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ABSTRACT
People have been working long to tackle the traffic congestion

problem. Among the different measures, traffic tolling has been

recognized as an effective way to mitigate citywide congestion.

However, traditional tolling methods can not deal with the dynamic

traffic flow in cities. Meanwhile, thanks to the development of

traffic sensing technology, how to set appropriate dynamic tolling

according to real-time traffic observations has attracted research

attention in recent years.

In this paper, we put the dynamic tolling problem in a reinforce-

ment learning setting and try to tackle the three key challenges

of complex state representation, pricing action credit assignment,

and route price relative competition. We propose a soft actor-critic

methodwith (1) a route-level state attention, (2) an interpretable and

provable reward design, and (3) a competition-aware Q attention.

Extensive experiments on real datasets have shown the superior

performance of our proposed method. In addition, interesting anal-

ysis on pricing actions and vehicle routes have demonstrated why

the proposed method can outperform baselines.

CCS CONCEPTS
• Information systems→ Data mining; Spatial-temporal systems.
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1 INTRODUCTION
Traffic congestion has become a serious problem for many cities due

to the rapid urbanization and corresponding explosive increase in

vehicle registration numbers. This has correspondingly caused long

commuting times, reduced quality of life, increased energy con-

sumption, and urban ecological degradation [31]. Therefore, various
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measures have been investigated to tackle traffic congestion, includ-

ing intelligent traffic signal control [10, 26], road restrictions [15],

and so on. Compared with other measures that usually only cover

local regions, traffic tolling [2] is expected to provide city-level

impact on the traffic pattern.

Traffic tolling aims to assign a price to each road (or route)

according to its congestion condition. Thus, drivers are motivated

to choose a more economical route (usually a less-congested route).

In this way, vehicles are distributed among different routes and

congestion is alleviated.

Current tolling methods can be classified into two categories:

static tolling and dynamic tolling. Static tolling [28, 32] sets tolls

merely based on historical data, which fails to adapt well to the

changing traffic volume. In terms of dynamic tolling, many works

start developing a pricing strategy according to the real-time traf-

fic conditions. Previous dynamic pricing methods usually set tolls

based on observations on roads, e.g., delay increase [22] and social

welfare measures [30]. However, these methods are based on unre-

alistic assumptions which are difficult to satisfy and the parameters

in these methods need to be tuned repeatedly under different road-

net and traffic flow. Recently, reinforcement learning methods are

becoming popular [5, 11, 17–20]. These methods can directly opti-

mize towards the objective via a pre-defined reward function [2].

Hence, they can adapt to different roadnet and traffic flows via a

learning process.

However, applying reinforcement learning to develop a reason-

able dynamic tolling strategy faces several key challenges.

• State representation. How to accurately represent the road

congestion conditions is still an open question, given the com-

plex road network connection and traffic flow interaction. (1)

Previous RL approaches to traffic tolling [19, 20] often simply

take the number of vehicles on a road as the state. This alone

cannot accurately reflect the congestion because the number of

vehicles and the degree of congestion are not directly related (if

a lot of vehicles proceed smoothly, this should not be a problem

concerning congestion). (2) The distribution of vehicles on their

routes matters. As shown in Fig. 1 (a), when other conditions

are the same (e.g., road length, congested road number, vehicle

volume) while the traffic flow distribution is different, Route 1

is more likely to cause congestion diffusion than Route 3 (more

vehicles gather in certain consecutive roads in Route 1). Due to

the connectivity of the roadnet, these interactions among roads

and their upstream or downstream should be captured.

• Credit assignment. The interwoven road network makes it

difficult to tell which price is responsible for a resulting traffic

efficiency change. This is because the results of multiple route

choices are mixed. Here, we take the metric throughput (TP) as an

example, since it is frequently used in traffic tolling studies [18–

20]. It remains challenging to answer to what extent each pricing
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Figure 1: An example demonstration of the dynamic traffic tolling problem setting and three major challenges.

and routing action contribute to the final throughput number.

As shown in Fig. 1 (b), when assigning credit to local roads, road

3 in the blue route may get a low reward because its congested

upstream road are doing the wrong thing: congested road 2 with

low throughput is charging a low price and empty road 1 is

charging too much. On the contrary, road 2 in the green route

may get a high reward due to its neighbor having set a correct

price and support high throughput, even though road 2 itself is

doing a poor job. Moreover, when trying to assign a global metric

to each route, throughput over time is hard to be assigned in such

a multi-agent system [4, 24], since the traffic flow from roads

to roads overtime, and the decomposition relationship between

route traffic and road traffic vary over time.

• Relative competition. When facing route choices, drivers will

choose the route at a relatively low price. Hence, it is crucial to

learn the price of competing routes in a nutshell, rather than

separately. For instance, as shown in Fig. 1 (c), these two sets

of route pricing will result in the same choice of route 2. How-

ever, which one is more feasible? Two realistic issues need to

be considered. (1) The relative price comparison among routes

should be sharp, so that drivers will choose the route designed

by the algorithm with no hesitation. (2) The total price of a route

should stick to a reasonable range and prices among different OD

pairs should remain feasible. Otherwise, people on different trips

may complain. In contrast, most of the previous studies set the

absolute price for each road or route independently and therefore

lead to the failure to learn the optimal strategy.

