshua Bengio, and Geoffrey Hinton [1]. Owing to the
explosion of computing power, deep learning has outperformed
all traditional methods in some areas. Deep learning is being
applied to a variety of fields, such as target recognition [40],
natural language processing [12], [41], and artificial intelligence
[2]. The network we used to learn passwords is a recurrent neu-
ral network (RNN) [42]. It is impossible to fully understand the
current words regardless of the context words. Just as how peo-
ple read, the RNN generates the probability of the next element
based on the context elements [42], and the model then outputs
the element with the highest probability.

LSTM [43] is a widely used RNN variant. LSTM was first
proposed by Hochreiter & Schmidhuber in 1997 and was im-
proved by Graves [42] in 2013. Each LSTM unit maintains a
state ct at time t. Three sigmoid gates control the data flow in
the unit, namely the input gate it, the forget gate ft, and the
output gate ot. The output ht is calculated as follows:

it = σ(UiXt +Wiht−1) (1)

ft = σ(UfXt +Wfht−1) (2)

ot = σ(UoXt +Woht−1) (3)

c̃t = tanh(UcXt +Wcht−1) (4)

ct = ft · ct−1 + it · c̃t (5)

ht = tanh(ct · o) (6)

where Xt and c̃t stand for the input X at time t and the updated
state to be transferred to next unit, respectively, σ represents the
logistic sigmoid function, · denotes the element-wise multipli-
cation, and U{i,f,o,c} and W{i,f,o,c} are sets of weight matrices.

The GAN [44] is another remarkable advance in deep learn-
ing. GAN consists of a generative model G and a discriminative
model D, and GAN trains the two models simultaneously. The
generative model G keeps generating “fake” data and the dis-
criminative model D judges whether the data comes from G or
the training data. The loss of D will be fed back to G to help
optimize the generator. GAN has achieved success in image pro-
cessing. However, its success is quite limited in text areas [45],
[46]. In this paper, we borrow the idea of adversarial genera-
tion, because we find it difficult to transfer the feedback to a
multi-training model.

D. Neural Network in Password Guessing

A neural network was first used in password guessing by
Melicher et al. [13] in 2016. LSTM [42] is an RNN generating

one character at a time, similar to Markov model. However, the
neural network method does not consume any extra space. The
evaluation of [13] shows that a wordlist generated by a neural
network outperforms the Markov model, PCFG, HashCat, and
JtR, particularly at guessing numbers above 1010. However, [13]
restricted the structure of passwords (e.g., 1class8, 3class12), so
the result cannot be considered general. PassGAN, proposed by
Hitaj et al. [14], used GAN to generate passwords. GAN pro-
vides an adversarial process to make artificial passwords more
realistic. With the help of GAN, PassGAN was able to create
passwords that traditional password generation tools could not
create.

Li et al. [36] also proved that there is a great difference be-
tween English and Chinese passwords, which was mentioned
in Section II. We believe it is meaningless to mix Chinese
passwords and English passwords together to generate a gen-
eral password list. So our general model only focuses on one
language environment. The problem on how to use the model
learned from English passwords to guess Chinese passwords
should be addressed by transfer learning [47], [48], which will
not be discussed in this paper.

Both pioneering works have made extraordinary contributions
in password guessing by using neural networks. But there are
two common deficiencies in their theories, including PCFG. The
first point is that they only focus on how to improve the matching
rate for one-site tests. In other words, their training and testing
sets are the same. So their models are not qualified to guess an
unknown dataset. The second point is that their model can only
learn and generate passwords from one dataset. PCFG [11] used
Myspace, and passGAN [14] used RockYou. Melicher et al.
[13] divided passwords into different structures and trained one
type at a time. Such limitation restricts the model to learn more
patterns of the same passwords. Our model GENPass is designed
to solve these problems.

III. THE MODEL OF GENPASS

In this section, we describe the problem we solve and dis-
cuss our thoughts regarding the model design and describe the
detailed design of PCFG+LSTM (PL) and the GENPass model.

