
1056 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

Enabling Quasi-Static Reconfigurable Networks
With Robust Topology Engineering
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Abstract— Many optical circuit switched data center net-
works (DCN) have been proposed in the last decade to attain
higher capacity and topology reconfigurability, though commer-
cial adoption of these architectures have been minimal. One
major challenge these architectures face is the difficulty of han-
dling uncertain traffic demands using commercial optical circuit
switches (OCS) with high switching latency. Prior works have
generally focused on developing fast-switching OCS prototypes
to quickly react to traffic variations through frequent reconfig-
urations. This approach, however, adds tremendous complexity
overhead to the control plane, and raises the barrier for com-
mercial adoption of optical circuit switched data center networks.
We propose COUDER, a robust topology and routing optimiza-
tion framework for reconfigurable optical circuit switched data
centers. COUDER co-optimizes topology and routing based on
a convex set of traffic matrices, and offers strict throughput
guarantees for any future traffic matrices bounded by the convex
set. For the bursty traffic demands that are unbounded by the
convex set, we employ a desensitization technique to reduce
performance hit. This enables COUDER to generate topology
and routing solutions capable of handling unexpected traffic
changes without relying on frequent topology reconfigurations.
Our extensive evaluations based on Facebook’s production DCN
traces show that, even with daily reconfigurations which could be
realized by current commercial MEMS-based OCSs from Calient
Technologies, COUDER achieves about 20% lower max link
utilization, and about 32% lower average hop count compared to
cost-equivalent static topologies. Our work shows that adoption
of reconfigurable topologies in commercial DCNs is feasible even
without fast OCSs.

Index Terms— Network topology, next generation networking,
software defined networking, optical switches.

I. INTRODUCTION

W ITH the explosive growth in data center traffic, build-
ing networks that meet the requisite bandwidth has

also become more challenging. Modern data center networks
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(DCN) typically employ static uniform topologies, which
have a regular structure and redundant paths to support high
availability. However, static uniform topologies are inherently
inefficient for carrying highly skewed and dynamic traffic that
is common in DCNs [1], [2]. This has motivated several works
on using optical circuit switches (OCS) to improve perfor-
mance of data center networks [3], [4]. The cost of introducing
OCSs to DCNs is low, because OCSs have low hardware
cost and extremely low power consumption. Further, OCSs
offers topological reconfigurability to DCNs, and introduces
the possibility of Topology Engineering1 (ToE) for dynamic
link-allocation between “hotspots” to alleviate congestion.

In order to make the best use of the OCS reconfigurability
to enhance DCN performance, the conventional wisdom is to
perform on-demand reconfigurations based on DCN traffic.
The main challenge lies in performing ToE under bursty traffic
demands. Early works on dynamic network topologies [3], [4]
use commercial OCSs to reconfigure DCN topology based on
the currently observed traffic matrix (TM). However, these
OCSs have large reconfiguration latency, so traffic demands
could have changed after reconfiguration completes. To side-
step this issue, subsequent works focused on designing agile
OCS prototypes capable of microsecond level reconfiguration
to better react to traffic variations [6], [7], [8], [9]. However,
these solutions require synchronizing many reconfiguration
events at microsecond level, which introduces significant over-
head to the network controller. The lack of experience in man-
aging dynamic networks and the steep adoption barrier makes
it hard for vendors to adopt dynamic networks topologies in
commercial DCNs.

These challenges motivated us to explore the possibilities
of reconfiguring topology at low frequencies (on the order of
hours or more). To reduce control and management complex-
ity, we avoid on-demand topology reconfiguration. Instead,
we seek an alternative approach based on robust optimization
to handle traffic variation. To this end, we introduce COUDER
(Convex hull Optimized with Uncertainty Desensitization for
Enhanced Robustness). COUDER extracts a convex set of
traffic matrices which can bound a large number of histori-
cal traffic matrices, delivering strong performance guarantees
for any bounded traffic matrices. For the unbounded traffic
matrices, COUDER employs a desensitization technique to
reduce the performance degradation caused by unexpected
traffic bursts. COUDER eliminates the need for high frequency
reconfiguration. Thus we can simply integrate commercial

1Our usage of the term “topology engineering” is derived from the term
“traffic engineering” in WAN and data center routing literature [5]. The
key distinction is that traffic engineering (TE) optimizes only the routing
solution under a set of expected traffic demands for a given topology, while
topology engineering (ToE) optimizes both the topology and routing based
on anticipated demands.
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off-the-shelf OCSs, and ensure a gradual transition into optical
data centers.

Contrary to prior ToE solutions based on non-commercial
OCS prototypes that require sophisticated controls [6], [10],
the source of COUDER’s complexity is in its algorithm design.
First, formulating COUDER using robust optimization is not
straightforward. It is easy to guarantee performance for future
TMs that are within the predicted TM set, while ensuring solu-
tion robustness for unbounded TMs is a big challenge. Second,
topology optimization is generally an NP-hard combinatorial
problem. Performing robust optimization incurs further algo-
rithmic complexity. COUDER solves the above two challenges
as follows. First, by optimizing a newly-defined “hidden”
metric, sensitivity, COUDER is currently able to guarantee
solution robustness for both bounded and unbounded TMs.
Second, by properly arranging the OCS physical connections,
COUDER reduces its NP-hard topology design problem to
a sequence of network flow problems, which can be solved
efficiently in polynomial time.

In §VI, we evaluate COUDER using both production DCN
traces from Facebook [2] and synthetic traffic matrices. Perfor-
mance is mainly measured with two metrics: maximum link
utilization (MLU) and average hop count (AHC). Although
there is a gap in performance between COUDER and an
ideal dynamic network with instantaneous reconfiguration,
COUDER’s performance is attained with daily reconfiguration,
a feat that can be readily achieved with current commercial
OCSs and a minimal increase in management overhead to
the SDN controller. Our evaluations also show that daily
reconfiguration is sufficient for COUDER to outperform other
static DCN topologies.2 Compared to a static topology of
comparable cost, COUDER reduces the MLU by about 20%,
and the AHC by about 32%. Finally, we use packet level
simulations to relate operator-centric performance metrics like
MLU and AHC to user-centric application-level performance.

In short, the contributions of our work are:
• We explore a new dimension to dynamic networks that

is based on infrequent topology reconfigurations. This
greatly lowers the barrier to commercial adoption of ToE.

• We present a topology engineering framework that is
robust to traffic variations called COUDER. COUDER
co-optimizes topology and routing based on a convex traf-
fic set to deliver strong throughput guarantees for traffic
bounded by the convex set, and uses a desensitization
technique for out-of-bounds traffic.

• We use extensive evaluations and simulations to analyze
the performance of COUDER relative to other represen-
tative static and dynamic network topologies.

• We perform traffic analysis based on production traces,
and validate the feasibility of predicting future TMs with
a convex set. Specifically, we found that about 92% of
traffic matrices can be bounded by under 30 minutes’
worth of historical traffic.

II. BACKGROUND AND MOTIVATION

Today’s data center networks are static, with fat trees using
small-radix commodity packet switches being the de-facto
standard for commercial deployments (e.g., Google [18], Face-
book [19], Cisco [20], Microsoft [11]). However, the continual

2We believe that more infrequent reconfigurations could be feasible, but
the lack of sufficiently long traces from published sources precludes us from
validating this claim.

Fig. 1. Current landscape of data center network topology literature.
COUDER offers a middle-ground approach between static topologies and
aggressively-switching dynamic networks.

exponential growth of data center traffic would mean that
future scaling would require ever larger fat trees with more
layers, which can be cost-prohibitive. Broadly-speaking, most
prior art in DCN topology (see Fig. 1) have been solving
this issue mainly in two directions: static and dynamic (recon-
figurable) topologies. On the static front, many recent works
proposed eliminating the hierarchical Clos structure in favor of
flatter topologies based on expander graphs (e.g. Xpander [14],
Jellyfish [13], FatClique [16], S2 [15]). When used with
non-minimal multipath routing, a lower cost expander can
achieve a throughput comparable to that of a fully-provisioned
fat tree [21]. However, static network topologies are generally
designed with uniform connectivity, which makes them inef-
ficient in carrying highly-skewed traffic [1], [22], [23].

To deal with highly-skewed traffic, optical circuit switches
(OCS) were proposed to build reconfigurable topologies.
Unlike electrical packet switches (EPS), OCSs are transparent
to in-flight packets as they neither process nor buffer packets.
This makes them more power- and cost-efficient than EPSs,
as OCSs do not require expensive transceivers to perform
Optical-Electrical-Optical (OEO) conversion.

A. Divergence From Current Practices

While reconfigurable networks present a futureproof solu-
tion to scaling future network performance, many prior works
have proposed designs that are vastly divergent from today’s
static DCNs. The pioneering works like Helios [3] and
c-Through [4] were largely limited by a high switching delay
(30ms) of MEMS OCSs of the time, though it is still a problem
that most current commercial OCSs still face [24].

