
GRAP: Group-level Resource Allocation Policy for
Reconfigurable Dragonfly Network in HPC
Guangnan Feng

fenggn3@mail2.sysu.edu.cn

Sun Yat-sen University

Guangzhou, China

Dezun Dong

dong@nudt.edu.cn

College of Computer

National University of Defense Technology

Changsha, China

Shizhen Zhao

shizhenzhao@sjtu.edu.cn

Shanghai Jiao Tong University

Shanghai, China

Yutong Lu
∗

luyutong@mail.sysu.edu.cn

Sun Yat-sen University

Guangzhou, China

ABSTRACT
Dragonfly is a highly scalable, low-diameter, and cost-efficient net-

work topology, which has been adopted in new exascale High Per-

formance Computing (HPC) systems. However, Dragonfly topology

suffers from the limited direct links between groups. The reconfig-

urable network can solve this problem by reconfiguring topology

to adjust the number of direct links between groups. While the

performance improvement of a single job on reconfigurable HPC

network has been evaluated in previous works, the performance

of HPC workloads has not been studied because of the lack of an

appropriate resource allocation policy.

In this work, we propose Group-level Resource Allocation Policy

(GRAP) to allocate both compute nodes and Reconfigurable Links

for jobs in Reconfigurable Dragonfly Network (RDN). We start

with formulating three design principles: reconfigurable network

should be reconfiguration interference-free, guarantee connectivity

and performance for each job, and satisfy varied resource requests.

According to the principles, GRAP uses different strategies for

small and large jobs, and contains three allocation modes for large

jobs: Balance Mode, Custom Mode, and Adaptive Mode. Finally, we

evaluate GRAP with the CODES network simulation framework

and the Slurm Simulator using real workload traces. The results

demonstrate that RDN coupled with GRAP achieves lower latency,

higher bandwidth, and lower job wait time.
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1 INTRODUCTION
The Dragonfly topology[30] is one of the most popular topologies

for highly scalable, low-diameter, and cost-efficient interconnection

networks. It has been adopted in many High Performance Comput-

ing (HPC) systems, including Piz Daint[11] and Trinity[31] with

the Aries interconnect[18], Frontier[37] and Perlmutter[46] with

the Slingshot interconnect[16].

The Dragonfly topology is a two-tiered direct topology con-

sisting of groups of switches connected to compute nodes. A key

characteristic of Dragonfly topology is that it has at least one direct

global link between any two groups. Such global links provide low

diameter and high scalability but cause congestion when too much

data is transferred between two groups[22].

The reconfigurable network can solve this problem by reconfig-

uring topology to adjust the number of direct links between groups.

The Reconfigurable Dragonfly Network(RDN) takes advantage of

the Optical Circuit Switch (OCS), which can establish and remove

an optical data path between any input and output port according

to the traffic pattern. It can alleviate the congestion in Dragonfly

topology[64].

The reconfigurable network has been adopted in Google’s data

centers [52] but has never been deployed in a production HPC

system
1
. In previous works[4, 13, 35, 38, 42, 58, 64, 69], the per-

formance improvement of a single job on the reconfigurable HPC

network has been evaluated, but the resource allocation policy for

HPC workloads is ignored or designed unrealistically. And the re-

source allocation policy for traditional networks cannot be used

in reconfigurable networks because it does not consider the allo-

cation of Reconfigurable Links, which will cause connectivity and

performance problems. The lack of appropriate resource allocation

policy for reconfigurable networks leads to unknown performance

of HPC workloads on reconfigurable networks.

1
This work was finished in February 2023. Google published its new supercomputer

system for AI with reconfigurable network in Apr. 2023[29].
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In this work, we aim to design a resource allocation policy to

allocate both compute nodes and Reconfigurable Links for jobs

in RDN. According to our experience with real supercomputing

systems, we first formulate three design principles for RDN:

(1) Reconfiguration should not interfere with running jobs;

(2) Connectivity and performance should be guaranteed for each

job;

(3) Varied resource requests should be satisfied.

Based on these design principles, we design Group-level Resource

Allocation Policy (GRAP). GRAP uses different strategies and re-

strictions for small and large jobs, and contains three allocation

modes for large jobs: Balance Mode, Custom Mode, and Adaptive

Mode. Each mode has its target traffic patterns and further resource

allocation rules.

We design a two-step experiment to evaluate the performance of

HPC workloads on the Reconfigurable Dragonfly Network coupled

with the Group-level Resource Allocation Policy (RDN-GRAP). We

first use CODES network simulation framework[45] to evaluate

the three resource allocation modes with corresponding traffic pat-

terns under different job sizes. Then, we use the results as input to

evaluate the performance of real HPC workloads from Mira super-

computing system[14, 19] with Slurm Simulator[54] and compared

it with Traditional Dragonfly Network (TDN).

The key contributions of this work can be summarized as follows:

• We formulate three design principles for resource alloca-

tion policy in RDN according to our experience with real

supercomputing systems.

• We design a resource allocation policy GRAPwhich allocates

both compute nodes and Reconfigurable Links for jobs in

RDN according to the design principles. It is compatible with

many existing designs for Reconfigurable HPC Networks,

including the routing and reconfiguration algorithms.

• Weperform detailed performance evaluations for RDN-GRAP,

and the results demonstrate that RDN-GRAP achieves inter-

job interference-free, lower latency, higher bandwidth, and

lower job wait time compared to TDN.

The rest of this paper is organized as follows: Section 2 introduces

Dragonfly topology and RDN. In Section 3, we formulate design

principles for RDN. In Section 4, we introduce GRAP. In Section 5,

we evaluate RDN-GRAP and compare it with TDN. Finally, Section

6 introduces related works and Section 7 presents our conclusions.

2 BACKGROUND AND MOTIVATION
2.1 Dragonfly Topology
A standard Dragonfly topology has a 2-layer structure[30]. A group

of switches are interconnected using an intra-group topology into

a group that can be regarded as a single virtual switch with a very

high radix. The groups are then fully connected with an inter-group

topology. As to intra-group topology, different topologies can be

used[16, 18]. In this work, we focus on the traffic among groups

and use full-mesh topology for intra-group, where all switches are

directly connected to each other within a group. GRAP, however,

can be applied to other intra-group topology variations.

