Finishing Graph Theory

- Huffman coding
- proof of correctness
Today’s Topic

Some Combinatorics

- inclusion-exclusion principle
- (optional) solving linear recurrences
Inclusion-Exclusion Principle (容斥原理)

main textbook, Page 552 – 564
Inclusion-Exclusion Principle

Motivation

- A, B, C: finite sets

Then we have:

\[
\begin{align*}
|A \cup B| &= |A| + |B| - |A \cap B|, \\
|A \cup B \cup C| &= |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|.
\end{align*}
\]
Inclusion-Exclusion Principle

Motivation

- A, B, C: finite sets

Then we have:

- $|A \cup B| = |A| + |B| - |A \cap B|$;
- $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|$.
An Example

- How many natural numbers between 0 and 100 (inclusive) that are divisible either by 2 or 3 or 5?
Inclusion-Exclusion Principle

An Example

- How many natural numbers between 0 and 100 (inclusive) that are divisible either by 2 or 3 or 5?
- \(A = \{ n \in \mathbb{N} \mid 2 \mid n \} \)
- \(B = \{ n \in \mathbb{N} \mid 3 \mid n \} \)
- \(C = \{ n \in \mathbb{N} \mid 5 \mid n \} \)

\[|A \cup B \cup C| = 51 + 34 + 21 - 17 - 7 - 11 + 4. \]
\[|A \cup B \cup C| = 75. \]
An Example

How many natural numbers between 0 and 100 (inclusive) that are divisible either by 2 or 3 or 5?

- $A = \{ n \in \mathbb{N} | 2 \mid n \}$
- $B = \{ n \in \mathbb{N} | 3 \mid n \}$
- $C = \{ n \in \mathbb{N} | 5 \mid n \}$

$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|.$
Inclusion-Exclusion Principle

An Example

How many natural numbers between 0 and 100 (inclusive) that are divisible either by 2 or 3 or 5?

- $A = \{ n \in \mathbb{N} \mid 2 \mid n \}$
- $B = \{ n \in \mathbb{N} \mid 3 \mid n \}$
- $C = \{ n \in \mathbb{N} \mid 5 \mid n \}$

$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |C \cap A| + |A \cap B \cap C|.$

$|A \cup B \cup C| = 51 + 34 + 21 - 17 - 7 - 11 + 4.$
An Example

- How many natural numbers between 0 and 100 (inclusive) that are divisible either by 2 or 3 or 5?

- \(A = \{ n \in \mathbb{N} | 2 \mid n \} \)
- \(B = \{ n \in \mathbb{N} | 3 \mid n \} \)
- \(C = \{ n \in \mathbb{N} | 5 \mid n \} \)
- \(| A \cup B \cup C | = | A | + | B | + | C | - | A \cap B | - | B \cap C | - | C \cap A | + | A \cap B \cap C |\).
- \(| A \cup B \cup C | = 51 + 34 + 21 - 17 - 7 - 11 + 4.\)
- \(| A \cup B \cup C | = 75\).
Theorem Statement

- \(A_1, \ldots, A_n \): finite sets

Then we have that

\[
|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}|.
\]
Inclusion-Exclusion Principle

Theorem Statement
- A_1, \ldots, A_n: finite sets

Then we have that

\[|\bigcup_{i=1}^n A_i| = \sum_{\ell=1}^n \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^\ell A_{k_j}|. \]

Proof

We show that every element in $\bigcup_{i=1}^n A_i$ is counted in total once in the right hand side of the equality.
Inclusion-Exclusion Principle

Theorem Statement

- A_1, \ldots, A_n: finite sets

Then we have that

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_{\ell} \leq n} (-1)^{\ell+1} \cdot \left| \bigcap_{j=1}^{\ell} A_{k_j} \right|.$$

Proof

We show that every element in $\bigcup_{i=1}^{n} A_i$ is counted in total once in the right hand side of the equality.

- Suppose that an element u appears in A_{b_1}, \ldots, A_{b_m}.