A. Problem Description

When we talk about password guessing, we are not going to
find a way to crack a specific password. We try to improve the
matching rate between the training and testing sets. There are
two types of tests in password guessing. One is called a one-site
test, in which the training and testing sets are the same. The other
is called a cross-site test, in which the training and testing sets
are different. We have mentioned that all the previous work can
only train and generate passwords based on one dataset, so their
performance in cross-site tests is poor. However, a cross-site
attack is the main technique for a hacker to crack a database.

On the other hand, many real passwords have been exposed
but each dataset is not large enough for deep learning models.
We believe if these datasets are combined together, the model
can predict password more like human.
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In our work, we try to generate a “general” password list
from several datasets to improve the performance of password
guessing in cross-site tests. So we first define what is “general”.

Definition 1: (What is “general”)
Assume a training set T containing m leaked password

datasetsD1,D2,D3, . . . , Dm. ModelGt is obtained by training
T. Model Gi is obtained by training Di (i ∈ [1, m]). If Model Gt

can guess dataset Dk (Dk /∈ D1, D2, D3, . . . , Dm) better than
Gi (i ∈ [1, m]), model Gt is believed to be general.

Some examples are presented below to help understand the
idea better.

1) Example 1: We train dictionary A, and obtain model GA.
Model GA can guess dictionary A well but guess an unknown
dictionary B poorly. This is what most of the previous works do
and we do not consider GA to be a general model.

2) Example 2: We train dictionaries A and B, and obtain
model GAB . Model GAB can guess dictionary A well but
guesses dictionary B poorly. We also do not consider GAB to
be a general model.

3) Example 3: We train dictionaries A and B, and obtain
model GAB . Model GAB can guess not only A and B but also
an unknown dictionary C well. Then we consider GAB to be a
general model.

We also introduce the concept of a matching rate to evaluate
the model’s capability to guess passwords.

Definition 2: (Matching Rate)
Suppose W is the wordlist generated by model G and the

target dataset is D. We define the same passwords in both W
and D as matched passwords. So the matching rate is the ratio
between the number of matched passwords and that of D.

RG =
|W ∩D|

|D| (7)

In conclusion, our goal is to design a model that can generate
a general password list based on several datasets to maximize
the matching rate when we guess an unknown wordlist.

B. Reconsideration of Neural Networks

When using neural networks such as LSTM in [13], to gen-
erate passwords, the network starts with an empty string and
calculates the probability of the next character. For example,
when we generate “passw,” the next char is most likely to be
‘o’. However, this is an ideal situation. The reality is that, un-
like traditional deep learning tasks, we cannot always choose
the character with the highest possibility of appearance. Oth-
erwise the output password list will contain many duplicates.
There must be a random choice to avoid duplicates. The conse-
quence of the random choice is that “password” cannot be easily
generated letter by letter. Because once a character is not cho-
sen correctly, the string will be totally meaningless. This is the
shortcoming of char-level training with neural networks.

In previous research on password analysis, we find that people
use some meaningful sequences to make passwords easier to
memorize instead of using random sequences. This inspires us in
that if we treat some fixed alphabetic sequences as a word, word-
level training will be more suitable for password guessing. Thus,
we analyzed some leaked password datasets to find a pattern.

TABLE I
TOP 10 MOST FREQUENT TWO-CHARACTER SEQUENCES IN MYSPACE

We first try some short sequences. Table I shows the top 10
most frequent two-character sequences in Myspace [52]. Ac-
cording to our statistics, there are 37,144 passwords in Myspace
and the most frequent two-character sequence “er” appears 7,407
times. We define such sequence as a unit and in this manner
many sequences with low probability can be pruned. For exam-
ple, character ‘e’ appears 38,223 times. The top 10 most frequent
two-character sequences starting with ‘e’ appear 26,378 times
(69%). Combining ‘e’ with these characters as a unit and pruning
others means we can use some typical sequences to represent all
probabilities. Although this method ignores a few uncommon se-
quences, the model can in fact generate more general passwords.