To address these challenges, we propose a novel route-based

method for dynamic tolling named Cooperative traffic Tolling via

Reinforcement Learning (CTRL). To appropriately represent the

congestion level of each route, we propose a state-based attention

mechanism that can aggregate the observations from roads consid-

ering the traffic distribution. To address the challenge of pricing

credit assignment, we derive a proper reward function that can be

decomposed from the global objective to road level measurements.

This guarantees that optimizing the reward values is equivalent to

optimizing the global objective. As for the modeling of relationships

between a group of routes, we re-designed the Q-network of the RL

algorithm with a competition-aware Q-attention mechanism. Ex-

tensive experiments are conducted on the real-world road network

of three cities. The results show that our approach can significantly

outperform the state-of-the-art methods on each metric.

In summary, the contributions can be summarized as follows.

• We propose a novel method of dynamic tolling that solves the

complex state representation, pricing credit assignment and route

price relative competition challenge.

• The reward function is derived from the decomposition of the

global objective and hence can guarantee performance.

• We conduct extensive experiments on a widely used microscopic

traffic simulator. This is an essential step before applying it to

the real world, compared with previous mathematical model sim-

ulations. Experimental results on real-world datasets show that

this design has practical value for road congestion improvement.

2 RELATEDWORK
Road pricing is a measure designed to reduce delays and congestion

by charging drivers on roads. Compared to traffic light control, road

pricing may intervene earlier in the event of potential congestion

and influence drivers’ route choices in advance. The development

of road tolling models can be divided into three categories.

Static tolling Most of the static road pricing model is based on

the analysis of historical road system data. Yang and Zhang adopt a

genetic algorithm to search for optimal toll locations and simulate

an annealing method to determine toll levels. [28]. Joksimovic et

al. model the pricing problem as a bi-level optimization. They use

a heuristic search algorithm to find the optimal toll pattern [12].

Zhou et al. propose a trial-and-error congestion pricing scheme

applying the two-level iteration [32]. These methods are usually

based on mathematical models with ideal assumptions, and since

they assume fixed traffic flow, they cannot fully utilize the charging

mechanism to control the flow of traffic in real-time.

Initial dynamic tolling Then, researchers start to design dy-

namic tolling models. Zhang et al. [30] consider road pricing as a

multi-player game, and they propose a pricing model among multi-

ple regions by using Stackelberg and Nash games. But it actually

ignores the mechanism of congestion by applying regional pricing
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and a lot of assumptions are made. Bui et al. design a novel mecha-

nism User-Centric Dynamic Pricing (UCDP) and they calculate tolls

based on marginal cost and tailor paths to heterogeneous users’

preferences according to the current traffic condition [3].

Sharon proposes Δ-tolling [22] that computes tolls proportional

to the difference between observed and free-flow travel times. Al-

though these tolls are based on real-time traffic flows, the methods

both assume the parameters for each road to be the same and still do

not consider the impact of other roads between networks. Moreover,

the models of these methods usually lack generalization and are

not fully applicable to different road networks, requiring additional

tuning work.

Reinforcement learning for dynamic tolling Recent stud-

ies on road pricing have verified the advantage of Reinforcement

learning (RL) in the function approximation of high-dimensional

input environment [13, 25]. The tolling problem is formulated as a

Markov Decision Problem (MDP) with a continuous and bounded

action space. Mirzaei [17] improves Δ-tolling [22] by applying RL

method to set distinctive parameters for each road, so as to in-

centivize self-interested agents to coordinate. Chen [5] develops a

Policy Gradient method, PG-𝛽 , to allocate road tolls by RL. How-

ever, these methods do not consider the dynamic combination of

roads in different routes when setting a price for a specific road.

Later, Qiu [20] proposes DPG-𝛽 via Multi-Agent Deep Reinforce-

ment Learning with Edge-Based Graph Convolutional Network

(MARL-eGCN), which improves the performance of PG-𝛽 by em-

ploying deep neural networks and speeds up target value update

by employing temporal difference. They also employ GCN to ex-

tract the spatial correlation within the roadnet. Unfortunately, the

methods above still use domain knowledge such as manually de-

signing an agent-wise reward function which do not resolve the

credit assignment problem in a multi-agent environment.

3 PRELIMINARIES
We first introduce the notations, concepts, and the problem formu-

lation.

3.1 Notations and Concepts
To begin with, we introduce some necessary concepts in our prob-

lem.

• Roadnet: The roadnet is represented by a graph 𝐺 = (𝑉 , 𝐸, 𝑋 ),
where vertices𝑉 are roads (each road contains three lanes: straight,

left, and right), edges 𝐸 are intersections representing the con-

nection between roads, 𝑋 are features of roads in the roadnet,

as shown in Fig. 2. Note that vehicles in different lanes are sepa-

rately considered in the model. However, to avoid unnecessary

confusion, we will only use the term “road” rather than “lane”

in the following sections. Thus, the feature of each route can be

obtained by applying the route adjacency matrix on the graph.

• Traffic flow: The traffic in the system is composed of multiple

traffic flows. Each traffic flow is defined as the group of vehicles

sharing the same origin-destination (OD) pairs. Vehicles depart

the origin and head for the destination at a specified time. They

can change their routes according to traffic conditions.

• Tolling: Each road will be assigned a price 𝑎. Drivers can obtain

the total price of a route by adding up the prices of the roads and

making route choices correspondingly.