Inclusion-Exclusion Principle

Theorem Statement
- \(A_1, \ldots, A_n \): finite sets

Then we have that

\[
| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | .
\]

Proof

We show that every element in \(\bigcup_{i=1}^{n} A_i \) is counted in total once in the right hand side of the equality.

- Suppose that an element \(u \) appears in \(A_{b_1}, \ldots, A_{b_m} \).
- For each \(\ell \leq m \), the summation \(\sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \) counts the element \(u \) up to \((-1)^{\ell+1} \cdot C_{m}^{\ell} \).
Inclusion-Exclusion Principle

Theorem Statement

- A_1, \ldots, A_n: finite sets

Then we have that

$$|\bigcup_{i=1}^n A_i| = \sum_{\ell=1}^n \sum_{1\leq k_1<\ldots<k_\ell\leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^\ell A_{k_j}|.$$

Proof

We show that every element in $\bigcup_{i=1}^n A_i$ is counted in total once in the right hand side of the equality.

- Suppose that an element u appears in A_{b_1}, \ldots, A_{b_m}.
- For each $\ell \leq m$, the summation $\sum_{1\leq k_1<\ldots<k_\ell\leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^\ell A_{k_j}|$ counts the element u up to $(-1)^{\ell+1} \cdot C^\ell_m$.
- In total, u is counted up to $\sum_{\ell=1}^m (-1)^{\ell+1} \cdot C^\ell_m = 1$.

Inclusion-Exclusion Principle

Theorem Statement

\[
| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} |
\]

Derangement

- **problem:** how many bijections \(f : \{1, \ldots, n\} \to \{1, \ldots, n\} \) are there such that \(\forall n. f(n) \neq n \)?
Theorem Statement

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \]

Derangement

- **Problem**: how many bijections \(f : \{1, \ldots, n\} \to \{1, \ldots, n\} \) are there such that \(\forall n.f(n) \neq n \)?
- \(A_k := \{ f \mid f \text{ bijection, } f(k) = k \} \) (\(1 \leq k \leq n \))
Inclusion-Exclusion Principle

Theorem Statement

\[
|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}|
\]

Derangement

- **problem:** how many bijections \(f : \{1, \ldots, n\} \to \{1, \ldots, n\} \) are there such that \(\forall n. f(n) \neq n \)?
- \(A_k := \{ f | f \text{ bijection, } f(k) = k \} \) \((1 \leq k \leq n) \)
- \(|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \)
Inclusion-Exclusion Principle

Theorem Statement

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \]

Derangement

- **Problem**: how many bijections \(f : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \) are there such that \(\forall n. f(n) \neq n \)?
- \(A_k := \{ f \mid f \text{ bijection, } f(k) = k \} \ (1 \leq k \leq n) \)
- \(|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \)
- \(|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot (n - \ell)! \)
Inclusion-Exclusion Principle

Theorem Statement

\[
\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot \left| \bigcap_{j=1}^{\ell} A_{k_j} \right|
\]

Derangement

- **Problem:** how many bijections \(f : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \) are there such that \(\forall n. f(n) \neq n \)?
- \(A_k := \{ f \mid f \text{ bijection, } f(k) = k \} \) (\(1 \leq k \leq n \))
- \(\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot \left| \bigcap_{j=1}^{\ell} A_{k_j} \right| \)
- \(\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot (n - \ell)! \)
- \(\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\ell=1}^{n} C_{n}^{\ell} \cdot (-1)^{\ell+1} \cdot (n - \ell)! \)
Theorem Statement

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \]

Derangement

Problem: how many bijections \(f : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \) are there such that \(\forall n. f(n) \neq n \)?