However, the way to slice the password is not unique. For
example, in Myspace, “ter” appears 1,137 times, “te” appears
3,627 times and “er” appears 7,407 times. These short sequences
can all be treated as a common unit. The sequence “shelter” can
be divided into “shelt” + “er” or “shel” + “ter” or “shel” + “te”
+ “r”. When “shel” is generated, either “ter” or “te” is likely to
be the next unit. “ter” is a correct choice, but if we choose “te,”
the target sequence is not guaranteed to be generated.

Cutting passwords into short sequences still has the same
problem as with char-level training. To solve this problem, we try
to implement the rules of PCFGs and propose the PCFG+LSTM
model.

C. PCFG+LSTM (PL)

A regular password guessing method called PCFG [11] di-
vides a password by units. For instance, ‘password123’ can be
divided into two units ‘L8’ and ‘D3’. This produces high ac-
curacy because the passwords are always meaningful and are
set with template structures (e.g., iloveyou520, password123,
abc123456). Meanwhile, neural networks can detect the rela-
tionship between characters that PCFG cannot. Thus, we com-
bine the two methods to obtain a more effective one.

1) Preprocessing: A password is first encoded into a se-
quence of units. Each unit has a char and a number. A char
stands for a sequence of letters (L), digits (D), special chars (S),
or an end character (‘\n’), and the number stands for the length
of the sequence (e.g., $Password123 will be denoted as S1 L8
N3 ‘\n’). Detailed rules are shown in Table II.

A table is generated when we preprocess the passwords. We
calculate the number of each strings occurrence. For example,
we calculated all the L8 strings in Myspace, and found that
“password” occurred 58 times, “iloveyou” occurred 56 times
and so on.

2) Generating: The LSTM model is a variant of the basic
RNN model. We use LSTM to generate passwords. The structure
of LSTM is exactly the same as [13]. By feeding the LSTM
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TABLE II
DIFFERENT STRING TYPES

Fig. 1. Diagram of GENPass model. Units are first generated by separate PL
models. The weight choosing process selects one specific unit from these units.
The unit then is replaced by a random sequence. The sequence together with the
previous generated password will be fed into the classifier. The classifier will
judge which model the input belongs to. The validity of the unit depends on the
judgment by the discriminator. If the discriminator is not able to tell which model
the unit comes from, the unit will be accepted. Otherwise, it will be rejected.

model the preprocessed wordlist and training it, the model can
predict the next unit.

3) Weight Choosing: When a unit is determined, it will be
transformed back into an alphabetic sequence according to the
table generated during the preprocessing. Experiments have
shown that if the highest weight output is chosen each time,
there will be a large number of duplicates in the output wordlist.
So we choose the unit by sampling the discrete distribution. Such
random selection can ensure that higher weight candidates are
chosen with a higher probability, while lower ones can still be
chosen after a large number of guesses.

D. GENPass

PL model is designed to improve the performance when we
train only one dataset. However, it is not good enough when
we train several datasets at the same time. So we propose GEN-
Pass to solve the multi-source training problem. GENPass gener-
ates a general wordlist from different datasets. Because different
datasets have different principles and different lengths, it is dif-
ficult to learn the general principles by simply mixing datasets.
To solve this problem, we design GENPass as shown in Fig. 1.

1) Prediction of Model n: All the models are PL models, as
mentioned in the previous section. We train each model sepa-
rately. Thus, given an input, the model can output the result with
its own principle.

2) Weight Choosing: We assume that every model has the
same possibility, so the output of each model can be combined
directly. The combined list is the input of the weight choosing
process, and the output is a random choice. When a unit is de-
termined, it will be replaced by a random alphabetic sequence,
according to the table generated in preprocessing. To show the
process of weight choosing more clearly, an example is shown
in Fig. 2.