The perceived need for handling rapid traffic variations with
on-demand circuit switching has motivated subsequent works
aimed at decreasing OCS switching latency [6], [8], [9], [10],
[17], [25], [26]. This divergence from standard practices has
become more pronounced in recent years, with the most recent
Sirius [9] being capable of end-to-end reconfigurations every
100s of nanoseconds. We argue that the pursuit of aggressive
reconfigurations actually increases the barrier to entry, and
disincentivizes the widespread adoption of dynamic networks.
Specifically, these architectures are challenging to adopt due
reasons such as:

Massive Control & Management Complexity: Engineering
a network controller capable of synchronizing thousands of
topology-reconfigurations in seconds is inherently a challeng-
ing problem. Moreover, enabling microsecond-level reconfigu-
ration may require a complete overhaul of standard congestion
control protocols, resulting in architectures with tight vertical
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Fig. 2. a) Length of lookback window needed to bound inter-pod TMs
derived from Facebook DCN clusters running database (DB), web search
(WS), hadoop (HD), combined (Com). b) A convex traffic set that bounds
all other TMs. Smaller convex sets typically form a larger bounds.

integration that have poor field maintainability and modular
upgradability.

Limited Scalability: There is a trade off between switching
latency and port-count scalability when building OCSs. Due to
the limited switch radices of fast-switching OCSs, it may be
difficult to interconnect 100,000s of servers commonly seen
in many commercial data centers [27], while providing fast
circuit switching between all end points.

Poor Failure Tolerance: In order to achieve low switching
latency and good scalability at the same time, DCN reliability
might be sacrificed. ProjecToR [6] introduces a potential for
a single point failure through its “disco-ball” mirror switch.
If the switch fails, the entire network will go down. Further, the
“disco-ball” switch is based on free-space optics, and can thus
be highly sensitive to environmental changes. Architectures
like RotorNet [8] and Sirius [9] scale their networks by
time-multiplexing across different topology settings. These
designs may require even nanosecond-level topology reconfig-
urations. In this case, time synchronization might be the only
choice for reconfiguration coordination, which can be risky
due to unexpected delays in a large data center network.

We concede that, aside from the fundamental algorith-
mic challenges (e.g. synchronizing frequent switching at fine
timescales), many of the aforementioned technical challenges
may be resolved over time through operational experience.
However, we argue that, at least in principle, infrequently-
switched dynamic networks are a more natural next step in the
evolution of today’s (predominantly static) DCNs compared to
hyper-agile dynamic networks proposed in many recent works.
With infrequent reconfiguration, the switching latency of off-
the-shelf OCSs, and the control plane complexity overhead
become nonissue.

The tradeoff for pursuing infrequent reconfigurations is that
it precludes on-demand switching, so the topology cannot
“react” to traffic variations over time. Instead, the topology
will have to be “pre-configured” for a broad range of traffic
patterns. Throughout the rest of this paper, we show how
COUDER achieves this with minimal topology reconfigura-
tions.

B. Weak Temporal Stability in Pod-Level Traffic

Robust optimization could help deal with traffic variations
to some extent. However, if DCN traffic is completely random,
robust optimization would not help and frequent topology
reconfiguration would be the only choice for reconfigurable
topologies. Hence, we need to perform a traffic analysis to
understand the feasibility of infrequent topology engineering.
Our findings suggest that DCN traffic, especially at the pod
level, exhibits a weaker form of temporal stability. Put more
concretely, this means that it is possible to find a range (or
“bound”) that would contain most TMs in the near future, even
if traffic patterns may vary significantly from one snapshot to
the next.

To this end, we introduce how to find a reasonable traffic
set for future TMs. Given a sequence of historical TMs,
we first group all the TMs into K clusters using the k-means
clustering algorithm; for every cluster, we then compute a
component-wise max TM, which we refer to as a critical TM.
These critical TMs {T1, T2, . . . , TK} forms a convex set

T =

{
T : ∃λk ≥ 0,

K∑
k=1

λk = 1, s.t. T ≤
K∑

k=1

λkTk

}
.

Clearly, all the considered historical TMs are contained in the
above convex set.3 In the rest of this paper, we also say a TM
T is bounded by the critical TMs {T1, T2, . . . , TK} if T ∈ T .

We demonstrate the effectiveness of using T to predict
future TMs with a case study based on published packet traces
collected from Facebook’s Altoona production data center. The
traces contain up to one-day’s worth of recorded packets [2].
These traces consist of packet information from three clusters
of pods (a database cluster, a web search cluster and a hadoop
cluster) [2]; there are a total of 21 pods. We aggregated the
packet traces into a sequence of 1-second of pod-to-pod TM
snapshots. For each TM in the sequence, we gradually increase
the lookback window into the past until the current snapshot
can be bounded by the convex set T formed by the historical
TMs in the lookback window.

Fig. 2a shows the CDF of bounded TM snapshots as a
function of the lookback window size. We generated three
curves corresponding to the 3 clusters, and one curve from
the combined clusters. Clearly, more TMs become bounded
as lookback window sizes increase. Over 92% of TMs can be
bounded with a 30-minute lookback window, and nearly all
TMs are bounded with a 3-hour lookback window. We posit
that inter-pod traffic satisfy the above form of weak temporal
stability in time due to: 1) aggregation effects by the aggre-
gation switches which reduces part of the burstiness, and 2)
the stronger spatial structure due to the higher tendency for
communication between pods assigned to the same service
area/workloads/users [28]. These are common topological fea-
tures that many other DCNs share. So if our posits are true,
then many other DCNs could similarly exhibit, to varying
degrees, weak stability.

The weak temporal stability property is meaningful because
it suggests that by optimizing the topology based on the convex
sets, we could derive a performance envelope that can bound
performance for the common case traffic. However, some TMs
will still inevitably fall out of bounds, so it is essential to

3Note that this convex set is not the convex hull (i.e. the smallest convex
set) of the historical TMs. Convex hull is much harder to compute for high-
dimensional TMs.
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Fig. 3. Optical circuit switch (OCS)-enabled topology reconfiguration.
(a) shows an example 4-node physical topology wired to two OCSs. Changing
the matching state of the OCSs in (a) results in the logical overlay topology
in (b).

employ additional techniques to improve tail performance.
This is one of the technical challenges, which we detail in
§V. It is worth noting that our approach would benefit from,
though not entirely dependent on, the presence of weak traffic
stability to work, as the evaluations in §VI-C show.

III. SYSTEM ARCHITECTURE AND DESIGN

We propose COUDER, an infrequent reconfigurable net-
work for data centers. We first present COUDER’s network
architecture in §III-B, and then describe its topology design
pipeline in §III-C and reconfiguration pipeline in §III-D.

A. Optical Circuit Switching (OCS)

Optical circuit switch comes in various forms, including, but
not limited to, software-controlled optical patch panels [29],
electrical circuit switch [30], 2D and 3D MEMS [31], [32],
silicon photonics (SiP) [33], [34], [35], free space optics
(FSO) [6], [10] or 60GHz wave [1], [36], RotorSwitch [8],
[17], and tunable lasers [9]. Of these technologies, only optical
patch-panels and 3D MEMS OCS have been commercialized
and adopted by hyperscalers like Google [37]. In principle,
COUDER is compatible with all of these OCS technologies.
In this paper, however, we assume the network uses commer-
cialized MEMS OCS.

While different OCS technologies may use different switch-
ing mechanisms, they are functionally-similar from network
layer’s perspective: each OCS “reflects” an input port signal to
an output port without optical-electrical-optical (O-E-O) signal
conversion or decoding/buffering in-flight packets. By remap-
ping the input-to-output circuit connections, OCSs can effec-
tively “reconfigure” the end-to-end connectivity of the network
nodes to better serve expected workload demands, without
needing human-recabling that is time-consuming and error-
prone [38]. Further, OCS also offers additional benefits over
EPSs in: 1) cost and power savings - OCSs do not require
transceivers at the ingress and egress ports, 2) transparency -
unlike EPSs, OCSs adds negligible latency to in-flight packets
as they neither perform signal-conversion nor decode/buffer
packets, and 3) seamless upgrade - OCSs are bandwidth-
agnostic, therefore upgrading to higher link speeds over time
does not require changing the core layer switches. More
importantly, leveraging OCS topology reconfigurability. Fig. 3
presents an example of how OCS reconfigures network topol-
ogy using different switch matchings.

We refer to the physical wiring between electrical packet
switches (EPS) and the optical circuit switches (OCS) as the
physical topology. Reconfiguring the OCSs establishes a new
set of circuit connections between the input and output ports

at the physical layer, effectively realizing a specific logical
topology overlay on the physical topology.

B. Network Architecture

An example of the assumed DCN architecture is shown in
Fig. 4, with a layer of OCSs interconnecting a number of
pods. Each physical link between an OCS and the pods in
Fig. 4 represents an optical fiber. An OCS sends incoming
optical signals directly to a reconfigurable egress port without
packet decoding and buffering. A pod is a typical deploy-
ment unit for data centers, whose fabric can be built from
monolithic switches like CE12800 [39], from a collection
of small-radix switches organized in a Clos-like [18], [19]
or a clique-like [40], [41] structure. For instance, a pod in
Facebook’s Altoona fabrics is built using a two-layer Clos
(a.k.a. leaf-spine) interconnect, with 48 top-of-rack (ToR) and
four aggregation switches [42].

We refer to the (fixed) physical connections between the
pods and the OCSs as the physical topology. Topology engi-
neering reconfigures the OCSs to realize a specific logical
topology as an overlay on the physical topology. As each
pod can carry O(100) uplinks, we assume that the number
of uplinks per pod is much greater than the number of
pods, so every pod-pair can share more than one logical link
connection at any given time.