Table 1: Notations and descriptions

Notation Descriptions

𝐺 Road Network Graph

𝑉 , 𝐸 Vertex set (roads) and edge set (intersections) of𝐺

𝑋 Feature of roads in𝐺

𝑖 Road id

𝑎 Tolling price

𝑣𝑚𝑎𝑥
Max speed of all vehicles

𝑑𝑔𝑙𝑜𝑏𝑎𝑙 Global delay

𝐷 OD pair

𝑁 Number of all vehicles on the roadnet

𝑁𝑖 Number of vehicles on the road 𝑖

𝑑𝑛
𝑖,𝑗

Delay of vehicle 𝑗 on the road 𝑖 at time step 𝑛

𝑑𝑛
𝑖

Delay of the road 𝑖 at time step 𝑛

𝑡
⟨0⟩
𝑖,𝑗

Free flow travel time of vehicle 𝑗 on the road 𝑖

𝑡𝑛
𝑖

Average travel time of the road 𝑖 from time step 𝑛 − 1 to 𝑛

𝑅𝑛
𝑖,𝑗

Traveling distance of vehicle 𝑗 on the road 𝑖

from time step 𝑛 − 1 to 𝑛

Origin Roadnet Simplified Roadnet Roadnet Graph 
𝐺(𝑉, 𝐸, 𝑋)

Adjacency 
matrix

Route 
feature

Figure 2: A graph representation of the traffic system.

• Route choice model: Each vehicle can choose its route with the

lowest total cost among all the alternative routes. We assume that

vehicles do not turn around and all the drivers are homogeneous.

The route cost is calculated as

∑𝑀𝑟

𝑖=1
𝑎𝑖 , where𝑀𝑟 is the number

of roads in the route 𝑟 and 𝑎𝑖 is the price of the 𝑖
𝑡ℎ

road in the

route.

3.2 Problem Definition
The tolling problem can be formulated as aMarkovDecision Process

(MDP). The objective is to learn a policy to set a price for each route,

which could optimize the average travel time and throughput of

the network. The problem can be formally defined as follows:

Problem 1. Given a city roadnet represented by 𝐺 = (𝑉 , 𝐸, 𝐷,𝑋 )
in which 𝑉 is the set of roads, 𝐸 is the set of intersections connecting
roads, 𝐷 is the set of traffic origin-destination (OD) pairs, and 𝑋 is
the feature of each road. For every OD, there exist several alternative
routes. Vehicles choose one route with the lowest price after entering the
roadnet. The goal is to derive a joint action 𝑎 for all roads interfering
vehicles’ route choices, to minimize the average travel time for all
vehicles.

4 METHOD
In this section, we propose a reinforcement learning model to tackle

this tolling problem, which is built upon the famous Soft Actor-

Critic algorithm. This method is named Cooperative traffic Tolling
via Reinforcement Learning (CTRL), in which traffic observations

cooperate to generate the solution. The state, reward and effective-

ness of action in previous road-level methods are greatly influenced
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by the surrounding road, and the individual road can hardly achieve

an impact on the driver’s route choice. Considering that the price

comparison from the driver perspective happens at the route-level,

we conduct a derivation in converting the optimization objective

into route-level objective. Then, to extract the dynamic and com-

plex spatial interactions among the roads within each route, we

propose a novel state representation attention to aggregate the state

features into route level. Further, to capture the relative competing

relationship between the routes of each origin-destination (OD)

pair, we design a Q-attention network to comprehensively consider

the values for all candidate routes.

We will first introduce the RL setting and the reward design in

Section 4.2. Then we demonstrate how we aggregate the road-level

state observations into route-level via Route-Level State Attention

in Section 4.3. Further, the route competition-aware attention mech-

anism is shown in Section 4.4. In the end, we introduce how the

proposed attention mechanisms are incorporated into the network

design and the training details in Section 4.5.

4.1 Tolling in Reinforcement Learning Setting
In order to solve the dynamic tolling problem, we formulate the

problem in the RL setting as follows. Since the observation is usually

obtained at road-level while the pricing is carried out at the route

level, we will discuss how to formulate the agent from road view

to route view.

Road view From the view of roads, we define the following

measurements to describe the congestion level and the effect of

pricing actions.

• Observation. The key observation of a road is the delay index

Ω𝑛
𝑖
for the current road at time 𝑛. This is defined as the following

equation:

Ω𝑛𝑖 = Z (_𝑛𝑖 − _
⟨0⟩
𝑖
) . (1)

_𝑛𝑖 =

∑𝐽𝑖
1
(𝑛𝑖, 𝑗,2 − 𝑛𝑖, 𝑗,1)

𝐽𝑖
(2)

Here, free flow time _
⟨0⟩
𝑖

=
𝐿𝑖
𝑣𝑚𝑎𝑥 is the time to pass the road 𝑖

with the maximum speed 𝑣𝑚𝑎𝑥 , and 𝐿𝑖 is the length of road 𝑖 . _𝑛
𝑖

is the actually measured average travel time at time step 𝑛 on

road 𝑖 , where the vehicles used for calculation are restricted to

those that have left the road, as shown in Eq. (2), 𝐽𝑖 is the number

of vehicles that have left road 𝑖 , 𝑛𝑖, 𝑗,2 and 𝑛𝑖, 𝑗,1 is the time step

that vehicle 𝑗 leaves and enters the road 𝑖 respectively. Note that

Z is a constant scaling factor which is set to be 0.8 according to

literature. Tuning this coefficient will only change the scale of

the features and hence will not affect the result.