3) Classifier: The classifier is a CNN classifier trained by
raw passwords without preprocessing from different datasets.

Fig. 2. Example of weight choosing process. The output of Model 1 is
[(L8:0.6), (L6:0.2), (L4:0.1)...] and The output of Model 2 is [(L6:0.5), (L5:0.3),
(L4:0.1)...]. Because both models have the same possibility, we directly com-
bine these two list. So the input for weight choosing can be written as [(L8:0.3),
(L6:0.35), (L5:0.15), (L4:0.1)...]. Therefore, L6 is most likely to be picked out
in weight choosing process. When a unit is determined, it will be replaced by a
corresponding random sequence.

Fig. 3. Detailed diagram of the classifier and the discriminator. Assume
that the new generated password is ‘abcdef1@34’. It will be combined with
4 previous generated passwords as the input of the classifier. If the output of
the classifier is [0.4, 0.6], the discriminator will accept and print the password,
because C is less than 0.2. If the output of the classifier is [0.3, 0.7], all the units
composing ‘abcdef1@34’ will be discarded.

The CNN classifier is exactly the same as [49]. Given a password,
the classifier can tell which dataset the password most likely
comes from. Through a softmax layer, the output will be a list
of numbers whose sum is one.

The classifier only treats complete passwords, not units or
alphabetic sequences. It means only when the end character \n
is generated, the classifier is activated. One single password is
not long enough to extract features, we actually combine it with
4 previous generated complete passwords, 5 passwords over all,
as the input to the classifier.

4) Discriminator: The discriminator is used to judge
whether the password will be accepted. It takes the output of
the classifier as its input. The discriminator should accept those
passwords which have a consistent probability of appearance in
different datasets so that the output passwords can be “general”.
In other words, the distribution of the classifier’s output should
be average. We use C of the classifier’s output to judge the pass-
word’s generality. Given the classifier’s output ci(i = 1. . .N)
where N is the amount of datasets, we define C as below.

C =

√
1

N
ΣN

i=1(ci − c)2 (8)

c =
1

N
ΣN

i=1ci (9)

IfC is too large, the lately generated unit will be discarded be-
cause it is probably a special case in one dataset. Otherwise, the
unit will be accepted. In our model, we chose 0.2 as the thresh-
old of C after performing several experiments. If the threshold
is too small, the model will be much more time-consuming and
the output will contain more duplicates.
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E. GENPass With Probability

In the previous section, we assume that each dataset has the
same probability. However, after some experiment we find some
datasets are more typical, and passwords are more likely to come
from those datasets, so we need to lower the opportunity for
passwords from those typical datasets to be chosen to allow
passwords from other datasets to have a greater chance of be-
ing selected. We introduce the concept of weights to solve this
problem. Those typical datasets should have a low weight, which
will be proven later. We develop a method to calculate appropri-
ate weights. The generality is judged by whether the weight of
datasets corresponds with the distribution of the classifier’s out-
put. We improve the weight choosing process and discriminator
in the previous model as follows. We call this upgraded model
GENPass with probability, GENPass-pro for short.

1) Weight Choosing Process With Probability: We assume
that a probability distributionP represents each dataset’s weight,
where Σp = 1. So the outputs of different models should be
added according to their weights. The weights are the probabil-
ities. According to the Bayes formula [50], the total probability
of the output is 1.

2) Discriminator With Probability: Generality is judged by
the distance between the weight of datasets P and the distri-
bution of the classifier’s output Q. Standard deviation cannot
depict the distance between two distributions, so we introduce
Kullback-Leibler divergence (KL divergence) [51] to depict dis-
tance. The KL divergence is calculated as follows.