In contrast to many flexible network architectures with inter-
ToR reconfigurability [4], [6], [7], [10], [36], we focus on
inter-pod reconfigurability for the following reasons:

• Scalability: Using pods with hundreds of uplinks to
the OCSs, our architecture could support up to about
100 pods. Since each pod could support Θ(1000) servers,
our architecture can easily scale up to over 100k
servers [43].

• Traffic stability: Compared to inter-ToR traffic, inter-pod
traffic is more likely to exhibit weak temporal stability
(see §II-B) due to averaging effects from the aggregation
switches [22], [44]. The temporal stability makes infre-
quent topology reconfigurations more feasible.

• Compatibility with current technology: Interconnecting
pod uplinks with spines using single-mode fibers and
optical transceivers is already commonplace in current
fat tree DCNs [45]. Single-mode transceivers typically
have a link margin of > 5dB, which is much higher
than the insertion loss of ≤ 3dB common to commercial
OCSs [24]. So, our network (see Fig. 4) can be easily
realized by replacing the spine switches with OCSs.

1) Key Distinctions From Prior Works: COUDER assumed
physical topology in Fig. 4 bears some similarities to that of
pioneering works like Helios [3]. Both Helios and COUDER
assume pods are physically-interconnected via a layer of
OCSs at the core network. These classes of networks will
henceforth be referred to as pod-reconfigurable networks.
However, unlike Helios which uses both electrical packet
switches and optical circuit switches at the core, we assume a
fully-optical core. This assumption differentiates our approach
to topology optimization from Helios, which opportunistically
routes, at small timescales, the elastic flows using OCSs, and
the latency-sensitive flows using the packet-switched core.
However, distinguishing between elastic and latency-sensitive
flows in practice is difficult, especially in cloud DCs where
applications are not accessible to the network controller
for security reasons. By contrast, COUDER is designed for
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Fig. 4. An example of COUDER’s physical topology. The red links
represent physical inter-pod optical fibers, while the black links represent
a physical intra-pod (either optical or copper) cable. A pod is the basic unit
of deployment consisting of 1000’s of servers. Each pod consists of MA

aggregation switches and MT ToR-switches. In practice, operators can use
large-radix monolithic switches (e.g., Huawei CE12800 with 576 x 100 GE
ports [39]) or arranging several high-radix EPSs (e.g., Tomahawk 4s with
256 x 100 GE ports [46]) in parallel at the aggregation layer gives each pod
hundreds of uplinks. All pods are fully-interconnected via OCSs core layer;
reconfiguring the OCSs realizes a different pod-level logical topology.

reconfigurable networks that are switched infrequently at large
timescales (a few minutes to several hours), and therefore does
not require splitting the elephant from the mice flows at finer
timescales, making it much easier to implement.

Many recently-proposed dynamic networks like Sirius [9],
RotorNet [8], and ProjecToR [6] have instead favored ToR-
reconfigurable designs. These topologies “flatten” out the
traditional tiered structure by directly reconfiguring links
between ToR switches. The flatter structure reduces the num-
ber of switches, hence reducing power consumption and cap-
ital costs. However, while ToR-reconfigurable networks may
work well for small or medium-sized data centers, they scale
poorly to the requisite size of hyper-scale data centers due
to the limited switch radix of ToR switches. Consider, for
example, a RotorNet built from 1024 ToRs of 16 uplinks
each, with 2-hop path forwarding. In this setting, a pair of
ToRs would need at least 4 cycles (1024 ÷ 16 ÷ 16) before
they are connected by a 2-hop path through an intermediate
ToR, and 64 cycles (1024 ÷ 16) before they are connected
by a direct link. This can lead to significant flow completion
time (FCT) deterioration as we scale up the number of server
racks. Note that even though RotorNet and Opera are dynamic
networks, they do not optimize topology based on expected
traffic demands, and are therefore not traffic-aware.

C. Topology Design Pipeline

In order to realize infrequent reconfiguration, COUDER’s
logical topology must be robust to traffic variations that may
occur during the long time window between topology updates.
In §II-B, we showed using Facebook’s production traces that
by computing a set of critical TMs as illustrated in Fig. 2b,
we can bound a large fraction of future traffic snapshots.
As its first step, COUDER optimizes its topology based on the
critical TMs (see Step 1 of Fig. 5) to optimize performance
for the common-case bounded traffic patterns.

There are two main challenges to the design of COUDER.
The first challenge is to deliver strong performance guarantees
for outlier TMs that are not bound by the critical TMs. A naive
robust optimization-based formulation of COUDER can only
offer performance guarantees for the bounded TMs, and not for
unbounded TMs. A similar issue was studied in COPE [5] in
the context of wide area networking (WAN) traffic engineering

(TE). Unfortunately, the proposed method there cannot be
applied to topology engineering problems, because topology
also becomes decision variables in COUDER. The second
challenge lies in optimizing network topologies that typically
involve solving integer linear programs (ILP) that are NP-
Complete, so finding a solution for large networks is difficult.
COUDER’s topology design pipeline is designed to decouple
the above two challenges (see step 2 and step 3 in Fig. 5);
we detail these techniques in §V. Unlike circuit-scheduling
systems like Solstice [47] that attempts to schedule circuit
configurations to improve demand satisfaction time, COUDER
is a topology optimization system that co-designs a single
topology and routing solution that is resilient to long-term
traffic variations. Therefore, COUDER can be considered an
offline system that runs only when a topology reconfiguration
event is triggered by the network controller irregularly (on
the order of hours or more). We experimentally measure the
average runtime of COUDER as a function of topology sizes;
the results are available in Appendix E of the Supplementary
Material.

D. Safe Reconfiguration Pipeline

COUDER is designed to support high performance in
infrequently-reconfigured networks, which gives us room to
prioritize “reconfiguring safely” over “reconfiguring quickly”.
There are two major safety considerations when reconfiguring
topology. First, topology reconfiguration must be carefully
sequenced to avoid routing packets into “black holes”. The
SDN controller must first “drain” links by informing packet
switches not to route traffic through the optical links that are
about to be switched. Only upon verifying that no traffic flows
through these links can physical switching take place. After
switching completes, the SDN controller can then “undrain”
links and start sending traffic through them again. In general,
this process is dominated by the software/control overhead
rather than the physical switching of the OCSs.

Second, topology reconfiguration needs to be staged to
ensure sufficient network capacity is maintained to carry live
traffic at any given time. Our policy is that no more than
1 − μpred fraction of links can be switched in a stage, where
μpred is the worst-case maximum link utilization of all the
critical TMs. If p fraction of links need to be reconfig-
ured,

⌈
p

1−µpred

⌉
number of stages are required. This further

prolongs COUDER’s reconfiguration pipeline. The minimal
rewiring optimization developed in [38] could help reduce the
average number of reconfiguration stages, but may not work
in the worst case.

Due to the above safety concerns, each reconfiguration event
must be completed over a more gradual course, so the total
reconfiguration latency can be much larger than those in other
dynamic networks. Since DCN experiences reduced capac-
ity during reconfiguration, reconfiguring topology at higher
frequency may not necessarily improve performance. Our
evaluation results in §VI-B.2 suggest that daily reconfiguration
is sufficient for COUDER.

IV. PRELIMINARIES

In this section, we introduce the recurring mathematical
notations and definitions in this paper. All notations are
tabulated in Table I.
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Fig. 5. Illustrating the topology design pipeline of COUDER.

A. Logical Topology

Let S = {s1, .., sN} be the set of pods with indices
1 through N , O = {o1, .., oM} be the set of OCSs with
indices 1 through M , and xm

ij be the number of directed
links from pod si to pod sj through OCS om. A logical
topology is represented by X = [xij ], i, j = 1, . . . , n, where
xij =

∑M
m=1 xm

ij denotes the number of links between pods
si and sj . Multiple unit links that between a pod-pair si and
sj (i.e. xij > 1) can be viewed as a single trunk link with
xij × the bandwidth of a unit link. Logical topology X can
be feasibly realized by a physical topology, if and only if (i.f.f.)
it satisfies the following:
OCS Physical Constraints:

sumN
j=1x

m
ji ≤ hm

ig (i),
N∑

j=1

xm
ij ≤ hm

eg(i),

∀i = 1, .., N, m = 1, .., M ; (1.1)

xij =
M∑

m=1

xm
ij , xij and xm

ij are all integers;

(1.2)

where hm
ig (i), hm

eg(i) are the number of ingress/egress links of
pod si through OCS om.

B. Path Selection and Routing Weights

Since OCSs are transparent to in-flight packets, the
pod-level logical topologies of COUDER are actually mesh-
like (direct connection between different pods). In this mesh-
like topology, we allow inter-pod traffic being routed via
either direct or indirect paths. For direct (source-destination)
paths, a packet would traverse a single inter-pod link, directly
from the source to the destination pod. For indirect (source-
intermediate-destination) paths, we consider only indirect
paths of length two where a packet would transit at an interme-
diate pod before being routed to its destination pod. Although
indirect routing introduces path stretch and additional routing
latency, we still consider them as they introduce path diversity
and increase the overall routing capacity, without drastically
increasing the routing complexity overhead. We found that
considering indirect paths with path lengths greater than two
offers little additional capacity despite creating a significant
increase in routing complexity.