• Action. The action for each road is defined as the toll price for

this road. For the sake of fairness, we define the range of price

for each road as a value in [0, 10]. This way, the total price of
routes can be bounded in a feasible range.

• Reward. The reward for each road is defined as the cumulative

distance traveled by vehicles on the road 𝑖 from time step 𝑛− 1 to

𝑛. You can obtain the average speed for each road via calculating

𝑅𝑛
𝑖
/𝛿𝑡 , where 𝛿𝑡 is the time step gap between time 𝑛 − 1 and 𝑛.

Since 𝛿𝑡 is a constant, we omit it to make the following derivation

host:

𝑅𝑛𝑖 =

𝑁𝑖∑︁
𝑗=1

𝑅𝑛𝑖,𝑗 . (3)

Lemma 1. For a traffic system represented by𝐺 (𝑉 , 𝐸), minimizing
the delay index for all the vehicles in the whole system is equivalent
to minimizing the delay index for each road individually. Note that
the global delay index is defined as below, 𝑁 denotes the total vehicle
number, 𝑇 denotes the whole tme scope, and 𝑑 𝑗 is the total delay of
vehicle 𝑗 :

𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 =

𝑁∑︁
𝑗=1

𝑑 𝑗 =

𝑁∑︁
𝑗=1

𝑇∑︁
𝑛=1

𝑑𝑛𝑗 . (4)

Proof. For each time step 𝑛, we can calculate the global delay

by summing up the delay for each road as follows. Here, 𝑉 is the

set of roads, 𝑁𝑛
𝑖
means the set of vehicles that are on the road 𝑖

during time step 𝑛, 𝑡𝑛
𝑖,𝑗

is the travel time of vehicle 𝑗 on the road 𝑖

from step 𝑛, Δ𝑡 is the interval between steps, which is a constant

value, and 𝑅𝑛
𝑖,𝑗

represents the distance that vehicle 𝑗 proceeds on

road 𝑖 during time step 𝑛:

𝑑𝑛
𝑔𝑙𝑜𝑏𝑎𝑙

=

𝑉∑︁
𝑖=1

𝑑𝑛𝑖 =

𝑉∑︁
𝑖=1

𝑁𝑛
𝑖∑︁

𝑗=1

𝑑𝑛𝑖,𝑗

=

𝑉∑︁
𝑖=1

𝑁𝑛
𝑖∑︁

𝑗=1

(
𝑡𝑛𝑖,𝑗 − 𝑡

⟨0⟩
𝑖, 𝑗

)
= Δ𝑡 −

𝑉∑︁
𝑖=1

𝑁𝑛
𝑖∑︁

𝑗=1

𝑅𝑛
𝑖,𝑗

𝑣𝑚𝑎𝑥
.

(5)

Thus, the global delay for the whole time scope𝑇 can be obtained

as follows:

𝑑𝑔𝑙𝑜𝑏𝑎𝑙 =

𝑇∑︁
𝑛=1

𝑉∑︁
𝑖=1

𝑑𝑛𝑖

=

𝑇∑︁
𝑛=1

Δ𝑡 − 1

𝑣𝑚𝑎𝑥

𝑇∑︁
𝑛=1

𝑉∑︁
𝑖=1

𝑁𝑛
𝑖∑︁

𝑗=1

𝑅𝑛𝑖,𝑗 .

(6)

Note that, the first term adds up to a constant 𝑇 · Δ𝑡 . Then, for the
second term, by swapping the order of the summation operator

and representing it using the vehicle view, we have the following

equation holds:

𝑇∑︁
𝑛=1

𝑉∑︁
𝑖=1

𝑁𝑛
𝑖∑︁

𝑗=1

𝑅𝑛𝑖,𝑗 =

𝑁∑︁
𝑗=1

𝑇∑︁
𝑛=1

𝑉𝑛
𝑗∑︁

𝑖=1

𝑅𝑛𝑖,𝑗 , (7)

where 𝑉𝑛
𝑗
is number of roads that vehicle 𝑗 travels through from

time step n-1 to n. After that, by substituting Eq. (7) into Eq. (6), we

have

𝑑𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑇 · Δ𝑡 − 1

𝑣𝑚𝑎𝑥

𝑁∑︁
𝑗=1

𝑇∑︁
𝑛=1

𝑉𝑛
𝑗∑︁

𝑖=1

𝑅𝑛𝑖,𝑗

=

𝑁∑︁
𝑗=1

𝑇∑︁
𝑛=1

(Δ𝑡 −
𝑅𝑛
𝑗

𝑣𝑚𝑎𝑥
) =

𝑁∑︁
𝑗=1

𝑇∑︁
𝑛=1

𝑑𝑛𝑗 = 𝑑𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 .

(8)

Hence, we know that minimizing the delay index for all the vehicles

in the whole system is equivalent to minimizing the delay index

for each road individually. □

For simplicity, from now on, we use the reward function as the

cumulative distance 𝑅𝑛
𝑖
.

Route view From the view of routes, we define the following

elements.
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Figure 3: State attention mechanism.