DKL(P ||Q) = Σp(x) ln
p(x)

q(x)
(10)

During the training process, we use gradient descent to force
P to approach Q. The distribution P is first generated randomly.
In each iteration, ten new passwords are generated by GENPass
with corresponding probability. These passwords are fed to the
classifier and the results are recorded as Qi(i = 1. . .10). We
denote the average of these results as the output of the clas-
sifier Q to eliminate random error. We use KL divergence as
the loss function. Updating P by ascending Q− P stochastic
gradient times steps α makes P approach Q quickly and accu-
rately. We assume steps of α = 1. We use P

′
i =

Pi

ΣPi
to ensure

the total probability is 1. We believe the distribution is stable
when the loss is less than 0.001. The pseudo code is shown in
Algorithm 1.

When P is determined after training, the criterion for accept-
ing the password is whether the KL divergence is smaller than
0.1, a value we set manually.

IV. EXPERIMENT AND EVALUATION

In this section, we first demonstrate our training and testing
procedures. Then, we demonstrate the results of our experiments
and analyze them.

A. Experimental Data

Experimental data involving leaked passwords are collected
from public websites. The previous research studies are all based
on these datasets. Li et al. [36] proved that passwords in different

TABLE III
CONTRAST BETWEEN DIFFERENT DATASETS

language environments have little generality. So in our experi-
ments, we only choose English passwords. Our model is not de-
signed to solve the generality between different languages. Our
training and testing data are from Myspace [52], phpBB [53],
RockYou [54], and LinkedIn [55]. [13] and [14] have proven
that a neural network model outperforms traditional technolo-
gies such as HashCat [8] and JtR [9]. So we do not spend time
on testing wordlists generated by HashCat and JtR. Detailed
information is shown in Table III.

B. Training and Testing Methods

1) PL: To evaluate PL, we trained the model with Myspace
and phpBB. After each training session, the model generated a
new wordlist. The tests can be divided into two types. One is
called a one-site test, in which the training and testing datasets
are the same. The other is called a cross-site test, in which the
training and testing datasets are different. Then, we enumerated
the passwords in the generated wordlists to see if they were
listed in the testing set and calculated the percentage, namely
the matching rate. We randomly chose 10% of passwords in the
testing dataset as test data. The final matching rate is the average
of the results of the procedure above repeated 10 times.

2) GENPass: To evaluate the GENPass model, we trained
the model with Myspace and phpBB. We calculated the match-
ing rate using the same method described in the previous experi-
ments. Then we compared the results with those of the PL model
trained by a single wordlist. We also trained the PL model with
a simple mixture of two wordlists and compared the result with
the GENPass model.
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Fig. 4. One-site tests of PL and LSTM. PL and LSTM are the names of the
models. Myspace and phpBB are the training and testing datasets. PL(Myspace)
means the training model is PL and the training and testing datasets are both
Myspace. The results show that PL can achieve the same matching rate with
much fewer guesses compared with LSTM. So it can dramatically improve the
matching rate.

TABLE IV
CROSS-SITE TEST RESULTS

C. Evaluation

1) PL: We respectively trained the PL and LSTM model with
Myspace and phpBB and performed the one-site test. The result
is shown in Fig. 4. Note that LSTM is the same model as what
is used in [13]. For example, PL(Myspace) means the train-
ing model is PL and the training and testing datasets are both
Myspace. It is obvious that the PL performs much better than
LSTM. Although the matching rates of both models will finally
reach a higher level with more guesses, PL can achieve the same
matching rate with much fewer guesses compared with LSTM.
For instance, when the testing set was Myspace, LSTM guessed
1012 times to reach a 50% matching rate while PL only needed
approximately 107 times. After generating 107 passwords, PL
regenerates over 50% of the dataset while LSTM regenerates
less than 10%. The result proves that the PCFG rules help to
improve the efficiency of password guessing.

We also find that the model trained with Myspace performs
better than that with phpBB. This phenomenon indicates that
datasets have differences. The model trained with different
datasets obtained different results. A suitable explanation is that
the features in Myspace are easier to capture than in phpBB be-
cause the number of passwords in Myspace is smaller, as shown
in Table III.