\(A_k \): \(\{ f \mid f \text{ bijection, } f(k) = k \} \) \((1 \leq k \leq n)\)

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \]

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot (n - \ell)! \]

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \binom{n}{\ell} (-1)^{\ell+1} \cdot (n - \ell)! \]

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} (-1)^{\ell+1} \cdot \frac{n!}{\ell!} = n! \cdot (\sum_{\ell=1}^{n} (-1)^{\ell+1} \cdot \frac{1}{\ell!}) \]
Inclusion-Exclusion Principle

Theorem Statement

\[
|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}|
\]

Derangement

Problem: how many bijections \(f : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\} \) are there such that \(\forall n.f(n) \neq n \)?

\(A_k := \{ f \mid f \text{ bijection, } f(k) = k \} \) (\(1 \leq k \leq n \))

\[
|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}|
\]

\[
|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot (n - \ell)!
\]

\[
|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \binom{n}{\ell} (-1)^{\ell+1} \cdot (n - \ell)!
\]

\[
|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} (-1)^{\ell+1} \cdot \frac{n!}{\ell!} = n! \cdot (\sum_{\ell=1}^{n} (-1)^{\ell+1} \cdot \frac{1}{\ell!})
\]

The answer is \(n! \cdot \sum_{\ell=0}^{n} (-1)^{\ell} \cdot \frac{1}{\ell!} \).
Inclusion-Exclusion Principle

Theorem Statement

\[
|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}|
\]

Onto Functions

- **Problem:** how many onto functions \(f : \{1, \ldots, m\} \rightarrow \{1, \ldots, n\} \) are there?
Inclusion-Exclusion Principle

Theorem Statement

\[| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \]

Onto Functions

- **Problem**: How many onto functions \(f : \{1, \ldots, m\} \to \{1, \ldots, n\} \) are there?
- \(A_k := \{ f \mid k \not\in \text{ran } f \} \) \((1 \leq k \leq n) \)
Inclusion-Exclusion Principle

Theorem Statement

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_{\ell} \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \]

Onto Functions

- **Problem:** how many onto functions \(f : \{1, \ldots, m\} \rightarrow \{1, \ldots, n\} \) are there?
- \(A_k := \{ f \mid k \not\in \text{ran } f \} \) (\(1 \leq k \leq n \))
- \(|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_{\ell} \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \)
Inclusion-Exclusion Principle

Theorem Statement

$|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_{\ell} \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}|$

Onto Functions

- **Problem**: how many onto functions $f : \{1, \ldots, m\} \to \{1, \ldots, n\}$ are there?

- $A_k := \{f \mid k \not\in \text{ran } f\}$ (1 ≤ k ≤ n)

- $|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_{\ell} \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}|$

- $|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_{\ell} \leq n} (-1)^{\ell+1} \cdot (n - \ell)^m$
Theorem Statement

\[| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \]

Onto Functions

- **Problem:** how many onto functions \(f : \{1, \ldots, m\} \to \{1, \ldots, n\} \) are there?
- \(A_k := \{ f \mid k \notin \text{ran } f \} \) (1 ≤ k ≤ n)
- \(| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \)
- \(| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot (n - \ell)^m \)
- \(| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \binom{n}{\ell} \cdot (-1)^{\ell+1} \cdot (n - \ell)^m \)
Inclusion-Exclusion Principle

Theorem Statement

\[| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \]

Onto Functions

- **problem**: how many onto functions \(f : \{1, \ldots, m\} \to \{1, \ldots, n\} \) are there?
- \(A_k := \{ f \mid k \not\in \text{ran } f \} \) \((1 \leq k \leq n)\)
- \(| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \)
- \(| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot (n - \ell)^m \)
- \(| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \binom{n}{\ell} \cdot (-1)^{\ell+1} \cdot (n - \ell)^m \)
- The answer is \(\sum_{\ell=0}^{n} \binom{n}{\ell} \cdot (-1)^{\ell} \cdot (n - \ell)^m \).
Inclusion-Exclusion Principle

Theorem Statement

\[
|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}|
\]