• State. The state 𝑠𝑛𝑟 of a route 𝑟 at time 𝑛 is an aggregation of

observations of roads it covers. We define it as:

𝑠𝑛𝑟 = 𝐴𝑔𝑔(d𝑛𝑖 ), (9)

where d𝑛
𝑖
is a concatenation of the observations of the roads 𝑖 ∈ 𝑟 .

The aggregation function 𝐴𝑔𝑔 can be average function or state

attention mentioned in Section 4.3.

• Action. The action 𝑎𝑛𝑟 for each route 𝑟 at time 𝑛 is the toll price

for this route in CTRL bounded in [0, 10]. For the method of

tolling on roads, the action is the sum of all roads’ prices. Since

the number of roads in optional routes is comparable, the prices

of the routes are also bounded.

• Reward. The reward for each route is the average reward of all

roads it covers.

We adopt the structure of SAC agent to model our agent [8].

The policy aims to maximize the expected sum of reward over the

state-action trajectory distribution of (a𝑛 |s𝑛). The objective with
expected entropy over trajectory 𝜌𝜋 (s𝑛) is defined as:

𝐽 (𝜋) =
𝑇∑︁
𝑛=1

E(s𝑛,a𝑛)∼𝜌𝜋 [𝑟 (s𝑛, a𝑛) + 𝛼H (𝜋 (· | s𝑛))] , (10)

where 𝛼 is the temperature parameter that determines the weight of

entropy term against the reward. This term can effectively control

the stochasticity of policy [8].

A tractable policy 𝜋𝜙 (a𝑛 | s𝑛) is considered with the parameter

𝜙 . The policy network aims to minimize the loss function with the

following form:

𝐽𝜋 (𝜙) = Es𝑛∼D
[
Ea𝑛∼𝜋𝜙 [𝛼 log(𝜋𝜙 (a𝑛 | s𝑛)) −𝑄\ (s𝑛, a𝑛)]

]
,

(11)

where 𝐷 is the data sample, 𝜌𝜙 is a tractable policy.

It will compute two Q-values and choose the minimum one to

stabilize training [8]. The Q-network is modeled as a soft Q-function

(𝑄\ (s𝑛, a𝑛)) whose parameter is \ . It is trained to minimize the

soft Bellman residual:

𝐽𝑄 (\ ) = E(s𝑛,a𝑛)∼D
[
1

2

(
𝑄\ (s𝑛, a𝑛) − (𝑟 (s𝑛, a𝑛)

+𝛾Es𝑛+1∼𝑝
[
𝑉 ¯\ (s𝑛+1)

]
)
)

2
]
,

(12)

where

𝑉 ¯\ (s𝑛) = Ea𝑛∼𝜋
[
𝑄 ¯\ (s𝑛, a𝑛) − 𝛼 log𝜋 (a𝑛 | s𝑛)

]
. (13)

And it can be optimized with stochastic gradients [8]:

ˆ∇\ 𝐽𝑄 (\ ) = ∇\𝑄\ (s𝑛, a𝑛)
(
𝑄\ (s𝑛, a𝑛) − 𝑟 (s𝑛, a𝑛)

−𝛾
(
𝑄 ¯\ (s𝑛+1, a𝑛+1) − 𝛼 log(𝜋𝜙 (a𝑛+1 | s𝑛+1))

) )
.

(14)
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Figure 4: Network architecture of CTRL.

4.2 Route-level State Attention
The state representation should be able to accurately reflect the

current road conditions and realize the cooperation of them.

As mentioned earlier, a route of an OD pair consists of multiple

roads, and the traffic flows in the upstream and downstream roads

will interact with each other. Thus, different traffic distributionsmay

reflect different congestion conditions. Capturing the relationship

between such upstream and downstream roads is also an important

component of the state representation.

We utilize the attention module for the roads of a route to model

the relationship between road sequences and use the output of

attention as the state of a route, as shown in Fig. 3. For each route

state 𝑠𝑟 of route 𝑟 , state attention calculates 𝑠𝑟 as follows:

𝑠𝑟 =
1

𝑀𝑟

𝑀𝑟∑︁
𝑖=1

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( (𝑊
𝑄
𝑠 𝑂𝑟 ) (𝑊𝐾

𝑠 𝑂𝑟 )𝑇√︁
𝑑𝑘

) (𝑊𝑉
𝑠 𝑂𝑟 ), (15)

where 𝑂𝑟 = FC ( [d𝑖 ]), d𝑖 is a concatenation of the observations of

the roads covered by the route 𝑟 .𝑀𝑟 is the number of roads covered

in route 𝑟 and 𝑑𝑘 is a hyperparameter that controls the projection

dimension.𝑊
𝑄
𝑠 ,𝑊𝐾

𝑠 and𝑊𝑉
𝑠 are learned linear transformations.

4.3 Competition-aware Q-Attention
The attention mechanism has shown excellent performance in mak-

ing the model learn to focus on a specific part of the input sequence.

In our environment, the prediction of the route score (i.e., Q-value)

for each action by a Q-network depends not only on the state and

action of a route itself but also on the states and actions of its com-

peting routes. We design an attention-based Q-network to derive

the relative Q-values of the routes in a competitive relationship

based on their states and actions.