The number of groups in a Dragonfly can vary. The largest

possible Dragonfly has only one global link connecting each pair

OCSOCSOCS OCS

Legend
Compute Node

Electronic Packet Switch

OCS Optical Circuit Switch

Group

Two Reconfigurable Links

Service Network

Figure 1: Reconfigurable Dragonfly Network.

of groups. Three parameters uniquely define the largest Dragonfly:

the number of links per switch connecting to compute nodes p, the
number of switches in each group a, and the number of global links

per switch connecting to switches in other groupsh. As discussed in
[30], a load-balanced Dragonfly system should satisfy a = 2p = 2h.

Since each group connects to the other groups evenly, Dragonfly

topology works well in uniform traffic. However, when a large

amount of data is transferred between two groups, the limited num-

ber of direct links between two groups will lead to congestion[22].

To address this issue, two solutions are proposed. The first one

is adaptive routing[27, 55]. Packets are detoured to other groups

when congestion happens in the minimal paths. The second one

is random/round-robin job placement that spreads the traffic over

the whole network evenly[8, 9, 25].

However, both solutions have their limitations. Adaptive rout-

ing will cause higher average hops and lower network through-

put when non-minimal paths are selected frequently. In addition,

adaptive routing needs a more complicated network routing chip

design. The discontinuous job placement loses the performance of

neighboring communication[33, 60]. Zahn et al. show that neighbor

communication is frequently used in HPC applications[68]. The

discontinuous job placement makes intra-group communication

becomes inter-group communication. Even worse, it will cause

inter-job interference[66].

2.2 Reconfigure Dragonfly Network
In this subsection, we introduce the Reconfigurable Dragonfly

Network, a combination of the advantages of several previous

work[4, 57–59, 64]. It is the network where GRAP is based.

RDN can be seen as a traditional Dragonfly topology with all its

global links connected to OCSes, as shown in Figure 1. It is similar

to [4, 64], but a little different. Each group’s ith global links are

connected to the same OCS. We call them Reconfigurable Links in

this work. We expect the number of ports of an OCS to be larger

than the number of groups in the Dragonfly topology. OCS with

320 ports is currently available[1]; meanwhile, 512 and 1024 ports

MEMS-based OCSes are on their way. If the number of ports of
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OCS is adequate, each group can connect more Reconfigurable

Links to the same OCS. In Figure 1, we let each group connects two

Reconfigurable Links to the same OCS.

Reconfigurable networks take advantage of the OCS, which can

establish and remove an optical data path between any input and

output port. According to traffic patterns, OCSes are configured

to disconnect the optical data paths between groups with little

communication and establish optical data paths between groups

that communicate heavily.

Storage access, connectivity, and fault tolerance are easily over-

looked problems in reconfigurable network design. To overcome

these problems, we prefer to add a separate service network to

assist reconfigurable network, which is similar to [4, 20, 61]. The

separate network is made of Electronic Packet Switches (EPSes)

and is used for service. The service network can adopt any topol-

ogy. A highly oversubscribed Fat-tree topology is suggested to save

budget and power. The service network in Figure 1 is an example.

Each EPS connecting to compute nodes is connected to a service

network’s leaf switch by a single link. Compute nodes can access

storage by the service network at any time, regardless of the cur-

rent status of the reconfigurable topology. Similarly, the system

administrator, Slurm service, and users can access compute nodes

anytime. When OCS failures occur, the traffic can temporarily fall

back to the service network and let jobs be suspended without

timeout error. Therefore, our resource allocation policy does not

need to consider the storage access, compute nodes access, and

fault-tolerant problem.

Topology-Aware, Globally-direct Oblivious (TAGO) routing[57]

is adopted for inter-group routing in RDN. To our knowledge, this is

the only study focused on routing for reconfigurable networks. The

inter-group traffic is load balanced among all the direct links from

the source group to the destination group. Indirect routing that

detours from another group is not required because the topology

has matched the traffic pattern. For intra-group routing, we adopt

adaptive routing to prevent contention in intra-group communica-

tion.

Previous works[4, 13, 35, 58, 64] have studied the traffic pattern

of HPC applications and propose topology reconfiguration schemes

to match applications’ communication patterns. These schemes

include adaptive schemes[4], schemes obtained by solving min-

max decomposition problem[64] and min-cost flow problem[58],

and schemes based on Machine Learning (ML)[13, 35]. In this work,

GARP is compatible with all these reconfiguration schemes, which

is one of its advantages.

The resource allocation policy is ignored or assumed unrealis-

tically in previous work. Some of them only consider a single job

running in the HPC system[4, 35, 43, 59, 64]. However, in a real HPC

system, many users use the system simultaneously, and many jobs

are executed at the same time. [57] considers mixed traffic patterns

from different applications and compares contiguous job mapping

and randomized job mapping, but the resource allocation policy for

jobs that will arrive and finish differently is not considered. [58]

underestimates the interference of reconfiguration on running jobs

and assumes that topology can be reconfigured every time a new

job starts. In addition, the resource allocation policy for traditional

networks cannot be used in reconfigurable networks because it

does not consider the allocation of Reconfigurable Links. If the

Reconfigurable Links are not appropriately allocated, it will cause

connectivity and performance problems. A job may not be able to

start because its nodes cannot communicate with each other. And

the performance of some jobs may decrease because of insufficient

Reconfigurable Links. These problems will be analyzed in detail in

Principle 2.

In this paper, we do not analyze RDN’s cost in detail, including

capex and opex, since it will be too speculative. We strongly expect

that OCSes in Reconfigurable Dragonfly Network will not addmuch

extra cost. In capex, a single OCS contains hundreds of ports and

needs no extra Optical Transceiver Modules. In opex, the power

consumption of the current 320 ports OCS is only 45 watts[1].

3 DESIGN PRINCIPLES
In this section, we formulate the three design principles for RDN

in HPC and explain the reasons.

Principle 1. Reconfiguration shouldnot interferewith run-
ning jobs.

HPC systems usually adopt the lossless network and Remote

Direct Memory Access (RDMA) to achieve ultra-low latency and

high performance. If a link with traffic is disconnected, it will cause

packet loss and Go-Back-N error recovery, leading to increasing

tail latency. If one process is blocked by packet retransmission, the

slowdown may propagate to all processes in this job. If a new rout-

ing path is not established in time, the packets may keep waiting

in the buffer of intermediate switches until a timeout and cause

network congestion. Even worse, not only the jobs that use the dis-

connected link may be stuck, other jobs affected by the congestion

may undergo a performance decrease.