Table IV shows the results of cross-site tests at 106 and 107

guesses. We respectively trained the PL and LSTM models with
Myspace and phpBB and used the outputs of these models to
test RockYou and LinkedIn. The cross-site tests always achieve
worse performances than the one-site tests. This indicates that
different datasets have their own regularity. Learning from only
one dataset is not sufficient to crack others. During the cross-site
tests, the PL model always achieves better performance than the

TABLE V
DIFFERENCES BETWEEN GENPASS AND SIMPLY MIXING

Fig. 5. Cross-site tests of different models and different datasets. GENPass,
PL, and LSTM are the names of the models. Myspace and phpBB are the training
datasets. The target dataset is RockYou. The results show that GENPass(Black)
almost always performs best. The performance of GENPass is much better than
simply mixing Myspace and phpBB using PL(Green).

LSTM model with an increase of 16%–30%. The result indi-
cates that people are inclined to use some fixed strings, such
as words and names, and this phenomenon is common in the
leaked password datasets. PL is proven to be more effective in
cross-site tests. However, the results are unsatisfactory due to
the lack of generality.

2) GENPass: In all GENPass’s tests, the training datasets are
Myspace and phpBB. Table V compares the GENPass model
with the PL model whose training dataset is simply obtained by
mixing Myspace and phpBB. The matching rate of GENPass is
40%−50% higher than that of PL when the testing set is Mys-
pace. It achieves a similar result when the testing set is phpBB.
The PL model performs better when the size of the testing set is
large. This result is possibly attributed to the following reason.
The larger dataset has a deeper influence on the output wordlist.
The smaller dataset can be regarded as a noise added to the larger
one. For example, phpBB contains 106 ‘123456’ out of 184,389
passwords, while Myspace contains 59 instances of ‘password’
out of 37,144 passwords. ‘password’ is more important than
‘123456’. But in the mixed dataset, ‘password’ plays a less im-
portant role than it does in the single, original dataset. Simply
mixing two datasets, especially when the two datasets have very
different numbers of passwords, disrupts the regularity of the
individual datasets. This conclusion supports the necessity of
the GENPass model. Our model overcomes these obstacles by
choosing the output using two models.

Figs. 5 and 6 show the results of cross-site tests when the
models are GENPass, PL, and LSTM. GENPass uses Myspace
and phpBB as training datasets, while the training datasets of
PL and LSTM are specified in the parentheses. The test sets of
Figs. 5 and 6 are RockYou and LinkedIn, respectively.

Taking both Figs. 5 and 6 into consideration, the GENPass
model outperforms all other models. Using raw LSTM with-
out any preprocessing performs the worst in two tests. Using
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Fig. 6. Cross-site tests of different models and different datasets. GEN-
Pass, PL, and LSTM are the names of the models. Myspace and phpBB are the
training datasets. The target dataset is LinkedIn. The results show that GEN-
Pass(Black) always performs best. GENPass can overcome the discrepancies
between datasets and achieve a higher matching rate.

PL to learn Myspace alone performs second best. This proves
that Myspace is a good dataset. The passwords in Myspace are
typical among other datasets. Simply mixing two datasets does
not improve the matching rate. Instead, the matching rate will
drop because of the bad dataset used, namely phpBB in this test.
The results prove that GENPass can overcome the discrepancies
between datasets and achieve a higher matching rate.

3) GENPass With Probability: The GENPass model can gen-
erate a wordlist with higher matching rate by training different
datasets. However, we found that GENPass does not always
achieve best results. In Fig. 5, there some difference between
GENPass-RockYou and PL(Myspace)-RockYou.