The attention mechanism is designed to calculate the value of

state and action for each routes given a pair of ODs, measuring

how good the corresponding pricing actions are for a pair of ODs:

ℎ𝑟 = FC (ReLU (FC ( [𝑠𝑟 , 𝑎𝑟 ]))) , (16)

𝑄 (s, a) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
(𝑊𝑄
𝑞 h) (𝑊𝐾

𝑞 h)𝑇√︁
𝑑𝑞

) (𝑊𝑉
𝑞 h), (17)

where h = [ℎ1, ℎ2, ℎ3],𝑊𝑄
𝑞 ,𝑊𝐾

𝑞 and𝑊𝑉
𝑞 are learned linear trans-

formations. 𝑑𝑞 is a hyperparameter that controls the projection

dimension. Q-attention network ensures the fairness of the learning

policy, the prices between routes are distinguishable and relatively
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Figure 5: Training pipelines of our CTRL.

fair for all routes on the entire road network, i.e., there is no OD

whose routes’ prices are much higher or lower than all other routes.

4.4 Implementation details
In this section we will introduce the structure of critic network and

actor network and how attention works in it as shown in Fig. 4.

In addition, we further show the training pipeline of the proposed

method.

4.4.1 Network Models.
Critic Network The network consists of two Q-networks, which

compute two Q-values and choose the minimum one to stabilize

training, each of which is shown in the down right of Fig. 4. The

input to the Q-network is the concatenations of state and action

for different routes of an OD pair. Firstly, the input pairs are passed

through a hidden layer composed of two linear layers respectively

to obtain ℎ𝑖 as in Eq. (16). We derive the Q-value representation

of the OD-level for h from the previously mentioned Q-attention

mechanism as in Eq. (17). We also apply target Q-networks𝑄𝑡𝑎𝑟𝑔𝑒𝑡
to calculate the target Q-values for the stability of the algorithm.

We update the critic by minimizing the TD-loss L(𝜙):

L(𝜙) = 1

2

(
𝑄𝜙 (s, a) − �̂�𝜙𝑡𝑎𝑟𝑔𝑒𝑡 (s, a)

)
2

,

�̂�𝜙𝑡𝑎𝑟𝑔𝑒𝑡 (s, a) = 𝑅𝐷 + 𝛾
(
�̂�𝜙𝑡𝑎𝑟𝑔𝑒𝑡 (s

′, ã′) − 𝛼 log𝜋\ (ã′ |s′)
)
,

(18)

where ã′ ∼ 𝜋\ (·|s′), 𝜋\ is the current policy, s′ is next state. 𝑅𝐷 is

the rewards of OD 𝐷 :

𝑅𝐷 =

𝑘∑︁
𝑟=1

𝑀𝑟∑︁
𝑖=1

𝑅𝑖

=

𝑘∑︁
𝑟=1

𝑀𝑟∑︁
𝑖=1

𝑁𝑖∑︁
𝑗=1

𝑅𝑖 𝑗

(19)

according to the definition of Eq. (3), where 𝑘 is the number of

alternative routes under an OD pair and here 𝑘 is 3 in our setting.

Target Q-networks is updated with:

𝜙𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝜏𝜙𝑡𝑎𝑟𝑔𝑒𝑡 + (1 − 𝜏) 𝜙. (20)

Actor Network The actor network takes the state of the OD pair

as input and outputs the action distributions and log probabilities

of actions for the routes of the OD pair respectively, which can be

expressed as a ∼ 𝜋\ (a|s). The structure of actor network is shown

in the top right of Fig. 4.

Then the actor network is trained by minimizing the loss:

L(\ ) = 𝛼 log𝜋\ (ã|s) −𝑄𝜙 (s, ã), ã ∼ 𝜋\ (a|s) . (21)

The actor network gives the action distribution of each route

respectively. In the training phase the action is decided by a non-

deterministic policy which we sample in the output normal distri-

bution. In the testing phase, the action is set as the mean of the

distribution.

4.4.2 Training Pipelines. As shown in Fig. 5, during the online

training, CTRL will interact with the traffic environment in real

time and update in the following way:

(1) State representation: In each time step, the observations

of each road are extracted from current traffic condition, and each

observation is fed into our Route-level State Attention network to

generate the route state input of CTRL.

(2) Update:CTRLwill make decisions for each agent and provide

the current appropriate prices for the driver to choose the route

accordingly. The driver will calculate the driving cost of each route

and choose the route with the lowest cost.

(3) Push: The agent’s decision and subsequent environment’s

latest feedback will be consolidated into a quadruple

(𝑠𝑛
𝐷𝑖
, 𝑎𝑛
𝐷𝑖
, 𝑟𝑛
𝐷𝑖
, 𝑠𝑛+1
𝐷𝑖
) and stored in memory as experience samples.

(4) Replay samples, Update model: Every 10 episodes, CTRL

will use the experience samples stored in the memory to update

the whole network.

(5) Repeat step (1)-(4) until the model converges.
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Table 2: Overall performance comparison on three real world datasets. Different methods are compared in three measurements,
Throughput, ATT (average travel time), and Rewards. Throughput (↑) and Rewards (↑) are the higher the better, while ATT (↓) is
the lower the better.