Topology reconfigurations, especially for disconnecting links,

should consider the communication requirements of all jobs to

avoid victim jobs. Topology reconfiguration should not break the

connectivity of any job. The links in the only path of two nodes in

the same job should never be disconnected until the job finishes or

a new path is available. Further, disconnections should be decided

carefully to avoid rerouting traffic to a far or congested path.

As the jobs in HPC system start and finish, the traffic pattern in

the network changes rapidly. It means the mechanisms that prevent

network reconfiguration from interfering with running jobs should

be fast enough to deal with frequent network reconfiguration.

This problem can be dealt with a complicated topology recon-

figuration algorithm and rerouting scheme. However, we solved it

with the resource allocation policy GRAP, which dramatically re-

duces the complexity of the reconfiguration algorithm and requires

no rerouting scheme.

Principle 2. Connectivity and performance should be guar-
anteed for each job.

The connectivity and performance problems are critical issues

in the resource allocation policy of reconfigurable HPC networks.

Guaranteeing the connectivity of a job means that all the nodes

allocated for the job can reach each other after topology recon-

figuration. Figure 2a is an example that the connectivity of Job3

is not guaranteed. Job1 and Job2 are running jobs with allocated

Reconfigurable Links. Their allocated Reconfigurable Links are con-

nected to other groups. Job 3 is a new job. Suppose the red nodes
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OCS OCS OCS OCS
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(a) Connectivity Problem

OCS OCS OCS OCS
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(b) Performance Problem

Figure 2: Possible connectivity and performance problems.

and Reconfigurable Links are allocated for Job3. In that case, the Re-

configurable Links cannot be configured to form a connected graph

because the Reconfigurable Links are connected to different OCSes.

Thus, the nodes in Job3 cannot communicate with nodes in another

group. Reconfiguring the Reconfigurable Links of Job1 and Job2

should be cautious because it may violate Principle 1. Thus, some

mechanisms must be designed to avoid the connectivity problem.

Guaranteeing the performance of a job means that appropriate

and enough Reconfigurable Links are allocated for the job. Figure

2b is another example that Job3 may have a performance problem.

If the red nodes and Reconfigurable Links are allocated for Job3, the

nodes in the two groups are connected but connected by only two

global links (the red curve represents two Reconfigurable Links).

The other Reconfigurable Links are wasted because they are not

connected to the same OCSes. Thus, the bandwidth between the

two groups is limited. If there is a lot of traffic between the two

groups in Job3, the performance of Job3 will decrease. Thus, some

mechanisms must be designed to guarantee performance for each

job.

Principle 3. Varied resource requests should be satisfied.

Although many previous works take the traced traffic patterns

as the input of topology reconfiguration algorithms, they did not

consider users’ configuration can change that traffic patterns. We

advocate that users who run large jobs should adjust the configura-

tion of their jobs to match the reconfigurable network topology to

achieve the best performance. Just like the users of structured grid

computing in the Torus network who usually decompose their grid

in each dimension to adapt the size of the Torus topology, which

not only load balance calculation but also take advantage of the

neighboring communication performance of Torus topology. The

resource allocation system of the Torus network provides users

with an interface for specifying the used size in each dimension.

In an RDN, users pursuing the best performance should under-

stand the basic concept of the network: The network topology

has many groups, and each group contains x compute nodes. The

intra-group topology provides better communication performance

than the inter-group topology. Thus, they should try to adjust the

communication to intra-group communication under the limitation

of x nodes in each group. As for the inter-group topology, it is re-

configurable. The direct links between two groups can be increased

if needed. However, the number of inter-group links is limited. The

inter-group links should be placed at traffic hot spots. Thus, users

should simplify the inter-group communication pattern to let each

group communicate with as few groups as possible. Such changes

Large  Jobs: Nodes for Job3Nodes for Job3Nodes for Job2Nodes for Job2Nodes for Job1Nodes for Job1
Small  Jobs: Nodes for Job6Nodes for Job6Nodes for Job5Nodes for Job5Nodes for Job4Nodes for Job4
Other nodes: Failure NodesFailure NodesIdle NodesIdle Nodes

Groups for Job1 Groups for Job2

Groups for Job3

Large  Jobs: Nodes for Job3Nodes for Job3Nodes for Job2Nodes for Job2Nodes for Job1Nodes for Job1
Small  Jobs: Nodes for Job6Nodes for Job6Nodes for Job5Nodes for Job5Nodes for Job4Nodes for Job4
Other nodes: Failure NodesFailure NodesIdle NodesIdle Nodes

Groups for Job1 Groups for Job2

Groups for Job3

Figure 3: JobClassification andRestriction inGRAP:A small
job is always allocated nodes within a single group without
Reconfigurable Links. Each large job will be allocated nodes
from several groups that do not contain other large jobs, and
all the Reconfigurable Links attached to these groups.

in communication patterns should be achieved by modifying only

the input parameters rather than the source code.

System designers must provide users with a resource allocation

mode interface to let jobs use the expected resource, and each

process is placed on the correct node. A good approach is increasing

parameters in the resource request command line. In addition, a

default setting is necessary for users who know nothing about RDN

and its resource allocation mode interface. The system also needs

to guarantee the performance of their job.

4 GRAP DESIGN AND IMPLEMENTATION
Resource allocation policy is a part of the Resource and Job Man-

agement System (RJMS). Resource allocation policy takes a job’s

resource request and currently available resources as input. If the

currently available resources are adequate, it will return a subset

of the resources that satisfies the request. RJMS also contains an

ordering policy that reorders the jobs in queue and a reservation

policy that determines whether to reserve specific resources for

future jobs. Our work only designs the resource allocation policy

part of RJMS.

In GRAP, all jobs are first classified into small and large jobs.

Then, each large job can use one of three resource allocation modes

to fit into its traffic pattern. We will introduce these two steps in

the first two subsections. In the last subsection, we further analyze

and discuss the characteristics of GRAP.
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4.1 Job Classification and Restriction
In GRAP, all the incoming jobs are classified into small and large

jobs based on the number of nodes requested, as shown in lines 1-5

of Algorithm 1. The small and large jobs have different resource

allocation restrictions.

• Small Job: The number of nodes requested by a small job

is fewer than or equal to the number of nodes in a group.

A small job is always allocated nodes within a single group

without Reconfigurable Links.