The first reason for this observation is that the passwords
generated by PL (Myspace) are more likely to appear in Rock-
You, and phpBB only contributes slightly. So simply choosing
the unit from two training models cannot increase the matching
rate. Different datasets should have different importance. For
example, phpBB should be more important than Myspace when
we generate the wordlist, because we need to consider phpBB
with more emphasis to add diversity. To solve this problem, we
applied the distribution P to GENPass and created GENPass
with probability (GENPass-pro). Distribution P stands for the
weights of different datasets.

The second reason is that using C as the criterion for the
discriminator is not precise. We must encourage passwords to
come from important datasets. C cannot reflect the importance
among different datasets. For example, when “p@ssword” is
generated, it seems more likely to occur in phpBB, as the output
of the classifier is (0.177, 0.823). The discriminator discards the
password because C is over 0.2. However, “p@ssword” is one
of the passwords in RockYou. To solve this problem, we use
the KL divergence as the new criterion for the discriminator To
design a discriminator with probability. The KL divergence is
calculated based on Formula 10 where P stands for the weights
of datasets and Q stands for the distribution of the classifier’s
output. Thus, “p@ssword” will be accepted by GENPass-pro.

By using Algorithm 1, we calculated the distribution P of
Myspace and phpBB. The process of the calculation is shown in
Fig. 7, where the y-axis is the KL divergence and the x-axis is the
number of iterations. In each iteration, the distribution P takes
the KL divergence as the feedback and improves itself. Initially,
the KL divergence is large and then decreases quickly. After

Fig. 7. Training process for P and Q. The x-axis is the number of training
times and the y-axis is the KL divergence ofP andQ. Initially, the KL divergence
is large and then decreases quickly. After about 50 iterations, the KL divergence
has dropped below 0.05 and it has stabilized.

TABLE VI
DIFFERENCES BETWEEN GENPASS AND GENPASS-PRO

50 iterations, the KL divergence became smaller and remained
stable. Once the divergence stabilized, we determine the distri-
butionP . In this case, it was approximately 30.004% of Myspace
and 69.996% of phpBB. This result confirms that phpBB is more
important than Myspace. In the following experiments, we used
this distribution P as the probability.

We trained and tested GENPass and GENPass-pro with the
same training datasets and test datasets. The training datasets
were Myspace and phpBB and the testing datasets were Rock-
You and Linkedin.

The results in Table VI show that within 106 guesses, the two
models show similar matching rates. GENPass even has a better
result when the test set is Mypsace. This is because a small num-
ber of guesses cannot fully show the capabilities of the models.
When the number of the generated passwords reaches 107, the
model with probability performs better than the original one.
The matching rate of GENPass-pro is at least 20% higher than
the matching rate of GENPass when the test sets are Rock-
You and LinkedIn. This is because using probability enables
the model to choose units from the more important dataset. In
this case, phpBB is more important than Myspace and the distri-
butionP of (Myspace, phpBB) is (30.004%, 69.996%). There is
a 30.004% chance that the chosen unit comes from Myspace and
a 69.996% chance comes from phpBB. The model with proba-
bility uses the KL divergence of the datasets’ distribution P and
the classifier’s output Q to determine whether the unit should
be output. The threshold of KL divergence is 0.1. If the classi-
fier’s output Q is (0.1, 0.9), the unit will not be accepted, for
the KL divergence is too large. And if the classifier’s output Q
is (0.3, 0.7), it will be accepted. The result proves that the value
of KL divergence is a legitimate criterion for the discriminator.
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Fig. 8. Comparing the matching rate between GENPass and GENPass-
pro. We use Myspace and phpBB to train GENPass and GENPass-pro respec-
tively. The two testing sets are RockYou and LinkedIn. The result shows that
GENPass-pro(Green & Blue) can increase 2%–3% matching rate compared with
GENPass(Black & Red) when generating more than 1010 passwords.

TABLE VII
ABILITY OF MODELS TO CREATE PASSWORDS

Moreover, we compared GENPass-pro with GENPass when
generating more than 1010 passwords. The result is shown in
Fig. 8. GENPass-pro can achieve matching rate of 36.2% in
RockYou and 23.8% in LinkedIn, which is high enough to prove
the generalization ability of our model.