City Hangzhou Manhattan Porto

Measurement Throughput ATT(s) Rewards Throughput ATT(s) Rewards Throughput ATT(s) Rewards

No-change 1874 1235.14 1464.93 2324 1337.36 2483.97 3849 734.64 4118.63

Random 2406 787.97 1593.72 2683 1156.71 3230.16 4044 631.11 4653.22

Formula 2420 785.50 1094.06 2736 1130.41 3379.64 4051 628.14 4690.09

Δ-tolling 2956 902.02 2040.71 2860 1173.40 3715.68 4262 558.92 4905.89

Indi-SAC 2436 895.13 1537.90 2636 1176.50 3143.71 4088 643.55 4884.86

Multi-SAC 2437 935.69 1576.42 2713 1141.11 3339.04 4066 626.25 4833.06

MARL-eGCN 2461 1010.26 1112.30 2708 1143.12 3325.97 4069 642.69 4905.94

CTRL 3053 686.38 2760.51 2926 908.43 3780.46 4262 493.68 5337.63

Table 3: Parameters of our method

Steps 6

Decay for exploration 𝜖 0.99

Target smoothing coefficient 𝜏 0.125

Action interval 1800

Target model update interval 120

Batch size 32

Memory size 2000

Episode 500

5 EXPERIMENT
In the experiment, we aim to answer the following research ques-

tions.

• RQ1: How does CTRL perform on different datasets com-

pared with baselines?

• RQ2: How does the state attention module help to improve

the performance?

• RQ3:Does the Q-Attentionmodule contribute to a fair price?

• RQ4: Why can CTRL admit more vehicles than baselines?

5.1 Experimental Settings
5.1.1 Simulation environment. Our experiment uses CityFlow

1
traf-

fic simulator, which is a widely-used multi-agent reinforcement

learning environment for large-scale urban traffic scenarios [29].

The simulator takes the road network file and the traffic file as

input, and admits vehicles into the simulation system according

to the traffic file. Each vehicle will depart its origin and head for

its destination at a specific time, via a predefined route (as in the

traffic file). Meanwhile, users can access traffic observations (e.g.,

vehicles on a specific road, the speed of vehicles) from the simulator

via Python APIs. In turn, users can also set a new route for each

vehicle. To avoid chaos, each vehicle can only reroute once.

5.1.2 Parameter setting. The parameter settings for our traffic en-

vironment and experiment are shown in Table 3. Action interval

defines the interval between tolling price changes, which is the

time of a time step in seconds.

1
CityFlow project code can be found at https://cityflow-project.github.io

5.1.3 Route selection. Each OD pair in the roadnet has three dif-

ferent alternative routes, i.e., the shortest total distance, the fewest

traffic lights and the fewest estimated vehicles. The drivers choose

the route from the three candidates with the minimal total price

when entering the road network and do not change the route or

destination during the travel.

5.2 Dataset
Roadnet We consider three real traffic networks to validate our

methods, including Hangzhou dataset of a 4x4 network (16 intersec-

tions in total), Manhattan road network of a 3x16 (48 intersections

in total) and city-scale Porto roadnet work of 200 roads (70 inter-

sections in total). The former two roadnets are taken from the web

page
2
and are wildly used in literature [26, 27], Porto roadnet data

is simplified from OpenStreetMap (OSM) data
3
.

Traffic flow The traffic flow is obtained from real public city

data. Concretely, the traffic flow for Hangzhou and Manhattan is

downloaded from the previously mentioned website. These datasets

are converted from real traffic camera data and taxi data. The traffic

flow for Porto is converted from the taxi dataset used by previous

data competition
4
hosted by ECML-PKDD. The traffic flow of each

road network contains many OD pairs (Hangzhou has 403 ODs,

Manhattan has 818 ODs, and Porto has 817 ODs) and we manually

increase the congestion on long-distance routes to observe more

obvious effects. Then we choose the relatively congested OD pairs

to focus on and control. It is expected that through controlling

vehicles on traveling in these OD pairs, all the vehicles inside the

system will be influenced.

5.3 Methods for Comparison
• No change: No tolls are set, and vehicles follow original routes.

• Random: Vehicles choose routes randomly among alternatives.

• Formula: The toll of each road 𝑝 follows the function

𝑝 =

{
0 𝑥 < 5,

𝑚𝑖𝑛(10, 10

7
𝑥 − 50

7
) 𝑥 ≥ 5.

2
Roadnet data is provided at https://traffic-signal-control.github.io

3
OSM is provided at https://www.openstreetmap.org/map=13/41.1603/-8.6385

4
Data available at https://www.kaggle.com/datasets/crailtap/taxi-trajectory
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Here, 𝑥 is the number of vehicles on each road. We conduct exper-

iments with various values of 𝑥 and achieve the best performance

when 𝑥 is 5.

• Δ-tolling [22] is a dynamic tolling model. Each road’s toll fol-

lows the function

𝜏𝑛 = (1 −𝐶)𝜏𝑛−1 +𝐶𝛽 (𝑇𝑛−1 −𝑇 0) (22)

where 𝑇 0
is the free-flow travel time, 𝑇𝑛−1

is the average travel

time at time step 𝑛, 𝐶 and 𝛽 are tuning parameters. 𝐶 is a decay.

• Indi-SAC [7]: This method adopts the soft actor-critic frame-

work and utilizes the same state, action and rewards with our

method. Each road agent uses an independent SAC model.

• Share-SAC: All road agents share one SAC model. The state,

action and rewards are the same as our method.

• MARL-eGCN [20]: This method applies actor-critic framework

to set tolls. We regard our roadnet as one zone in the method. It

takes bounded action according to the state denoting the number

of vehicles, and defines the rewards as the number of vehicles

arriving at destinations.

5.4 Evaluation Metrics
• Throughput: The throughput calculates the number of vehicles

that have arrived at the destination during the entire time period.