• Large Job: The number of nodes requested by a large job is

larger than the number of nodes in a group. It spans multiple

groups. Each group contains at most one large job. Each

large job is allocated not only the nodes it requires but also

all the Reconfigurable Links of the groups that contain nodes

for this job.

The key design of GRAP is that all the Reconfigurable
Links of a group belong to the only large job in this group.
This key design follows the Principle 1. Jobs will not affect each

other during the reconfiguration of topology. The small jobs are

restricted to nodes within a single group, so they do not require

Reconfigurable Links. The start and finish of small jobs won’t trig-

ger any network reconfiguration. Each large job will be allocated

nodes from several groups that do not contain other large jobs, and

all the Reconfigurable Links attached to these groups. According to

the job’s traffic pattern, the groups owned by this job are connected

to each other by a traffic-matched topology before the start of exe-

cution. Thus, both topology reconfiguration and communication

traffic of large jobs will not affect each other because groups and

global links are not shared among large jobs.

This key design also satisfies the Principle 2. The connectivity

is guaranteed for each job, and GRAP provides the best network

performance for each job. Small jobs can take advantage of intra-

group communication performance and do not have a connectivity

problem. As for any large job, the groups that contain nodes for this

job can be seen as a smaller RDN because all the Reconfigurable

Links attached to these groups belong to this job. Since no more

useful Reconfigurable Links can be allocated to this job, it is the best

network performance that can be provided for this job. Obviously,

there is no connectivity problem for large jobs either.

Figure 3 is an example of GRAP. Job1, Job2, and Job3 are large

jobs. Job1 is allocated with four groups, and Job2 is allocated with

three groups. These groups are connected to form two smaller

Dragonfly subnets. This is the default topology for large jobs. The

number of direct global links between two groups in these smaller

Dragonfly subnets is increased compared to the Dragonfly formed

by all the groups. The performance of inter-group communication

will improve. Job3 are allocated with two groups. All the Recon-

figurable Links are directly connected to another group in the job.

The number of global links between two groups is dramatically

increased compared to only one direct global link between two

groups in Dragonfly formed by all the groups. Job4, Job5, and Job6

are small jobs. They consume the fragmented resources produced

by large jobs.

The allocation policy for small jobs is shown in lines 6-18 of

Algorithm 1. GRAP will first filter the groups with enough idle

nodes for the current small job (line 7). If no such group exist, the

Algorithm 1: Group-level Resource Allocation Policy
Input: Job: details of current job,
Df : details of topology including available resource.

Output: Job_res: nodes and Reconfigurable Links for Job
Data: _∗:built-in indicator, N∗:number of ∗, idle :idle nodes,
can_дrps: candidate groups after selection

1 Function GRAP(Job, Df )
2 if if Job .Nnodes ≤ Df .Nnodes_in_дroup then
3 return Small_Job_Allocation(Job, Df );
4 else
5 return Large_Job_Allocation(Job, Df );

6 Function Small_Job_Allocation(Job, Df )
7 can_дrps = select(Df .дroups , _idle ≥, Job .Nnodes);

8 if can_дrps .size == 0 then
9 return _JOB_WAIT ;

10 can_дrps_with = select(Df .дroups , _with_larдe_job);

11 can_дrps_no = select(Df .дroups , _no_larдe_job);

12 if can_дrps_with.size , 0 then
13 tarдet_дrp = min(can_дrps_with, _by_Nidle);

14 else
15 tarдet_дrp = min(can_дrps_no, _by_Nidle);

16 Job_res .nodes = select(tarдet_дrp.idle , Job .Nnodes);

17 Job_res .links = _none;

18 return Job_res;

current small job has to wait in a queue(line 8-9). If such a group

exists, GRAP will consider groups that already contain a large job

first (lines 12-13) and then those with no large job second (lines

14-15). Then, GRAP will choose the group with the least idle nodes

for the current small job (line 13 or 15). Note that the allocation

policy of selecting nodes within a group (line 16) is not a part of this

work because Dragonfly’s intra-group topology can vary according

to its definition. This is the same in large job allocation policy.

This job classification and restriction may cause longer job wait

time in some cases. Nevertheless, the performance improvement

brought by RDN-GRAP can mitigate this issue, as we will show in

Section 5.3.

In real production supercomputing systems, large jobs consume

much more core-hours than small jobs. Patel et al. investigate the

job characteristics of the Mira supercomputing system, which con-

tains 49152 compute nodes. Their analysis shows that nearly 80%

of core hours were consumed by jobs that require more than 4k

nodes in 2018[49]. According to our experience, small jobs are

usually created by developers and students for testing, debugging,

and studying. For small jobs, many systems have a time limitation,

for example, one hour. Thus, small jobs are suitable for consum-

ing the fragmented resources created by large to improve system

utilization.

Another potential benefit of this design is preventing users from

forming a large resource set by submitting a series of smaller re-

source requests. It will cause a deadlock in resource allocation when

multiple users hold resources and wait for more resources. If they

do, they will find out that the nodes in different groups may not be

able to communicate with each other.
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Algorithm 2: Large_Job_Allocation
Input: Job: details of current job
Df : details of topology including available resource

Output: Job_res: nodes and Reconfigurable Links for Job
Data: _∗: built-in indicator, N∗: number of ∗, idle :idle node,
can_дrps: candidate groups after selection,
Nдrps: number of groups used for Job,
node_reqs : number of nodes requested in each group for Job

1 Function Large_Job_Allocation(Job, Df )
2 can_дrps = select(Df .дroups , _no_larдe_job);

3 if Job .mode == _MINIMAL_BALANCE then
4 Nдrps = Job .Nnodes/Df .Nnodes_in_дroup;

5 node_reqs[1...Nдrps] = Df .Nnodes_in_дroup;

6 else if Job .mode == _CUSTOM_BALANCE then
7 Nдrps = Job .user_de f ined_Nдroup;

8 node_reqs[1...Nдrps] = Job .num_nodes/Nдrps;

9 else if Job .mode == _CUSTOM then
10 Nдrps = Job .user_de f ined_Nдroup;

11 for i = 1 to Nдrps do
12 node_reqs[i] = Job .user_node_reqs[i];

13 else if Job .mode == _ADAPTIVE then
14 return adaptive_mode_allocation(Job, Df );
15 sort(can_дrps , _by_Nidle , _ascend);

16 sort(node_reqs , _by_Nidle , _ascend);

17 j = 1;

18 for i = 1 to Nдrps do
19 while j ≤ can_дrps .size and can_дrps[j].Nidle <

nnode_reqs[i] do
20 j += 1;

21 if j > can_дrps .size then
22 return _JOB_WAIT ;

23 else
24 Job_res .nodes += select(can_дrps[j].idle ,

nnode_reqs[i]);

25 Job_res .links += can_дrps[j].all_ocs_links;

26 return Job_res;

4.2 Allocation Modes
The allocation policy for large jobs is shown in Algorithm 2. GRAP

filters the groups that contain no large job as candidate groups (line

2) and then allocates nodes for the current large job according to

the job’s allocation mode specified by the user when submitting

the job. This design follows the Principle 3 to provide users with a

resource allocation interface.