Let p denote a path, which is a sequence of nodes
a packet traverses in the network. For each pod-pair
(si, sj), a direct path between the source takes the form of
[si, sj], while an indirect path takes the form of [si, sv, sj ]
such that v ∈ {1, 2, . . . , N}, v �= i, j. Then, Pij =
{[si, sj ], [si, s1, sj], . . . , [si, sN , sj ]} denotes the set of all
direct and indirect paths between (si, sj), and P = ∪(i,j)Pij

is the union of path sets of all source-destination pod pairs

(i.e. set of all paths in the network). Let the fraction of traffic
between pod-pair (si, sj) that is routed along the path p ∈ Pij

be ωp. We denote Ω = {ωp, p ∈ P} such that:∑
p∈Pij

ωp = 1, ∀ i, j = 1, . . . , N. (2)

C. Optimization Objective

Our primary design objective is to minimize maximum link
utilization (MLU). Given a logical topology X and a routing
weight Ω, the MLU under a traffic matrix T = [tij ], i, j =
1, . . . , n, can be computed as follows:

MLU = max
(si,sj)∈Φ

∑
p∈P(si→sj)

(
ωptsrcpdstp

)
xijbij

, (3)

where Φ = {(si, sj) ∈ S × S | i �= j} is the set of all pod
pairs such that i �= j, P(si → sj) is the set of paths that
traverses links from si to sj , bij is the link capacity between
si and sj , srcpanddstp are the of the source and destination
pod indices of p, respectively. MLU is a good indicator of
the congestion level at the most bottlenecked link; so a lower
MLU is preferred. In practice, MLU cannot exceed 1, though
we allow this here to capture how severe the congestion is.

Our secondary objective is to minimize average hop count
(AHC). The AHC for routing a traffic demand is defined as
the average path length weighted by the traffic proportion.
Specifically, given a logical topology X and a routing weight
Ω, the AHC for routing a traffic matrix T = [tij ], i, j =
1, . . . , N is:

AHC =

∑N
i=1

∑N
j=1

∑
p∈Pij

(ωptij�p)∑N
i=1

∑N
j=1 tij

, (4)

where �p = |p| − 1 denotes the length of path p. Since the
inter-pod routes have a path length of either one or two, the
AHC has a range of [1, 2]. For example, if 40% of traffic is
routed along direct paths of length one while the remaining
60% is routed indirectly along paths with length two, the
AHC is then 0.4 ∗ 1 + 0.6 ∗ 2 = 1.6. Just as lowering
MLU is crucial to lowering congestion, lowering AHC is also
key to lowering routing latency experienced by packets, and
improving network efficiency by lowering bandwidth tax [17].
Our packet level simulations in §VII shows that when traffic
demand is high, a lower AHC greatly lowers flow completion
time (FCT).

V. OVERALL METHODOLOGY

Challenges & High-Level Approach: The core objective of
COUDER is to enable high performance reconfigurable net-
works even with infrequent topology reconfigurations. To that
end, we co-optimize the topology and routing configuration to
attain:
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TABLE I

NOTATIONS USED IN THIS PAPER

• High throughput and low latency / bandwidth tax for
common-case traffic patterns.

• High robustness to traffic variations

By reconfiguring topologies infrequently at coarse
timescales, COUDER sidesteps the complex control planes
that would otherwise be needed to coordinate fine timescale
OCS reconfigurations. This lowers the system and hardware
complexity, which lowers the barrier-to-entry for adopting
reconfigurable networks in production networks. However, the
price for a lower system and hardware complexity is a higher
algorithm complexity. There are two reasons for COUDER’s
algorithm complexity. First, optimizing for a topology that is
robust to traffic variations over an extended period of time is
challenging. Recall that our study in §II-B showed that some
TMs cannot be bounded by a convex set of historical TMs.
This means that a naive approach that optimizes network
for a set of predicted traffic patterns cannot ensure that the
topology has good performance as traffic demands change
over time. Second, the topology optimization integer linear
programming (ILP) problem is a hard combinatorial problem
that scales exponentially with the number of pods and OCSs.
Finding a solution that scales gracefully to large DCNs
is challenging. We discuss how COUDER addresses these
challenges in this section.

A. Computing Fractional Topology

We first introduce the following concept of fractional logical
topology.

Definition 1: Given a set of pods S = {s1, . . . , sN} and
the number of ingress & egress links fri

ig, r
i
eg of pod si, D =

[dij ] ∈ R
N×N is a valid fractional topology i.f.f. it satisfies:

N∑
j=1

dij ≤ ri
eg,

N∑
i=1

dij ≤ rj
ig ∀ i, j = 1, . . . , N (5)

Using a fractional logical topology allows us to decouple the
topology design problem into two subproblems. In the first
subproblem, we compute a fractional logical topology that is
optimal for the critical TMs by ignoring the physical OCSs
constraints. In the second subproblem, we realize the intent
fractional logical topology on the OCS layer by computing
a set of OCS matchings such that the overall integer logical
topology best approximates the intent fractional topology.

1) Topology-Routing Co-Robust Optimization for MLU:
Given K critical traffic matrices {T1 = [t1ij ], . . . , TK = [tKij ]},
a robust optimization formulation that minimizes MLU is:

Min-max MLU:
min
D,Ω

μ = max{μ1, .., μK}, s. t.

a) D satisfies (5)

b) Ω satisfies (2)

c) max
(si,sj)∈Φ

∑
p∈P(si→sj)

(
ωpt

k
srcpdstp

)
dijbij

≤ μk,

∀ k = 1, .., K.

(6.1)

(6.2)
(6.3)

(6.4)

Note that (6) is non-linear due to the third constraint.
We show in Appendix A of the Supplementary Material,
how (6) can be linearized into a LP problem that can be
easily solved using commercial solvers like Gurobi [48]. The
resulting topology and routing solutions from solving (6) offer
the following performance guarantee:

Lemma 2: Let Dopt, Ωopt be the optimal solution of (6),
and μ∗ be the min-max MLU value for the critical TMs
{T1, . . . , TK}. Then, for any T bounded by these critical TMs,
the MLU under the fractional topology Dopt and the routing
weight Ωopt is no higher than μ∗.

Note that (6) performs robust optimization on both the
topology and routing solutions. We found that robust opti-
mization for routing is necessary, although updating routing
path splits can be done more frequently without changing
OCS configurations. This is because our initial design did
not performing robust optimization for routing, i.e., using
different sets of routing weights for different traffic matri-
ces Tk in (6), and then updating routing weights for every
future TM. As traffic patterns may often be very different
from prediction, the resulting MLU performance is generally
unbounded. We point the readers to Appendix B of the
Supplementary Material for details on why this is the case.
Of course, topology-routing co-optimization in (6) does not
preclude COUDER from updating routing more frequently
than topology. One could fix topology and only perform robust
optimization for routing based on (6).

2) Desensitization: (6) provides a strong performance guar-
antee for TMs that are bounded by the convex set, but not for
outlier TMs. In practice, outlier TMs are inevitable due to
unpredictable traffic bursts, and if not handled properly, could
cause severe network congestion.

A similar issue in the context of traffic engineering was
studied in [5], in which the authors’ use a penalty envelope
method to deliver bounded performance guarantees for outlier
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TMs. The authors’ in [5] employed duality to convert an
infinite number of constraints into a dual problem with a
finite set of linear constraints. Unfortunately, this approach
fails when network topology also becomes decision variables.

Instead, we handle outlier TMs using a desensitization
step, for which we introduce a sensitivity metric for every
link (si, sj). For any path p that traverses the link (si, sj),
a demand surge Δ in tsrcpdstp would increase the link (si, sj)’s
utilization by Δωp/(dijbij). We define sensitivity for link
(si, sj) as

SENij = max
p∈P(si→sj)

ωp

dijbij
.

Minimizing sensitivity helps prevent the routing solution from
allocating too much weight on any single link. Specifically,
having computed μ∗ from (6), we fix μ∗ and compute D, Ω
based on the following formulation:

Desensitization:

min
D,Ω

max
(si,sj)∈Φ

SENij = max
p∈P(si→sj)

ωp

dijbij
, s. t.

a) D satisfies (5)

b) Ω satisfies (2)

c) max
(si,sj)∈Φ

∑
p∈P(si→sj)

(
ωpt

k
srcpdstp

)
dijbij

≤ μ∗,

∀ k = 1, .., K.

(7.1)

(7.2)
(7.3)

(7.4)

Similar to (6), (7) is non-linear as its objective function takes
the form of reciprocals of optimization variables. This means
that we cannot rely on commercial LP solvers to solve (7)
directly. Instead, we find the optimal SEN∗ = max

(si,sj)∈Φ
SENij

value in (7) using an iterative binary-search scheme. In each
iteration, we fix SEN∗ and check if there exists D and Ω
such that the maximum sensitivity is no greater than the
SEN∗ value in the current iteration. If (7) is feasible, SEN∗
is reduced in the next iteration; otherwise, SEN∗ is increased.
This binary-search scheme allows us to quickly converge to
the SEN∗ value. The pseudocode for this algorithm is shown
in Appendix C of the Supplementary Material.