Euler’s Totient Function

- **Problem:** How many integers from \(\{0, 1, \ldots, m - 1\}\) (\(m \geq 2\)) are relatively prime to \(m = p_1^{\alpha_1} \cdots p_n^{\alpha_n}\)? (\(p_i \geq 2\) are distinct prime numbers)
Inclusion-Exclusion Principle

Theorem Statement

\[| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \]

Euler’s Totient Function

- **Problem:** how many integers from \(\{0, 1, \ldots, m - 1\} \) \((m \geq 2) \) are relatively prime to \(m = p_1^{\alpha_1} \cdots p_n^{\alpha_n} \)? \((p_i \geq 2 \) are distinct prime numbers)

- \(A_k := \{ N \mid p_k \mid N \text{ and } 0 \leq N \leq m - 1 \} \), \((1 \leq k \leq n) \)
Theorem Statement

\[| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \]

Euler’s Totient Function

- **problem**: how many integers from \{0, 1, \ldots, m - 1\} (\(m \geq 2\)) are relatively prime to \(m = p_1^{\alpha_1} \cdot \ldots \cdot p_n^{\alpha_n}\)? (\(p_i \geq 2\) are distinct prime numbers)

- \(A_k := \{ N \mid p_k | N \text{ and } 0 \leq N \leq m - 1 \}, \ (1 \leq k \leq n)\)

- \[| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \]

\[| \bigcup_{i=1}^{n} A_i | = m \cdot \left(1 - \frac{1}{p_1}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_n}\right) \]
Inclusion-Exclusion Principle

Theorem Statement

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \]

Euler’s Totient Function

- **Problem**: how many integers from \(\{0, 1, \ldots, m - 1\} \) (\(m \geq 2 \)) are relatively prime to \(m = p_1^{\alpha_1} \cdot \ldots \cdot p_n^{\alpha_n} \)? (\(p_i \geq 2 \) are distinct prime numbers)

- \(A_k := \{N \mid p_k \mid N \text{ and } 0 \leq N \leq m - 1\}, \ (1 \leq k \leq n) \)

- \(|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \)

- \(|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot \frac{m}{p_{k_1} \cdots p_{k_\ell}} \)
Inclusion-Exclusion Principle

Theorem Statement

\[|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}| \]

Euler’s Totient Function

- problem: how many integers from \(\{0, 1, \ldots, m-1\}\) (\(m \geq 2\)) are relatively prime to \(m = p_1^{\alpha_1} \cdots p_n^{\alpha_n}\) ? (\(p_i \geq 2\) are distinct prime numbers)

- \(A_k := \{N \mid p_k \mid N \text{ and } 0 \leq N \leq m-1\}, \ (1 \leq k \leq n)\)

- \(|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot |\bigcap_{j=1}^{\ell} A_{k_j}|\)

- \(|\bigcup_{i=1}^{n} A_i| = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \cdots < k_\ell \leq n} (-1)^{\ell+1} \cdot \frac{m}{p_{k_1} \cdots p_{k_\ell}}\)

- \(|\bigcup_{i=1}^{n} A_i| = m - m \cdot \left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_n}\right)\)
Inclusion-Exclusion Principle

Theorem Statement

\[
| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} |
\]

Euler’s Totient Function

- **Problem**: how many integers from \(\{0, 1, \ldots, m - 1\} \) (\(m \geq 2 \)) are relatively prime to \(m = p_1^{\alpha_1} \cdot \ldots \cdot p_n^{\alpha_n} \)? (\(p_i \geq 2 \) are distinct prime numbers)

- \(A_k := \{ N \mid p_k \mid N \text{ and } 0 \leq N \leq m - 1 \}, \ (1 \leq k \leq n) \)

- \(| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot | \bigcap_{j=1}^{\ell} A_{k_j} | \)

- \(| \bigcup_{i=1}^{n} A_i | = \sum_{\ell=1}^{n} \sum_{1 \leq k_1 < \ldots < k_\ell \leq n} (-1)^{\ell+1} \cdot \frac{m}{p_{k_1} \cdots p_{k_\ell}} \)