4.2.1 Balance Mode
Balance Mode is used for jobs requiring equal numbers of nodes

in each group. The traffic pattern of these jobs usually stresses

intra-group communication. The intra-group topology of Dragonfly

can provide lower latency and better performance for these jobs.

Taking large-scale deep learning training as an example, pipeline

parallelism and operator parallelism can be used within a single

group, while Data parallelism can be used among groups. Each

group holds a copy of the model[6].

Algorithm 3: Adaptive_Mode_Allocation

Input: Job: details of current job
Df : details of topology including available resource

Output: Job_res: nodes and Reconfigurable Links for Job
Data: _∗: built-in indicator, N∗: number of ∗, idle :idle node,
can_дrps: candidate groups after selection

1 Function Adaptive_Mode_Allocation(Job, Df )
2 can_дrps = select(Df .дroups , _no_larдe_job);

3 sort(can_дrps , _by_Nidle , _descend);

4 Nдrps = ⌈Job .Nnodes/Df .Nnodes_in_дroup⌉;

5 st = 1;

6 en = Nдrps;

7 if sum(can_дrps[st ...en].Nidle) < Job .Nnodes then
8 return _JOB_WAIT ;

9 while en + 1 ≤ Df .Nдroups and
sum(can_дrps[st + 1...en + 1].Nidle) ≥ Job .Nnodes do

10 st += 1;

11 en += 1;

12 Nnodes_remain = Job .Nnodes;

13 for i = en to st do
14 Nnodes_req = Nnodes_remain/(i − st + 1);

15 if Nnodes_req > can_дrps[i].Nidle then
16 Nnodes_req = can_дrps[i].Nidle;

17 Job_res .nodes +=

select(can_дrps[i].idle,Nnodes_req);

18 Job_res .links += can_дrps[i].all_ocs_links;

19 Nnodes_remain -= nodes_req;

20 return Job_res;

Balance Mode is further divided into two sub-mode: Minimal

Balance Mode and Custom Balance Mode.

In Minimal Balance Mode (lines 3-5), the number of groups used

by this large job,Nдrps , is set to Job .Nnodes/Df .Nnodes_in_дroup
(the number of nodes requested by the current large job divides

the number of nodes in a group). In this sub-mode, we require the

job can be configured to use all the nodes in each allocated group.

For example, in solvers for incompressible turbulent flows, such as

Incompact3D[32], CaNS[15], and PowerLLEL[65], the 3D cartesian

grid can be decomposed arbitrarily in two dimensions (denoted as

row and column). The number of nodes used in each row or column

can be set to Df .Nnodes_in_дroup.
As for Custom Balance Mode (lines 6-8), Nдrps is specified

by the user. The number of nodes used in each group is set to

Job .Nnodes/Nдrps . This sub-mode is designed for jobs where the

number of nodes in each allocated group cannot be arbitrary. For

example, the number of processes for Quantum Exact Simulation

Toolkit (QuEST)[28] must be the power of two.

4.2.2 Custom Mode
Custom Mode (lines 9-12) is used for jobs where the number of

nodes in each group needs to be different. Users need to specify not

only Nдrps but also the number of nodes used in each group. This

mode is designed to cover all special cases. For example, Commu-

nity Earth System Model (CESM)[2] is an application that contains
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multiple modules. Each module may be executed by different num-

bers of nodes in parallel. This may lead to a different number of

node requirements in each group.

In Balanced Mode and Custom Mode, the number of nodes re-

quired in each group is specific. After sorting the node requirements

and the candidate groups in ascending order (lines 15-16), GRAP

tries to find a group that contains enough idle nodes for each re-

quirement one by one to reduce fragmentation resources, as shown

in lines 17-25.

4.2.3 Adaptive Mode
Adaptive Mode is the default mode for large jobs if a user does

not explicitly specify Balance Mode or Custom Mode. The Adaptive

Mode lowers the difficulty of using the RDN. The performance of

many applications is not sensitive to the number of nodes used

in each group. For example, the uniform traffic is not sensitive

to the number of nodes used in each group, which is proved in

Section 5.2. The algorithm used for Adaptive Mode is shown in

Algorithm 3. GRAP still uses as few groups as possible and set

Nдrps to ⌈Job .Nnodes/Df .Nnodes_in_дroup⌉ because groups that
do not contain large jobs are regarded as rare resources, which is

similar to Minimal Balance Mode. The difference is the number of

nodes used in each group is not required to be equal but should

be as close as possible. Then, GRAP sorts the candidate groups

in descending order and chooses Nдrps continuous groups that
can satisfy the current job from sorted candidate groups. And the

Nдrps continuous groups should be chosen as far back as possible

(lines 9-11) to preserve more groups with more idle nodes.

4.3 Further analysis and discussions
4.3.1 Keep It Simple and Smart

In real HPC systems, the resources are managed by both RJMS

and the human administrator. It will be better for the resource

allocation policy to be more concise and understandable to avoid

trouble with the system administrator.

There are multiple resource pools for different levels of users

in an HPC system. The administrator needs to assign nodes to

resource pools, set users’ priorities for different resource pools, and

dynamically adjust them according to actual usage. Administrators

need to understand the resource allocation policy and cooperate

with it. For example, in the Fat-tree topology, the administrator

preferred to assign nodes in the same sub-tree to the same resource

pools to provide lower latency and better performance. In RDN-

GRAP, resources can be managed and assigned to resource pools

in groups.

Sometimes, the resource allocation policy is executed by not only

RJMS but also the administrator. For some emergency jobs, such as

the virus analysis when COVID-19 outbroke, some resources are

reserved for them to use exclusively until they finish their mission.