3) Minimizing Average Hop Count (AHC): The formula-
tion (7) guarantees good MLU performance for both bounded
and unbounded TMs. Here, we optimize average hop count
(AHC) to improve network efficiency. Let SEN∗ be the optimal
value of (7), the final formulation is shown as follows:

Minimize Avg. Hop Count:

min max
k=1,..,K

∑N
i=1

∑N
j=1

∑
p∈Pij

(
ωpt

k
ij�p

)
∑N

i=1

∑N
j=1 tkij

, s. t.

a) D satisfies (5)

b) Ω satisfies (2)

c) max
(si,sj)∈Φ

∑
p∈P(si→sj)

(
ωpt

k
srcpdstp

)
dijbij

≤ μ∗,

∀ k = 1, .., K.

d) ωp ≤ SEN∗bijdij , ∀ i �= j, p ∈ Pij

(8.1)

(8.2)
(8.3)

(8.4)

(8.5)

Remark: Note that the routing weight solution Ω∗ is paired
with the fractional topology D∗. Once we convert D∗ to an

integer topology, X∗, the routing weight set based on X∗
needs to be recomputed using (6)-(8).

B. Realizing D∗ on the OCS Layer

We now need to realize the integer logical topology, X on
the OCS layer such that X best approximates D∗. The problem
here is to decide the total number of links xm

ij connecting pod
si to pod sj through OCS om, for every i, j = 1, 2, . . . , N and
m = 1, 2, . . . , M . Since there are M OCSs, we should split
each d∗ij entry of D∗ into M integers, xm

ij , m = 1, . . . , M ,
such that the following constraints are satisfied:

⌊
d∗ij

⌋
≤

M∑
m=1

xm
ij ≤

⌈
d∗ij

⌉
, ∀ i, j = 1, . . . , N. (9)

Then, a logical topology can be found by solving

Compute Integer Logical Topology:
Find {xm

ij } satisfying (1) and (9).
(10)

In general, (10) is NP-Complete, as the proven NP-
Complete 3-Dimensional Contingency Table problem [49] can
be reduced to (10). Fortunately, data center vendors have the
flexibility to design the DCN physical topology. If the physical
topology has the following property:
Uniform Physical Striping Constraints:

h1
ig(i) = · · · = hM

ig (i), h1
eg(i) = · · · = hM

eg (i),
∀i = 1, . . . , N, (11)

i.e., the ingress/egress links of each pod si are evenly distrib-
uted among all the OCSs, then (10) becomes polynomial-time
solvable using Algorithm 1.

In Algorithm 1, xm
ij ’s are computed in two steps. First,

we view the M OCSs as a single giant OCS and solve an
integer logical topology X using (12) without accounting for
the physical topology constraints. Next, we decompose X to
fit the physical topologies of the M OCSs by solving (13).
Unlike (10), (12) and (13) are of the form of a 2-dimensional
contingency table problem. In Appendix D of the Supplemen-
tary Material, we prove that if (12) and (13) have fractional
solutions, which can be easily verified, then their integer
solutions can be found in polynomial time. It is easy to verify
that steps 2-6 in Algorithm 1 guarantees that

N∑
i=1

xm
ij ≤

⌈∑N
i=1 xij

M

⌉
≤

rj
ig

M
= hm

ig (j), 1 ≤ j ≤ N

N∑
j=1

xm
ij ≤

⌈∑N
j=1 xij

M

⌉
≤

ri
eg

M
= hm

eg(i), 1 ≤ i ≤ N

Thus, the OCS configuration Xm fits its physical topology.

C. Complexity Analysis

The worst-case time complexity of COUDER is the sum
of complexities for computing the fractional logical topol-
ogy intent and the OCS matchings. To compute the logical
topology intent, the complexity involves solving several LP
problems sequentially. Let O(f(n)) be the complexity of an
LP problem as a function of the number of decision variables,
n. Given an N -pod network, each LP problem contains O(N2)
commodities and N − 1 paths per commodity, resulting in
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Algorithm 1: Compute an Integer Logical Topology That
Best Approximates D∗

Data:
1) D∗ - fractional topology
2) M - number of OCSs
Result:
1) X1 = [x1

ij ], . . . , X
M = [xM

ij ] - OCS configurations
// Step 1: Solve X based on a giant

OCS.
1 Solve an integer logical topology X based on the

following formulation:

max
X=[xij]

N∑
i=1

N∑
j=1

xij

s.t.
⌊
d∗ij

⌋
≤ xij ≤

⌈
d∗ij

⌉
, ∀ i, j = 1, .., N,

N∑
j=1

xji ≤ ri
ig,

N∑
j=1

xij ≤ ri
eg, ∀ i = 1, .., N.

(12)

// Step 2: Decompose X to fit M OCSs.
2 Initialize X rem = X
3 for m ∈ {1, . . . , M} do
4 Solve the OCS configuration Xm = [xm

ij ] based on
the following formulation:

Find an integer solution for Xm = [xm
ij ]

s.t.

⌊
xrem

ij

M − m + 1

⌋
≤ xm

ij ≤
⌈

xrem
ij

M − m + 1

⌉
, ∀ i, j⌊ ∑N

i=1 xrem
ij

M − m + 1

⌋
≤

N∑
i=1

xm
ij ≤

⌈ ∑N
i=1 xrem

ij

M − m + 1

⌉
, ∀ j

⌊ ∑N
j=1 xrem

ij

M − m + 1

⌋
≤

N∑
j=1

xm
ij ≤

⌈ ∑N
j=1 xrem

ij

M − m + 1

⌉
, ∀ i

(13)

5 Update X rem: xrem
ij = xrem

ij − xm
ij

6 end

O(N3) decision variables. So, computing the logical topology
has O(f(N3)) complexity. To compute the OCS matchings,
we propose Algorithm 1, which runs a min-cost flow algo-
rithm with O(N4 log(N)) complexity [50] once, and max-
flow algorithms, each with O(N3) complexity [51], on M
OCSs. For most network instances we consider, M ≈ N ,
which brings the complexity of Algorithm 1 to O(N4 log(N)).
Overall, COUDER’s complexity is O(f(N3) + N4 log(N)).

We express the runtime complexity of the LP solver
abstractly as a function of network size because the complexity
of solver algorithms (e.g., interior points or simplex) varies.
While most LP-solver algorithms have polynomial worst-case
runtime complexities, most LP problem instances can be
solved much more efficiently in practice than their worst-case
runtime would suggest. So, in Appendix E of the Supple-
mentary Material, we measured the runtime of COUDER

empirically by varying the number of network pods in the
range [5, 100]. Real world DCNs are limited in scale due
to floor plan, cooling, wiring complexity, and power supply
constraints [52]. So, we use a maximum network size of
100 pods in this analysis, which represents a realistic upper
bound in DCN scale.

Empirical results in Appendix E of the Supplementary
Material show that COUDER can easily support reconfigu-
rations on the order of several hours, which is its intended
use case. Specifically, COUDER has an average 45-second
solve time for a large DCN with 50 pods, and an average
∼16-minute solve time for a megascale DCN with 100 pods.
We can prune the forwarding routes to reduce the number
of decision variables, or relax the optimality gap, to further
minimize COUDER’s runtime to support larger networks or
higher rates of reconfiguration, though these strategies are left
for future explorations.

VI. PERFORMANCE EVALUATION

We now analyze COUDER alongside other
topology-routing solutions across long timescales. In order
to scale our evaluation for extended time frames, yet still
capturing the important macroscopic trends, we use a fluid
network model here.

Traffic Matrices Our evaluations are driven by traffic matri-
ces derived from production traces and synthetic genera-
tion. For production trace, we aggregate the 24-hour traces
from [2] into one-second traffic matrix snapshots, which gives
us slightly over 86000 snapshots.4 We combined the three
(Hadoop, websearch, and database) clusters into a single
“data center-wide” trace, and show the evaluation results here.
Due to space constraints, the remaining evaluation results
based on individual clusters are available in Appendix F of
the Supplementary Material. The aggregated traffic matrices
and the software implementations are also made publicly
available [53] to promote reproducibility.

Facebook’s production trace shows a strong clustering
effect. While these traffic patterns may be common in some
production data centers, they may not be representative of
all data center traffic workloads. For instance, DCNs with
disaggregated storage generally have more dominant inter-
cluster traffic, particularly between the compute and storage
clusters. To simulate these traffic patterns, we synthesize
a sequence of TMs by first splitting all the network pods
into two evenly-sized clusters of pods: one for storage, the
other for compute. For every TM snapshot, we then uniform-
randomly generate a write/read request from each compute
source pod to another compute/storage pod. Storage pods do
not communicate amongst themselves.

Metrics The main metrics used for evaluation are max link
utilization (MLU) to measure link congestion and average hop
count (AHC) to measure latency and bandwidth-efficiency.

A. Comparison Between Topologies

We assess the performance of static and dynamic topolo-
gies at scale using traffic matrices derived from Facebook’s
production traces and synthetic-generation. All topologies are

41-second traffic snapshots is the finest-grained aggregation possible as
the packet traces are recorded using second-level timestamps. The industry
standard for traffic snapshots is typically on the order of minutes. By compar-
ison, the 1-second snapshots used in our evaluations capture more temporal
variations due to micro-bursts.
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Fig. 6. Performance based on Facebook’s inter-pod DCN traces, aggregated into 1-second traffic matrices.