However, there remain some flaws which explain why
GENPass-pro cannot achieve an even higher matching rate.
There is a case when the distribution of the classifier’s output Q
is quite close but the discriminator does not permit the unit to
go through because of the weights of the datasets. For example,
the distribution P is (30.004%, 69.996%) while the classifier’s
output Q is (0.55, 0.45). This unit will be rejected, although it
is actually a possible unit.

Finally, our model’s ability to create passwords is evaluated.
Table VII shows the number of reasonable passwords which do
not make their appearance in the training sets (Myspace and ph-
pBB) but do so in the test set (RockYou or LinkedIn) when we
generate 106 and 107 unique passwords. As a contrast, we also
add the result of PassGAN when generating approximately the
same number of passwords. The percentage in the table is cal-
culated by the ratio between the number of passwords and the
length of RockYou (14,344,391) or LinkedIn (60,143,260). In
both tests, PassGAN cannot outperform GENPass-pro, although
it performs better than PL and GENPass in most experiments.
It is because when we use GENPass-pro, the model takes ph-
pBB into better consideration, while PassGAN cannot handle
such multi-source situation. The results convince us that more
reasonable passwords will be created as the scale of the training
set grows larger.

V. CONCLUSION

This paper introduces GENPass, a multi-source password
guessing model to generate “general” passwords. It borrows
from PCFG [11] and GAN [44] to improve the matching rate
of generated password lists. Our results show that word-level
(if tags such as “L4” “D3” “S2,” are viewed as words) training
outperforms character-level training [13], [14]. Furthermore, we
implement adversarial generation from several datasets and the
results indicate that multi-source generation achieves a higher
matching rate when performing cross-site tests.

Our work is inspired by previous research, especially by the
excellent work of Melicher et al. [13]. Before then, the research
on password guessing mainly focused on innovations to the
Markov model and PCFG. Melicher et al. first proved that a
neural network achieved better performance than the probabilis-
tic method. Neural networks are believed to have the capability
to detect the relationships between characters that probabilistic
methods do not. In this paper, we first extend character-level
training to word-level training by replacing letters, digits, and
special chars with tags, namely, PCFG+LSTM(PL). In one-site
tests, the PL model generated 107 passwords to achieve a 50%
matching rate while the LSTM model must generate 1012 pass-
words. In cross-site tests, PL increased the matching rate by
16%−30% compared with LSTM when learning from a sin-
gle dataset. Our model also extends single source training to
multi-source training and uses adversarial generation to ensure
the output passwords are general to all datasets. The matching
rate of GENPass is 20% higher than that of simply mixing sev-
eral datasets at the guess number of 1012. We use Myspace and
phpBB as training data, RockYou and LinkedIn as testing data.
The results are sufficient to prove that GENPass is effective in
this task. Then, we show that GENPass still can be improved by
considering probability. We call this GENPass with probabil-
ity or GENPass-pro. This model solves certain issues, including
the weights assigned to datasets and how to judge whether a
password has a consistent probability of appearing in different
datasets. The results show that the matching rate of GENPass
with probability is 20% higher than GENPass when we gen-
erate 107 passwords. In conclusion, GENPass with probability
is the most effective model for generating general passwords
compared with other models. But it still has some flaws. For ex-
ample, the discriminator is still far from perfect, which results
in some passwords being rejected.

We believe password guessing deserves further research, as
password authentication will not be totally replaced for some
time. However, the scarcity of training resources remains a prob-
lem. Because of existing security protocols, we have limited ac-
cess to actual passwords, especially those we need for training
and testing. To solve this problem, studies on transfer learn-
ing may help by including additional databases in other lan-
guages. We also plan to explore using our technique in other
applications such as smart grids [56]–[58] and smart transporta-
tion systems [59]–[61].
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