- \(| \bigcup_{i=1}^{n} A_i | = m - m \cdot \left(1 - \frac{1}{p_1}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_n}\right) \)

- The answer is \(m \cdot \left(1 - \frac{1}{p_1}\right) \cdot \ldots \cdot \left(1 - \frac{1}{p_n}\right) \).
Solving Linear Recurrences

main textbook, Page 514 – 524
Solving Linear Recurrences

Problem
Given a linear recurrence relation

\[a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} + \cdots + c_k \cdot a_{n-k} \]

where \(c_1, \ldots, c_k \) are real constants (\(c_k \neq 0 \)), how can we solve it exactly given the initial values for \(a_0, \ldots, a_{k-1} \)?
Solving Linear Recurrences

Theorem

- \(a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} \): a linear recurrence relation
- \(a_0, a_1 \): known constants
- \(r_1, r_2 \): two distinct roots of the equation \(r^2 - c_1 \cdot r - c_2 = 0 \)

Then \(a_n = \alpha_1 \cdot r_1^n + \alpha_2 \cdot r_2^n \) for \(n \geq 0 \), where \(\alpha_1, \alpha_2 \) are constants uniquely determined by \(a_0, a_1 \).
Fibonacci Numbers

- \(a_n = a_{n-1} + a_{n-2} \)
- \(a_0 = 0, \ a_1 = 1 \)

We solve as follows:
Solving Linear Recurrences

Fibonacci Numbers

- \(a_n = a_{n-1} + a_{n-2} \)
- \(a_0 = 0, a_1 = 1 \)

We solve as follows:
- \(r_1 = \frac{1-\sqrt{5}}{2}, \quad r_2 = \frac{1+\sqrt{5}}{2} \) from the equation \(r^2 - 1 \cdot r - 1 = 0 \)
Fibonacci Numbers

- \(a_n = a_{n-1} + a_{n-2} \)
- \(a_0 = 0, \ a_1 = 1 \)

We solve as follows:

- \(r_1 = \frac{1-\sqrt{5}}{2}, \ r_2 = \frac{1+\sqrt{5}}{2} \) from the equation \(r^2 - 1 \cdot r - 1 = 0 \)
- \(a_n = \alpha_1 \cdot r_1^n + \alpha_2 \cdot r_2^n \)
Fibonacci Numbers

- \(a_n = a_{n-1} + a_{n-2} \)
- \(a_0 = 0, a_1 = 1 \)

We solve as follows:

- \(r_1 = \frac{1-\sqrt{5}}{2}, \ r_2 = \frac{1+\sqrt{5}}{2} \) from the equation \(r^2 - 1 \cdot r - 1 = 0 \)
- \(a_n = \alpha_1 \cdot r_1^n + \alpha_2 \cdot r_2^n \)
- \(\alpha_1 + \alpha_2 = 0, \ \alpha_1 \cdot r_1 + \alpha_2 \cdot r_2 = 1 \)
Fibonacci Numbers

- \(a_n = a_{n-1} + a_{n-2} \)
- \(a_0 = 0, a_1 = 1 \)

We solve as follows:

- \(r_1 = \frac{1-\sqrt{5}}{2}, \quad r_2 = \frac{1+\sqrt{5}}{2} \) from the equation \(r^2 - 1 \cdot r - 1 = 0 \)
- \(a_n = \alpha_1 \cdot r_1^n + \alpha_2 \cdot r_2^n \)
- \(\alpha_1 + \alpha_2 = 0, \quad \alpha_1 \cdot r_1 + \alpha_2 \cdot r_2 = 1 \)
- \(\alpha_1 = -\frac{1}{\sqrt{5}}, \quad \alpha_2 = \frac{1}{\sqrt{5}} \)
Fibonacci Numbers

- \(a_n = a_{n-1} + a_{n-2} \)
- \(a_0 = 0, \ a_1 = 1 \)

We solve as follows:

