1. (P53, Ex.10, [R]) Let \(C(x) \) be the statement ”\(x \) has a cat,” let \(D(x) \) be the statement ”\(x \) has a dog,” and let \(F(x) \) be the statement ”\(x \) has a ferret.” Express each of these statements in terms of \(C(x) \), \(D(x) \), \(F(x) \), quantifiers, and logical connectives. Let the domain consist of all students in your class.

 a) A student in your class has a cat, a dog, and a ferret.
 b) All students in your class have a cat, a dog, or a ferret.
 c) Some student in your class has a cat and a ferret, but not a dog.
 d) No student in your class has a cat, a dog, and a ferret.
 e) For each of the three animals, cats, dogs, and ferrets, there is a student in your class who has this animal as a pet.

Answer Area:

- a) \(\exists x (C(x) \land D(x) \land F(x)) \)
- b) \(\forall x (C(x) \lor D(x) \lor F(x)) \)
- c) \(\exists x (C(x) \land F(x) \land \neg D(x)) \)
- d) \(\neg \exists x (C(x) \land D(x) \land F(x)) \)
- e) \((\exists x (C(x)) \land (\exists y D(y))) \land (\exists z F(z)) \)

2. (P53, Ex.14, [R]) Determine the truth value of each of these statements if the domain consists of all real numbers.
 a) \(\exists x (x^3 = -1) \)
 b) \(\exists x (x^4 < x^2) \)
 c) \(\forall x ((-x)^2 = x^2) \)
 d) \(\forall x (2x > x) \)

Answer Area:

- a) true
- b) true
- c) true
- d) false, zero or negative numbers
Suppose the domain of the propositional function $P(x, y)$ consists of pairs x and y, where x is 1, 2, or 3 and y is 1, 2, or 3. Write out these propositions using disjunctions and conjunctions.

a) $\exists x \ P(x, 3)$
d) $\forall x \ \neg P(x, 2)$

Answer Area:
a) $P(1, 3) \lor P(2, 3) \lor P(3, 3)$
d) $\neg P(1, 2) \land \neg P(2, 2) \land \neg P(3, 2)$