• Average Travel Time (ATT): For each vehicle, travel time mea-

sures the time between it entering and leaving the roadnet. ATT

is the average travel time of all vehicles that have arrived at their

destinations.

• Rewards: Global rewards over time, which is the sum of the global

rewards of all time steps in Eq. 6.

5.5 Overall Performance (RQ1)
We conduct experiments on three real-world datasets, Hangzhou,

Manhattan and Porto. The overall results are shown in Table 2. It is

easy to observe that the proposed method CTRL outperforms other

methods on three datasets (except that on Porto dataset, Δ-tolling
method achieves very similar throughput as CTRL).

Generally, as expected, compared to the No-change method with-

out tolling, traffic tolling is proven to be effective for traffic conges-

tion. In addition, the dynamic tolling group of methods outperform

the traditional Formula or Random method.

Among all the methods, Δ-tolling yields quite competing re-

sults in terms of throughput, while CTRL beat Δ-tolling with large

margin on the other two measurements, ATT and Rewards. For

the other methods, CTRL outperforms with large margin on all

measurements.

5.6 Performance Gain with State Attention
(RQ2)

To verify the effect of the proposed state attention mechanism in

Section 4.3, we perform the ablation study comparing CTRL and

CTRL without state attention. We choose the largest map (Porto)

for the experiment. As shown in Fig. 6, CTRL achieves better per-

formance in throughput and average travel time, compared with

the version removing state-attention (using average to aggregate

the state instead). The reason is that the state attention module can

learn the appropriate weight on road states according to real-time

traffic.

0.00

175.00

350.00

525.00

700.00

ATT
(b)

4000

4075

4150

4225

4300

Throughput

CTRL CTRL without state-attention

(a)

Figure 6: Effect of adding state-attention. Without the state-
attention module (green), the total throughput of the road
network is sharply reduced (a) and the average travel time
of vehicles is significantly increased (b).

5.7 Tolling Fairness Induced by Q-Attention
(RQ3)

To demonstrate the impact of the Q-Attention mechanism proposed

in Section 4.4, we compare the prices given by CTRL and CTRL

without Q-Attention at all time steps in Fig. 8. We find that the

prices of the alternative routes under the same OD pair given by

CTRL are clearly differentiated and not extremely high or low.

However, without Q-Attention, the given prices (figure below) are

too extreme and not fully distinguishable between certain route

candidates of an OD pair (e.g., 1-0, 1-1). In practical applications,

we expect prices to be relatively fair yet sufficiently distinguishable

between routes, rather than too high or low.

CTRL

CTRL without Q Attention  

Figure 8: Comparison of the price distribution of CTRL and
CTRL without Q-attention. The x-axis is "OD_id-route_id",
the y-axis is time, and the values of heat map represent the
corresponding price. CTRL is shown above.

5.8 Case Study (RQ4)
We show the performance of CTRL and baselinemethods in terms of

the number of vehicles and average speed on each route to illustrate

why our method can admit more vehicles as shown in Table 2 in

Porto. Note that, due to the space limitations, we only compare
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Figure 7: The routes of an OD over time steps in Porto. The points in different colors represent the number of vehicles on
different routes over time. Each figure corresponds to a method, and the final figure is background flow that does not change
route. As expected, the less background flow there is on the route, the more controlled flow chooses that route. Compared to
baseline methods, CTRL makes greater use of capacity of the routes, as shown in Route 2.

CTRL with the other methods eGCN, Indi-SAC and Δ-tolling, which
perform better among the baselines in Table 2.

Fig. 7 illustrates how CTRL assigns an OD’s vehicles to different

routes to accommodate more vehicles. We can observe that CTRL

can adapt the route choice according to the change in background

flow while other methods fail to do that. Although the route admits

more vehicles, the route’s travel efficiency, i.e., average vehicle

speed shown in Fig. 9 is not affected.
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Figure 9: The average speed of vehicles on three routes at
two time steps corresponds to Fig. 7. The average speed (max-
imum speed is 16.7𝑚/𝑠) on the routes in CTRL is comparable
to other methods, showing that there is no congestion on
Route 2 caused by CTRL, which does make the best use of
the capacity of the routes.

Further, we compare the total number of vehicles on different

routes as in Fig. 10. CTRL has made great use of route 2 and finally

achieves a much higher throughput than other methods.

Moreover, from the global view, we compare the total number

of vehicles on this OD pair (all three different routes) in this sce-

nario. We can observe that, among different time steps, CTRL can

admit more vehicles than the baselines and hence support higher

transportation efficiency.

6 CONCLUSION
In this paper, we formulate the dynamic tolling problem as a rein-

forcement learning problem and propose a method named CTRL
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Figure 10: The number of vehicles on three routes of an OD
in one time step. As expected, CTRL exploits the difference
between route capacities at any time step to ensure a higher
total number of vehicles of an OD, as shown in Fig. 11.
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Figure 11: The number of vehicles in an OD pair over time
step. CTRL admits more vehicles in almost all time steps,
and cumulatively, compared with other baseline methods.

to solve the problem. We innovate an interpretable reward design

and an RL model with route-level state attention and competition-

aware Q-attention to tackle the challenges in state representation

and credit assignment. Compared with previous methods, CTRL

can effectively maximize the throughput and minimize the average

travel time on various datasets.
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