- \(r_1 = \frac{1-\sqrt{5}}{2}, \ r_2 = \frac{1+\sqrt{5}}{2} \) from the equation \(r^2 - 1 \cdot r - 1 = 0 \)
- \(a_n = \alpha_1 \cdot r_1^n + \alpha_2 \cdot r_2^n \)
- \(\alpha_1 + \alpha_2 = 0, \ \alpha_1 \cdot r_1 + \alpha_2 \cdot r_2 = 1 \)
- \(\alpha_1 = -\frac{1}{\sqrt{5}}, \ \alpha_2 = \frac{1}{\sqrt{5}} \)
- \(a_n = \left(-\frac{1}{\sqrt{5}} \right) \cdot r_1^n + \frac{1}{\sqrt{5}} \cdot r_2^n \)
Another Example

- $a_n = -a_{n-2}$
- $a_0 = 0, a_1 = 1$

We solve as follows:

- $r_1 = i, r_2 = -i$ from the equation $r^2 + 1 = 0$
- $a_n = \alpha_1 \cdot r_1^n + \alpha_2 \cdot r_2^n$
- $\alpha_1 + \alpha_2 = 0, \alpha_1 \cdot r_1 + \alpha_2 \cdot r_2 = 1$
- $\alpha_1 = -\frac{i}{2}, \alpha_2 = \frac{i}{2}$
- $a_n = \left(-\frac{i}{2}\right) \cdot i^n + \frac{i}{2} \cdot (-i)^n$
Solving Linear Recurrences

Theorem

- \(a_n = c_1 \cdot a_{n-1} + c_2 \cdot a_{n-2} \ (c_2 \neq 0) \)
- \(a_0, a_1 \): known constants
- \(r \): the unique root of the equation \(r^2 - c_1 \cdot r - c_2 = 0 \)

Then \(a_n = \alpha_1 \cdot r^n + \alpha_2 \cdot n \cdot r^n \) for \(n \geq 0 \), where \(\alpha_1, \alpha_2 \) are constants uniquely determined by \(a_0, a_1 \).
An Example

\[a_n = 6 \cdot a_{n-1} - 9 \cdot a_{n-2} \]
\[a_0 = 0, \quad a_1 = 1 \]

We solve as follows:

\[r = 3 \text{ from the equation } r^2 - 6 \cdot r + 9 = 0 \]
\[a_n = \alpha_1 \cdot r^n + \alpha_2 \cdot n \cdot r^n \]
\[\alpha_1 = 0, \quad \alpha_1 \cdot r + \alpha_2 \cdot r = 1 \]
\[\alpha_1 = 0, \quad \alpha_2 = \frac{1}{3} \]
\[a_n = \frac{1}{3} \cdot n \cdot 3^n \]
The General Theorems

See Page 518–519, [R].
Summary

- inclusion-exclusion principle
- solving linear recurrences
Textbooks

- **main textbook:**
[R], Page 552 – 564, (optional) Page 514 – 524

(optional) The Pigeonhole Principle:
 [R], Page 399 – 405
 Dirichlet’s Approximation Theorem

(optional) Generating Functions:
 [R], Page 537 – 548
 Catalan numbers
 https://en.wikipedia.org/wiki/Catalan_number
Homeworks

- [R], Page 557, Exercise 8
- [R], Page 558, Exercise 22
- [R], Page 565, Exercise 13, 16, 17
Homework Submission

- **submission time**: the start of the class on Dec. 10th
- **teaching assistant**:
 - Peixin Wang: peter007008@qq.com
 - Jinyi Wang: jinyi.wang@sjtu.edu.cn
 - Luhua Jin: 1097795310@qq.com
- **submission**:
 - written version (preferred): submit on the desk
 - electronic version: word or pdf version, send email with title

“离散数学+姓名+学号+第十三周周五”

to the teaching assistants:
- Students from F1903001, F1903003 and F1903004, send to Luhua Jin.
- Students from F1903801 and F1903802, send to Jinyi Wang.
- All other students please send to Peixin Wang.