For efficiency, it can be executed by an administrator to gather these

resources. Some running jobs may be suspended, and some waiting

jobs may be held after the administrator negotiates with other users.

When it comes to the reconfigurable network, it will be more com-

plex because the resources include not only compute nodes but also

Reconfigurable Links. A job may be unable to start without Recon-

figurable Links. The performance may decrease without enough

Reconfigurable Links. If the compute nodes and Reconfigurable

Links allocation is complicated, it will be much more difficult for

the administrator to gather these resources.

4.3.2 Large Jobs Share the Same Group
A frequently discussed question is if large jobs can share the

same group. Assigning large jobs to the same group has to solve

three problems: connectivity, performance, and complexity.

Firstly, the resource allocation policy has to guarantee topology

connectivity for jobs. In a real supercomputing system, fragmented

resources will occur as many jobs with different size start and finish.

If a large job uses these fragmented resources regardless of the

connectivity of topology, the nodes may not be able to communicate

with each other. An example is shown in Figure 2a.

The more difficult problem is to guarantee the performance of

jobs. If each large job uses dedicated Reconfigurable Links, the topol-

ogy may not be reconfigured well, as shown in Figure 2b. Resource

allocation policy has to guarantee appropriate and enough Recon-

figurable Links are allocated for each large job. If the large jobs

share the Reconfigurable Links in the same group, a Reconfigurable

Links may need to be adjusted before a new job starts while the

other running jobs may still use this link. Thus, some mechanism

to clear Reconfigurable Links before they are disconnected must be

designed to prevent reconfiguration from interfering with running

jobs, which increases the reconfiguration time and complexity.

Suppose a new resource allocation policy can solve the connec-

tivity and performance problems (maybe co-design with topology

reconfiguration algorithm and routing schemes). In that case, the

policy may be too complicated. It will be more difficult for the

administrator to maintain the supercomputing system as claimed

in Section 4.3.1. To the best of our knowledge, we do not find any

solution that allows large jobs to share the same groups while

guaranteeing performance and keeping the policy simple enough.

GRAP provides the best network performance for each job and

solves the connectivity, performance, and complexity issues. Since

each group is connected to all the OCSes, the groups and Recon-

figurable Links allocated for each large job can form a smaller

reconfigurable Dragonfly topology, which provides connectivity

and performance for jobs. A large job can reconfigure the topology

as it owns the whole system and won’t interfere with another job.

Last, GRAP is simple enough.

4.3.3 Complexity
The complexity of GRAP is negligible. GRAP needs O(N) space

to maintain the number of idle, used and failure nodes in each

group. The time complexity of GRAP is O(NlogN) deal to its sort

procedures where N refers to the number of groups.

4.3.4 Adopting GRAP in Other Topologies
GRAP cannot be applied to traditional Dragonfly topology be-

cause it does not have Reconfigurable Links. Applying GRAP di-

rectlywill cause link contention in global links. Previousworks have

shown that adaptive routing[27, 55] coupled with random/round-

robin job placement[8, 9, 25] is a good solution for traditional Drag-

onfly topology. As for Fat-tree topology, a similar design[50] has

been proposed. It also classifies the jobs according to their size to

avoid inter-job interference. It’s better to use their design in the

Fat-tree topology. Therefore, GRAP is a resource allocation policy

specially designed for reconfigurable Dragonfly topology.
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5 EVALUATION
We designed a two-step experiment to evaluate the performance

of HPC workloads in RDN-GRAP. In the first step, we evaluate the

three resource allocation modes with corresponding traffic patterns

under different job sizes. In the second step, we use the speedup

results from the first step to evaluate a real HPC workload using

Slurm Simulator with GRAP implemented in it.

5.1 Methodology
5.1.1 Simulators

We use two different simulators in each step. In the first step,

we use the CODES (Co-Design of Multilayer Exascale Storage

Architectures) network simulation toolkit[45]. CODES is a high-

performance parallel discrete-event simulation framework target-

ing large-scale networking for HPC environments. CODES em-

ploys the Rensselaer Optimistic Simulator System (ROSS) [5, 10],

a high-performance, parallel discrete-event simulator, to ensure

massive simulations run accurately. CODES has already demon-

strated its accuracy for various routing strategies on Dragonfly

networks[44]. CODES has been used to evaluate the performance

of MPI collective operations[17, 21], traffic characteristics[63], job

interference[26, 66] in traditional Dragonfly topology.

In the second step, we use the Slurm Simulator from [54]. Simple

Linux Utility for Resource Management (Slurm)[67] is an open-

source, fault-tolerant, and highly scalable cluster management and

job scheduling system adopted in many supercomputer systems.

And the Slurm Simulator is based on a real Slurm instance withmod-

ifications to allow the simulation of historical jobs and to improve

the simulation speed. It has been used to study various schedule

and resource allocation policy[47, 53, 56, 62]. The default resource

allocation policy in Slurm for Dragonfly topology uses round-robin

and load balance to avoid the hot spots in the network. In this

work, we implement GRAP in Slurm Simulator to evaluate the per-

formance of real HPC workload and compare it with its default

resource allocation policy.

5.1.2 Network Simulation
We construct an RDN with 48-port EPSes and 288-port OCSes;

each EPS connects to 12 compute nodes; each group contains 24

switches. There are 288 groups in the network, i.e., a total of 82944

nodes. In the first step simulation, the bandwidth is set to 12GB/s,

and the latencies between two nodes are about 1.57us (1 hop in the

same switch), 1.87us (2 hops in the same group), 2.07us (2 hops in

different groups), 2.37us (3 hops), 2.67us (4 hops), which are close to

performance evaluated on Tianhe-2A[34]. The congestion control

developed by [39] and TAGO routing[57] are used in our simulation.

As for the TDN used for comparison, the OCSes are removed, and

the Progressive Adaptive Routing (PAR)[27] is used.

In addition, we introduce random network noise into the first

step simulation. We set all other nodes send packets to each other

randomly at 26% of its full speed, which is the same as [7, 17, 21, 30].

In the RDN, the noise traffic is limited within groups, according to

GRAP.

5.1.3 Traffic Patterns
In the first step, we evaluate the performance of three traffic

patterns: 3D Stencil Pattern, Neighboring Pattern, and All-to-All

Pattern. These traffic patterns adopt three allocation modes defined

in Section 5.2. The 3D Stencil Pattern adopts Balance Mode. It uses

all the nodes in each allocated group. Each process communicates

with 6 neighboring processes. The Neighboring Pattern adopts

Custom Mode. It uses 288 or 216 nodes in each allocated group.