Fig. 7. Performance using synthetically-generated traffic matrices for data centers with disaggregated storage.

compared under cost-equivalent conditions (i.e. having an
equal number of pods and total link capacity). Our evaluations
assume a network with 21 pods, similar to the number of pods
extracted from Facebook’s traces. Each pod has 128 uplinks
with 100 Gbps of bandwidth per link. We assume the OCS,
like Calient’s S320 [31], has 320 ports. To fully connect all
the uplinks, a total of 9 320-port OCSs is needed. We use an
unrealistic ideal, instantaneously-reconfigurable network with
oracle knowledge of future traffic demands to outline the
performance upper bound.

Quasi-Static Topology Engineering For TMs derived from
Facebook’s DCN traces, COUDER computes an inter-pod
logical topology and a single set of routing weights based on
5 critical TMs extracted from the first hour’s traffic matrices.
For the synthetic desegregated storage TMs, we similarly
extract 5 critical TMs from the first one-tenth of traffic
snapshots. The computed topology and routing solution is
fixed for all the remaining TMs. In the case of Face-
book’s workload, this is equivalent to a daily reconfigura-
tion. In addition, we also evaluate a robust ToE approach
(RToE), which similarly uses COUDER’s multi critical
TM optimization but without desensitization, and a naive
(Naive MAX) approach that optimizes topology for the the
historical-max TM.

Ideal Reconfigurable Network Instead of delving into
every dynamic network in detail, we outline the opti-
mal performance with an ideal (albeit highly unrealistic)
dynamic network with instantaneous reconfigurability. The
network computes an offline optimal topology and routing
for each TM by solving a Multi-Commodity Flow (MCF)
problem.

Fat Tree Fat tree with ECMP routing is currently the de facto
standard for building commercial data centers, which we use
here as a baseline. The simulated fat tree is cost-comparable
to COUDER, carrying the same number of pods with a 3:1
oversubscription at the spine layer.

Mesh Expander Expanders have been shown to be highly-
capable networks, able to achieve comparable throughputs to a
non-subscribed fat tree at 70% the cost [21]. We also evaluate

the performance of a cost-comparable expander network that
directly connects pods without an OCS layer. The numbers
of pod uplinks of the expander are identical to that of
COUDER, and each pod’s uplinks are wired uniformly to
other pods. We use 3 different routing strategies on the mesh
expander, namely equal cost multi path (ECMP), Valiant load
balancing (VLB), and K-shortest paths with traffic engineering
(KSP(TE)). For ECMP, traffic is routed directly from the
source to destination pods. For VLB and KSP, traffic is routed
along direct and indirect paths. VLB splits the traffic equally
among the direct and indirect paths, KSP(TE) computes the
path split ratios using COUDER.5

1) Discussion: Figs. 6 and 7 shows the MLU and
AHC performances of different topologies for the Facebook
and synthetically-generated desegregated storage workloads,
respectively. Specifically, Fig. 6a and Fig. 7a show the MLU
probability distribution function of MLU for the Facebook and
synthetic traces in logarithmic scale. Each point (α, P (MLU >
α)) denotes the probability of a traffic snapshot having an
MLU greater than or equal to α. Overall, the fat tree exhibits
the poorest performance. COUDER reduces MLU by about
50%, and AHC by about 60% over an oversubscribed fat tree.
Due to the presence of an electrically-switched spine layer in
the fat tree, packets must take two hops before reaching their
destination pod.

Next, we can see the limitations of Naive MAX, which
exhibits poorer MLU compared to not just RToE and
COUDER, but also to the static expander. The core issue
of Naive MAX is that it may overfit the topology to the
expected demand, which greatly limits its robustness to other
traffic patterns. The effects of desensitization are also high-
lighted, where the COUDER shows lower MLU but higher
AHC compared to a standard robust ToE approach. This is
because desensitization incurs a tradeoff between AHC and
MLU: to stave off brittle solutions that are over-reliant on
direct paths, we need to increase AHC. That said, we argue

5This can be done simply by setting the inter-pod logical topology to the
mesh expander in COUDER’s optimization pipeline.
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Fig. 8. The effects of choosing different numbers of critical TMs for
COUDER on MLU and AHC performance.

that, within reason, minimizing MLU should take precedence
over minimizing AHC. While packet latency does increase
with AHC, its growth is bounded if MLU ≤ 1. Conversely,
if MLU exceeds 1, the rate of traffic entering would exceed the
throughput delivered by the network, leading to an unbounded
buildup of packets and growth in packet latency.

We analyze the performance of a bandwidth-equivalent
expander next. For both traffic workloads, expander with
ECMP (EX+ECMP) exhibits the worst MLU performance.
This is because in an expander with uniform capacity between
pods, routing highly skewed traffic demands using exclusively
direct paths can cause significant congestion. Using VLB on an
uniform expander (EX+VLB) can alleviate this congestion by
uniformly spraying traffic onto direct and indirect routes. How-
ever, VLB suffers from poor AHC due to its over dependence
on indirect paths with higher “bandwidth tax” [17]. We also
employ COUDER as a robust traffic engineering framework
for an expander. On average, COUDER outperforms the
expander by about 32% in AHC and 20% in MLU. These
comparisons further showcase the benefits of COUDER: given
just minimal topology reconfiguration, COUDER can attain a
significant performance advantage over static networks.

Granted, there is still some performance gap between
COUDER and an ideal reconfigurable network in terms of
performance. However, as COUDER’s performance is attained
with daily reconfiguration and still comes within 10% of
ideal in the case of Facebook’s workload, it is realistically-
attainable. An implicit assumption the ideal reconfigurable
network operates under is the instantaneous knowledge of
current traffic demands, but not only is traffic measurements
at scale expensive, but the lack of traffic uncertainty allows
the ideal reconfigurable network to aggressively optimize for
MLU and AHC without regard for desensitization due to the
lack of traffic uncertainty. Note that the AHC of the optimal
solution is slightly greater than 1, due to some optimality-loss
when rounding fractional topology to an integer one.

B. Impact of Parameters on Performance

Next, we study how picking different numbers of criti-
cal TMs (§VI-B.1) and different reconfiguration frequencies
(§VI-B.2) affect network performance.

1) Effects of Critical Traffic Matrix Set Size: To evaluate
the impact of different numbers of critical TMs, we repeat the
experiments in §VI-A using different numbers of critical TMs.

The results are shown in Fig. 8. Recall from §II-B that the
critical TMs chosen by our algorithm form an outer bound of
the historical TMs. The outer bound becomes tighter as we
increase the number of critical TMs (see Fig. 2b). Choosing a
larger bound could cover more grounds to handle traffic bursts,
but it weakens the performance guarantee for the bounded

TMs. For instance, with a critical TM set size of one, the
resulting convex hull formed by the entry-wise historical max
TM would be the largest. In this case, the MLU performance
with K = 1 turns out to be the worst, as shown in Fig. 8.
Meanwhile, picking K = 7 critical TMs offers the best MLU
performance, while K = 5 offers the best AHC performance.
At any rate, COUDER’s performance is not overly sensitive to
variations of K . In this case, choosing any number of critical
TMs between 5 and 7 should be fine.

2) Reconfiguration Frequency and Latency: Although our
system is designed to enable infrequent topology reconfigura-
tions, it is natural to wonder whether COUDER’s performance
can improve with more frequent reconfigurations.

To answer this question, we evaluate COUDER’s per-
formance with different reconfiguration frequencies, ranging
between once every 30 seconds, 5 minutes, 1 hour, and
1 day. The initial convex set is computed based on the first
hour’s worth of traffic matrix snapshots. Each reconfiguration
event will update the current convex TM set by consider-
ing the traffic snapshots from the previous reconfiguration
window. This means that the bound set by the critical TMs
increases monotonically over time. Note that a DCN experi-
ences reduced capacity during reconfiguration, and different
reconfiguration strategies affect both the duration and the
capacity loss (see Fig. 9a). As described in §III-D, COUDER
adopts a conservative reconfiguration strategy.

Fig. 9 shows COUDER’s tail MLU6 and AHC under
different reconfiguration frequencies and latencies. Desensi-
tization plays a decisive role here. Without desensitization,
the tail MLU is higher, but it is much more dependent on the
frequency of topology reconfigurations. Once desensitization
is applied, COUDER retains an impressive MLU performance
even with infrequent topology reconfiguration. Increasing the
topology update frequency brings only minor improvements.
In fact, when the per-stage reconfiguration latency is set
to 500 ms, frequent topology updates can lead to a worse
tail MLU. Because higher reconfiguration frequencies lead
to lower duty cycles, the network would operate in a state
of reduced capacity for longer periods of time. This greatly
increases the risk of congestion due to a demand surge.

C. Robustness to Traffic Mispredictions

Although §II-B establishes that pod-level traffic is likely to
exhibit weak temporal stability, outlier TMs can come at any
time and may lead to severe congestion if not handled properly.
Here, we test whether COUDER can maintain performance
robustness when subjected to traffic with greater temporal
variations. We do this by adding random noise to the Facebook
evaluation traffic matrices.

First, K = 5 critical TMs are extracted from the entire
sequence of 1-second inter-pod TMs derived from Facebook’s
packet traces, which are used for topology and routing opti-
mization. Using the same sequence, we then compute a
base component-wise max TM T b = [tbij ], where tbij is the
maximum traffic demand among all the tij’s, and a standard
deviation matrix Σ = [σij ], where σij is the standard deviation
of the all tij’s in the sequence. We then exhaustively enumerate
all the possible burst sets, each of which contains one or two
source-destination pod pairs. Then, for each burst set, denoted

6The non-tail performances for different reconfiguration frequencies are
similar, and hence not shown.
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Fig. 9. Impact of reconfiguration frequency and latency on performance.

Fig. 10. MLU distribution under different burst levels. EX+RTE refers
to an expander with robust traffic engineering, EX+COUDER refers to
an expander with COUDER routing. RToE denotes robust ToE without
desensitization. Each box captures the 75th, 25th percentiles and median
values; the outliers beyond the upper and lower whiskers are dotted.

as B, the corresponding burst TM is T̃ (B) = [t̃ij(B)], where

t̃ij(B) =
{

tbij + burst_factor ∗ σij , for (i, j) ∈ B,

tbij , for (i, j) /∈ B.

(14)

The “burst_factor” parameter acts as a control knob for the
level of burstiness.

Fig. 10 shows the MLU distribution at different burst
levels. There are two features in MLU distribution that are
indicators of robustness here: a low overall MLU distribution
which means better performance for the evaluated TMs, and a
small spread signals the solution’s lower sensitivity to demand
spikes in arbitrary pod pairs. COUDER with desensitization
shows the best performance across all burst levels, given its
lower MLU distribution with a small variance. This highlights
COUDER’s robustness to traffic variations, even compared to
oblivious routing algorithms like VLB.

1) Robustness vs. Efficiency: Next, we stress test
COUDER’s worst-case performance under adversarial
traffic. An adversarial TM is a feasible TM that maximizes
the MLU for a given topology, X , and routing weights Ω.
A TM is feasible if the total traffic exiting and entering every
pod is no greater than its total egress capacity and ingress
capacity, respectively. Formally, the worst-case MLU under
adversarial traffic is defined as follows:

max
(si,sj)∈Φ

∑
p∈P (si→sj)

ωptsrcp,dstp

bij

s.t.
N∑

j=1

tij ≤ ri
egbij ,

N∑
j=1

tji ≤ ri
igbji, ∀i = 1, .., N

In this experiment, we aim to evaluate the robustness vs.
efficiency of various topology engineering solutions, where
robustness measures the performance under adversarial work-
loads and efficiency measures how optimized a topology is
for the expected traffic patterns. We generate a sequence of
500 random TMs in a 21-pod network with 256 100 Gbps
uplinks per pod. These TMs form the set of expected traffic
patterns, which are used to compute a topology and routing
configurations. The x-axis value represents the maximum
MLU across all the 500 TM snapshots. Here, ToE(Avg.) and
ToE(Max.) denote topology engineering based on a single TM
that is obtained from taking the entry-wise average and max,
respectively, from the expected TM set. A similar notation for
traffic engineering (e.g., TE(Avg.) and TE(Max.)) is used.

Fig. 11 shows the robustness measure (i.e., MLU under
adversarial TM) on the y-axis vs. the efficiency measure
(i.e., MLU under expected TMs) on the x-axis for various
combinations of topology and traffic engineering solutions.
We expect a tradeoff between efficiency and robustness, since
optimizing for efficiency means that the topology must be
overfitted to the expected TMs, at the cost of decreased
robustness to adversarial TMs. This tradeoff relationship is
observable from the trend of Fig. 11. Overall, COUDER
exhibits a better tradeoff than the other approaches. Compared
to naive ToE approaches such as RToE, ToE(Avg.)+TE(Avg.),
ToE(Max.)+TE(Max.), COUDER exhibits much lower MLU
under adversarial traffic patterns. This reaffirms the need
for desensitization, which helps minimize MLU deterioration
under adversarial workloads. As expected, COUDER shows
higher efficiency for routing common-case traffic loads com-
pared to static topologies like EX and FT, as it is capable of
optimizing the logical topology for a higher performance for
the common-case traffic patterns.

VII. PACKET LEVEL SIMULATIONS

The fluid model evaluations in §VI have been based on
MLU (congestion) and AHC (network efficiency). In this
section, we extend our evaluations using packet level simula-
tions for two main reasons: 1) the fluid model uses aggregated
TM snapshots, which smooths out the micro-bursts at packet
timescales, and 2) MLU and AHC are operator-centric metrics
that do not directly convey user-perceived application-level
performance (e.g. flow completion time (FCT) [54]). This
allows us to extend our evaluations by measuring packet
latency, packet drops rate, flow completion time, etc., as a
function of MLU and AHC. The simulator used is Net-
Bench [55].
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Fig. 11. MLU under worst-case adversarial traffic vs. expected traffic for
various combinations of topology and traffic engineering approaches.

We assume DCTCP congestion control [56] in the simula-
tions. Inter-pod links have 40 Gbps capacity and a propagation
delay of 100 ns, which is roughly equivalent to the propagation
delay of light through a 20 meter fiber. The simulator is given
0.5 second to warm up and down; flows that are initialized
during these periods are not considered for analysis.

Next, we chose (at random) a 5-minute window to collect an
aggregated inter-pod traffic matrix, T = [tij ], using the trace
in [2]. Flows from pod si to pod sj are generated following
a Poisson arrival process with rate λtij , where the size of
each flow follows uniform distribution. The inter-pod logical
topology is computed based on the TM using COUDER, while
a few routing weights are computed, each with a specific AHC
value.7 We vary the MLU by simply adjusting the flow arrival
rates.

The impact of different MLU and AHC combinations to
application-centric metrics is summarized in Figs. 12 and 13.
As expected, higher MLUs lead to poorer performance (i.e.
fewer flow completions, more packets are dropped, increased
packet latency, etc). As higher MLU indicates more severe
congestion, causing a drop in average flow throughput as more
flows need to share the bottlenecked links.

Fig. 13, the packet drop rate increasing super-linearly with
hop count when MLU is 0.6 and 0.8. This is because packets
that traverse inflated paths leave a larger footprint, which can
cause packet buildup in switch queues. This is fine when
congestion is low, and packets simply experience only a slight
increase in round trip latency. When congestion is high, how-
ever, the packet buildup eventually leads to buffer overflow.
As packets get dropped, TCP will have to throttle its send
rates, resulting in longer FCTs and fewer flow completions
overall.

In summary, both MLU and AHC are intimately linked to
application performance experienced by users. By optimiz-
ing for both MLU and AHC simultaneously, COUDER can
improve application performance.

VIII. RELATED WORK

A. Reconfigurable DCN Topology

Unlike COUDER, most reconfigurable DCN topologies
rely on fast optical switching prototypes to handle traffic
bursts. Using wavelength selective switches, an OCS proto-
type with microsecond-level switching time was proposed for
building reconfigurable topologies in [7] and [25]. However,

7This can be easily done by adding an AHC constraint into COUDER’s
formulation (6)-(8).

Fig. 12. Effects of MLU and average hop count on flow completion time
and packet latency.

Fig. 13. Effects of operator-metrics like MLU and AHC on packet drops
and flow completion based on Facebook’s DCN traces.

this OCS prototype has limited port count that prevents
reconfigurable topology from scaling to large data centers
with over 100k servers. Some have proposed using steer-
able wireless transceivers [6], [10], [36] for scaling, while
retaining a low switching latency simultaneously. However,
wireless solutions typically face other deployment challenges
related to environmental conditions in real DCNs, and to
the need for sophisticated steering mechanisms. Architectures
like Rotornet [8] and Sirius [9] improve DCN scalability by
time-multiplexing across a set of preconfigured topologies.
However, both approaches could easily overburden the SDN
controller with microsecond-level reconfigurations. In [57], the
authors explored the possibility of reducing reconfiguration
without impacting performance using domain-sizing tech-
niques; our work similarly aims to improve DCN performance
with minimal reconfigurations, but exploits weak temporal
stability in traffic patterns.

Online circuit-scheduling research is also relevant to
reconfigurable networks, though the problem statement and
approach fundamentally differs from those of ours. While
circuit-scheduling is concerned with getting the optimal
sequence of circuit configurations for a single traffic
matrix [47], [58], [59], we are interested in optimizing a single
topology for many TMs.

B. Traffic Engineering

COUDER relies on robust traffic engineering to deliver
good performance. In contrast, many prior works on opti-
cal circuit-switched data centers performs traffic engineering
based only on a single predicted traffic matrix [3], [4],
[10], [60]. However, accurate traffic prediction is difficult,
and an inaccurate prediction may lead to poor performance.
More recent works on dynamic networks [8], [9], [17] have
proposed using Valiant load-balancing (VLB) [61]. VLB is a
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traffic-oblivious routing algorithm that guarantees a throughput
drop of no more than 2× in the worst case, but suffers from
poor performance and high bandwidth tax for common case
traffic.

In terms of the core idea, COUDER shares many similar-
ities with the robust traffic engineering (TE) works for wide
area networks (WAN) space [62], [63], [64]. For instance,
COPE [5] uses a dual-envelope approach to simultaneously
optimize for both common- and worst- case traffic patterns.
Unfortunately, these strategies that work in the context of TE
cannot be generalized to ToE due to differences in problem
structure. Specifically, ToE is a much harder combinatorics
problem that involves optimizing both the topology and rout-
ing; conversely, in TE, only routing is optimized while the
topology is fixed.