Each process communicates with 4 processes within the same group

and 4 processes in 4 neighboring groups. The All-to-All Pattern

adopts Adaptive Mode and uses 256 nodes in each group (not fully

used for comparingwith BalanceMode). It will executeMPI_Alltoall

optimized for Dragonfly topology by [21] several times, which can

be seen as uniform traffic. As for the TDN used for comparison,

random mapping is used for all these traffic patterns according to

[8, 9, 25].

We would like to emphasize that this paper adopts many best

practices from previous work, including routing schemes and task

mapping in Dragonfly topology, and reconfiguration schemes in

reconfigurable network. By nomeans is it intended to give complete

details and validate these schemes since this would be well beyond

the scope of this paper.

5.1.4 HPC Workload
In the second step, we use the public HPC workload history

from the Mira supercomputing system[14, 19]. We simulate 12

workloads from the 12 months in 2019. There are 51946 jobs in total.

Because Mira only contains 49152 nodes, we enlarge the workload

by doubling the number of nodes requested by each job. Then, if the

doubled job size exceeds 82944, we will reduce the job size to 82944.

This public HPC workload history also contains time consumed

in MPI for some jobs, but not all jobs (the reasons can be found in

[14]). We calculate the average MPI time percentage for different

sizes of jobs in 2019. We assume RDN-GRAP can only accelerate

the MPI time.

In the Reconfigurable Dragonfly topology, we expect most users

of large jobs to use RDN properly. Thus we assume that, for the

large jobs with the size of 576~65536, 40% of them use Minimal

Balance Mode, 40% of them use Adaptive Mode, 10% of them use

Custom Balance Mode, and 10% of them use Custom Mode. As for

the large jobs with sizes above 65536 or less than 576, we assume

they use Minimal Balanced Mode. The runtime of a job accelerated

by RDN is calculated by its size and allocation mode:

Acc_Time = Job_Time −MPI_Time × Speedup(Mode, Job_Size)

We use the accelerated-enlarged workload as input for Slurm Simu-

lator with GRAP implemented in it. As for comparison, we use the

enlarged workload as input for Slurm Simulator, which uses the

default resource allocation policy for Dragonfly in Slurm.

5.2 Allocation Mode Evaluation
Figure 4 shows the performance of different traffic patterns with

corresponding allocation modes. The baseline is the performance of

TDN with network noise. We analyze their common characteristics

first. In the TDN, the performance is affected by network noise.

About 10% of performance is lost in small job sizes. However, in

RDN-GRAP, the performance is not affected by network noise

because large jobs are isolated by GRAP and small jobs hardly

affect large jobs. By the way, the results of RDN-GRAP with noise

is not shown in Figure 4c. The job is not affected by network noise
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Figure 4: AllocationMode EvaluationResults. RDN-GRAP achieves inter-job interference-free, lower latency, and higher band-
width. It works better when the job uses fewer groups and the hot spots are more concentrated.

because it uses all the nodes in the groups. There is no common

link with other jobs after network reconfiguration.

Another common characteristic is that RDN-GRAP achieves

higher bandwidth and lower latency. In RDN-GRAP, each group

only needs to connect groups owned by the same large job, and the

topology is configured according to the application’s traffic pattern.

Thus, the bandwidth is increased. As for latency, large jobs can take

advantage of both intra-group communication performance pro-

vided by GRAP and multiple paths provided by RDN. In TDN, most

packets have to cross groups through global links and even take a

detour to avoid congestion when network noise occurs. Figure 4b

shows the hops statistics for Neighboring Pattern using 8 groups

with Custom Mode as an example. The average hops in RDN-GRAP

reduces 47% and is not affected by network noise. All the packets

in RDN take no more than 3 hops, while most packets in TDN take

more than 3 hops.

The performance of All-to-All Pattern using Adaptive Mode is

shown in Figure 4a. RDN-GRAP shows more speedup when a small

number of groups is used. It shows a 32% speedup compared to

TDN with network noise when using two groups. This is because

it reconfigures the topology to a smaller Dragonfly topology. The

number of direct global links between two groups is much more

than the original topology when using a small number of groups.

However, the speedup decreases as the number of used groups

increase, and the performance becomes the same when using all

the groups.

As for the 3D Stencil Pattern and Neighboring Pattern (Figure 4c

and 4d), their relative speedup is stable as the size increase. This is

because each group only communicates with a limited number of

other groups. RDN-GRAPworksmuch better in such traffic patterns

by reconfiguring the topology. 3D Stencil Pattern accelerates about

30% and Neighboring Patter accelerates about 16%. The speedup of

Neighboring Pattern is lower than the 3D Stencil Pattern because

each group in Neighboring Pattern communicates with more other

groups. Therefore, RDN-GRAP works better when the job uses

fewer groups and the hot spots are more concentrated.

In addition, we use All-to-All Pattern to compare the Adaptive

Mode and Balance Mode as shown in Figure 4a. In each group,

Balance Mode uses 256 nodes, and Adaptive Mode uses about 256

nodes. The results show that there is almost no difference in per-

formance. Thus, the Adaptive Mode is more suitable for this traffic

pattern because it provides more flexibility in resource allocation

and achieves the same performance.

5.3 Workload Evaluation
According to the speedup results from the previous subsection and

the workload composition assumption in Section 5.1.4, we set the

input for RDN-GRAP Slurm Simulator. The average speedup of jobs

445



ICS ’23, June 21–23, 2023, Orlando, FL, USA Feng et al.

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7 8 9 10 11 12

Average Job Wait Time Decrease
(Higher is Better)

Month

(a) Average JobWait Time Decrease Percentage in eachmonth of 2019

Month

RDN-GRAP
TDN

(b) System Utilization in each month of 2019

Figure 5: Workload Evaluation. The speedup produced by RDN-GRAP for jobs covers its drawbacks caused by the restrictions.
RDN-GRAP reduces job wait time by 26% on average. Lower system utilization in RDN-GRAP indicates that more jobs can be
submitted to RDN-GRAP, and users should set more appropriate sizes for jobs.

is 9% ~11% for each month after considering the real communication

time of applications. The results are shown in Figure 5.

Figure 5a shows the average job wait time decrease percentage

in RDN-GRAP compared to TDN. The job wait time is calculated by

job start time minus job submit time. It reduces 9%~52% and 26% on

average. Although the various decrement in job wait time shows

that the improvement of RDN-GRAP depends on specific workloads,

none of the results show longer job wait time. It means the speedup

produced by RDN-GRAP for jobs can cover its drawbacks caused

by restrictions in GRAP.

Intuitively, it may be weird that job wait time decreases much

more than the speedup of jobs, but the queuing theory can explain

it. Note that we maintain the job submission time in the simulation

instead of submitting all the jobs at the start of the simulation.

For example, two jobs are submitted at the beginning and the 8th

minute. The first job runs for 10 minutes, and the second job has

to wait for the first job to finish. The second job needs to wait 2

minutes. If the first job accelerates 10%, the second job only needs

to wait 1 minute, and its wait time decreases 50%.

The utilization of the whole system in TDN and RND-GRAP

is shown in Figure 5b. The utilization is calculated by counting

the number of nodes allocated every minute. The box and whisker

plots show the distribution over the entire simulation. The system

utilization of RDN-GRAP is lower than TDN. There are two reasons:

firstly, RDN-GRAP accelerates the jobs, and some nodes become idle

after the accelerated jobs finish; secondly, GRAP restricts resource

allocation, which leads to some resources that violate GRAP’s rules

cannot be allocated to waiting jobs. It indicates that more jobs can

be submitted to RDN-GRAP, and the system administrator should

guide users to set more appropriate sizes for jobs to reduce wait-

ing time and improve system utilization. For example, the system

administrator can add the number of idle nodes in each group as

prompt information for small job into sinfo command for Slurm.

As for large job, the prompt information should be the number of

groups that do not contain large jobs and the number of idle nodes

in these groups.

By the way, the low system utilization in September may be

caused by system maintenance. No job has been submitted for

several days in September.

6 RELATEDWORKS
Common OCSes are Micro-Electro-Mechanical Systems (MEMS)

based OCS and Arrayed Wavelength Grating Routers (AWGR).

MEMS-based OCS redirects the photonic signals from each input

fiber to one of the output fibers by tiltable mirrors[48]. AWGR lever-

ages wavelength routing, silicon photonic microring resonators’ re-

configurable add/drop filtering capabilities, and a multiwavelength

switch[35].

In this work, we assume MEMS-based OCS is used for the recon-

figurable network for three reasons. First, its hundred milliseconds

reconfiguration time is fast enough for GRAP, even though AWGR

can achieve microseconds reconfiguration time. Second, MEMS-

based OCS is compatible with the current EPS and not limited by

link bandwidth because it physically reflects the light beam from

in-port to out-port. Even if the network bandwidth is upgraded, the

MEMS-based OCS is still compatible[52]. Third, it is cheaper and

easier to implement more ports. MEMS-based OCS with 320 ports is

currently available[1]; meanwhile, 512 and 1024 ports MEMS-based

OCSes are on their way. In this paper, OCS refers to MEMS-based

OCS by default unless otherwise specified.

OCSes usually construct network topology with EPSes to com-

bine both of their advantages. The OCS has more ports and lower

latency, and is power-saving, while the EPS is more flexible be-

cause of the packet switch. Many different architectures have been

proposed for the reconfigurable network. They can be categorized

into two classes[59]: ToR-reconfigurable network (TRN) and pod-

reconfigurable network (PRN). In TRN, OCSes are placed among

top-of-rank (ToR) EPSes, such as 3D-Hyper-FleX-LION[35], which

add OCSes among ToR EPSes for each dimension in 3D HyperX

topology. In PRN, OCSes are placed among pods of racks, such as

FlexFly[64], which add OCSes among groups in Dragonfly topology.

In this work, RDN is similar to FlexFly and belongs to PRN.

The reconfigurable network has been adopted in Google’s data

center. Their research[52] shows that their reconfigurable network

delivered 5x higher speed and capacity, 30% reduction in capex,

and 41% reduction in power. They use MEMS-based OCSes and

centralized Software-Defined Networking (SDN) control for traffic

engineering, and automated network operations for incremental
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capacity delivery and topology engineering. Reconfigurable net-

works in the data center have been widely discussed. More works

can be found in [3, 12, 20, 23, 24, 36, 40, 41, 51, 61].

7 CONCLUSION
In this work, we aim to design a resource allocation policy for

Reconfigurable Dragonfly Network in HPC. To let the resource

allocation policy can be applied to real supercomputing systems,

we proposed three design principles first: reconfigurable network

should be reconfiguration interference-free, guarantee connectivity

and performance for each job, and satisfy varied resource requests.

Based on these design principles, we proposed GRAP. GRAP first

classifies the jobs into small and large jobs. Small jobs are allocated

nodes within a group and do not use Reconfigurable Links. A large

job will be allocated with some groups that do not contain any other

large jobs and all the Reconfigurable Links attached to these groups.

GRAP further provides three resource allocation modes for large

job users to let applications achieve the best performance. GRAP

advocate advanced users should understand the basic concept of

Reconfigurable Dragonfly Network, configure the input of their

jobs, and choose an appropriate allocation mode in GRAP to fully

utilize the performance provided by RDN and accelerate their jobs.

The key design of GRAP is job classification and restriction. It

achieves interference-free reconfiguration and limits inter-job in-

terference through a concise and understandable design. It also

makes GRAP compatible with many previous works, including

routing schemes and topology reconfiguration algorithms for re-

configurable networks. GRAP enables them to be adopted into a

real HPC system. In addition, future works can be based on GRAP

and assume that a smaller RDN is allocated for each large job and

large jobs won’t interfere with each other. It dramatically reduces

the complexity of corresponding algorithm design, such as topol-

ogy reconfiguration algorithms, routing algorithms, and collective

communication algorithms.

The evaluation results show that RDN-GRAP achieves inter-

job interference-free, lower latency, higher bandwidth, and lower

job wait time compared to TDN. It works better when the job uses

fewer groups and the hot spots are more concentrated. The speedup

produced by RDN-GRAP for jobs covers its drawbacks caused by the

restrictions and reduces job wait time by 26% on average. Although

RDN-GRAP causes lower system utilization, it indicates that more

jobs can be submitted to RDN-GRAP, and system administrators

should guide users to set more appropriate sizes for jobs to reduce

waiting time and improve system utilization.
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