IX. CONCLUSION

We present COUDER, a robust topology engineering
approach that does not rely on frequent reconfigurations to
react to traffic changes. In contrast to prior ToE approaches
that have generally relied on rapid OCS reconfiguration to han-
dle traffic variations, COUDER designs inter-pod topologies
based on multiple critical TMs extracted from historical traffic
matrices, and adopts a desensitization technique to further
enhance its topologies against unexpected bursts. Compared to
static DCN topologies that do not use OCSs, COUDER shows
clear performance benefits even with daily reconfiguration.
Reconfiguring OCSs at such low frequencies greatly lowers the
technological barrier to ToE deployment, thus paving a path
towards the incremental adoption of optical circuit switched
DCNs.

ACKNOWLEDGMENT

The authors would like to thank Calient Technologies
for providing hardware support and sharing its insights on
the stability and commercial availability of its MEMS OCS
technology.

REFERENCES

[1] S. Kandula, J. Padhye, and P. Bahl, “Flyways to de-congest data center
networks,” in Proc. HotNets, 2009.

[2] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social Network’s (datacenter) network,” in Proc. ACM Conf. Special
Interest Group Data Commun., Aug. 2015, pp. 123–137.

[3] N. Farrington et al., “Helios: A hybrid electrical/optical switch architec-
ture for modular data centers,” in Proc. ACM SIGCOMM Conf., 2010,
pp. 339–350.

[4] G. Wang et al., “C-through: Part-time optics in data centers,” in Proc.
ACM SIGCOMM Conf., 2010, pp. 327–338.

[5] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“COPE: Traffic engineering in dynamic networks,” in Proc. SIGCOMM,
2006, pp. 99–110.

[6] M. Ghobadi et al., “ProjecToR: Agile reconfigurable data center inter-
connect,” in Proc. ACM SIGCOMM Conf., Aug. 2016, pp. 216–229.

[7] G. Porter et al., “Integrating microsecond circuit switching into the data
center,” in Proc. ACM SIGCOMM, Aug. 2013, pp. 447–458.

[8] W. M. Mellette et al., “RotorNet: A scalable, low-complexity, optical
datacenter network,” in Proc. Conf. ACM Special Interest Group Data
Commun., Aug. 2017, pp. 267–280.

[9] H. Ballani et al., “Sirius: A flat datacenter network with nanosecond
optical switching,” in Proc. Annu. Conf. ACM Special Interest Group
Data Commun. Appl., Technol., Archit., Protocols Comput. Commun.,
Jul. 2020, pp. 782–797.

[10] N. Hamedazimi et al., “FireFly: A reconfigurable wireless data cen-
ter fabric using free-space optics,” in Proc. ACM Conf. SIGCOMM,
Aug. 2014, pp. 319–330.

[11] A. Greenberg et al., “VL2: A scalable and flexible data center network,”
in Proc. ACM SIGCOMM Conf. Data Commun., 2009, pp. 51–62.

[12] V. Liu, D. Halperin, A. Krishnamurthy, and T. E. Anderson,
“F10: A fault-tolerant engineered network,” in Proc. NSDI, 2013,
pp. 399–412.

[13] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “JellyFish: Network-
ing data centers, randomly,” in Proc. NSDI, 2012, pp. 225–238.

[14] A. Valadarsky, M. Dinitz, and M. Schapira, “Xpander: Unveiling the
secrets of high-performance datacenters,” in Proc. 14th ACM Workshop
Hot Topics Netw., Nov. 2015, pp. 1–7.

[15] Y. Yu and C. Qian, “Space shuffle: A scalable, flexible, and high-
performance data center network,” IEEE Trans. Parallel Distrib. Syst.,
vol. 27, no. 11, pp. 3351–3365, Nov. 2016.

[16] M. Zhang, R. N. Mysore, S. Supittayapornpong, and R. Govindan,
“Understanding lifecycle management complexity of datacenter topolo-
gies,” in Proc. NSDI, 2019, pp. 235–254.

[17] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter, “Expanding across time to deliver bandwidth efficiency and
low latency,” in Proc. NSDI, 2020, pp. 1–18.

[18] A. Singh et al., “Jupiter rising: A decade of clos topologies and
centralized control in Google’s datacenter network,” in Proc. ACM Conf.
Special Interest Group Data Commun., Aug. 2015, pp. 183–197.

[19] N. Farrington and A. Andreyev, “Facebook’s data center network archi-
tecture,” in Proc. Opt. Interconnects Conf., May 2013, pp. 49–50.

[20] Cisco Data Center Spine-and-Leaf Architecture: Design Overview,
Cisco, San Jose, CA, USA, 2016.

[21] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla,
“Beyond fat-trees without antennae, mirrors, and disco-balls,” in
Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2017,
pp. 281–294.

[22] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: Measurements & analysis,” in Proc.
9th ACM SIGCOMM Conf. Internet Meas. Conf., 2009, pp. 202–208.

[23] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. 10th Annu. Conf. Internet Meas.,
2010, pp. 267–280.

[24] CALIENT Technologies. Accessed: Jan. 2021. [Online]. Available:
https://www.calient.net/

[25] H. Liu et al., “Circuit switching under the radar with REACToR,” in
Proc. NSDI, 2014, pp. 1–15.

[26] A. Singla, A. Singh, K. Ramachandran, L. Xu, and Y. Zhang, “Pro-
teus: A topology malleable data center network,” in Proc. 9th ACM
SIGCOMM Workshop Hot Topics Netw., 2010, pp. 1–6.

[27] Google. (2015). Pulling Back the Curtain on Google’s Network
Infrastructure. [Online]. Available: https://goo.gl/hx0vz3

[28] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Commun. ACM, vol. 59, no. 5, pp. 50–57,
Apr. 2016.

[29] (2021). Telescent G4 Network Topology Manager. [Online]. Available:
https://www.telescent.com/products

[30] A. Chatzieleftheriou, S. Legtchenko, H. Williams, and A. Rowstron,
“Larry: Practical network reconfigurability in the data center,” in Proc.
NSDI, 2018, pp. 141–156.

[31] CALIENT Technologies. (Mar. 2021). Calient S-Series: S320. [Online].
Available: https://www.calient.net/resources/datasheets/

[32] (2021). Polatis Optical Circuit Switch. [Online]. Available:
https://www.polatis.com/series-7000-384x384-port-software-controlled-
optical-circuitswitch-sdn-enabled.asp

[33] K. Wen et al., “Flexfly: Enabling a reconfigurable dragonfly through
silicon photonics,” in Proc. Int. Conf. High Perform. Comput., Netw.,
Storage Anal., Nov. 2016, pp. 166–177.

[34] T. J. Seok, N. Quack, S. Han, R. S. M’́uller, and M. C. Wu, “Large-
scale broadband digital silicon photonic switches with vertical adiabatic
couplers,” Optica, vol. 3, no. 1, pp. 64–70, Jan. 2016.

[35] T. Chu, L. Qiao, W. Tang, D. Guo, and W. Wu, “Fast, high-radix silicon
photonic switches,” in Proc. Opt. Fiber Commun. Conf., 2018, pp. 1–3.

[36] X. Zhou et al., “Mirror mirror on the ceiling: Flexible wireless links for
data centers,” in Proc. SIGCOMM, 2012, pp. 443–454.

[37] L. Poutievski et al., “Jupiter evolving: Transforming Google’s datacenter
network via optical circuit switches and software-defined networking,”
in Proc. ACM SIGCOMM Conf., Aug. 2022, pp. 66–85.

[38] S. Zhao, R. Wang, J. Zhou, J. Ong, J. C. Mogul, and A. Vahdat, “Mini-
mal rewiring: Efficient live expansion for clos data center networks,” in
Proc. NSDI, 2019, pp. 221–234.

[39] Huawei. CloudEngine 12800 Series Data Center Switches. [Online].
Available: https://e.huawei.com/us/products/enterprise-networking/
switches/data-center-switches/ce12800



1070 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 3, JUNE 2023

[40] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in Proc. Int. Symp. Comput. Archit.,
Jun. 2008, pp. 77–88.

[41] M. Y. Teh, J. J. Wilke, K. Bergman, and S. Rumley, “Design space
exploration of the Dragonfly topology,” in Proc. Int. Conf. High Perform.
Comput., 2017, pp. 57–74.

[42] A. Andreyev, “Introducing data center fabric, the next-generation
Facebook data center network,” Facebook, Menlo Park, CA, USA,
Tech. Rep., 2014. [Online]. Available: https://code.facebook.com/posts/
360346274145943

[43] M. Y. Teh, Z. Wu, M. Glick, S. Rumley, M. Ghobadi, and K. Bergman,
“Performance trade-offs in reconfigurable networks for HPC,” J. Opt.
Commun. Netw., vol. 14, no. 6, p. 454, 2022.

[44] C. Delimitrou, S. Sankar, A. Kansal, and C. Kozyrakis, “ECHO:
Recreating network traffic maps for datacenters with tens of thousands of
servers,” in Proc. IEEE Int. Symp. Workload Characterization (IISWC),
Nov. 2012, pp. 14–24.

[45] G. Bernstein, “Navigating cabling options for enterprise and
cloud data centers,” Leviton Netw. Solutions, Bothell, WA, USA,
Tech. Rep. 29, 2019.

[46] Broadcom. (2016). Tomahawk 4 / BCM56990 Series. [Online]. Avail-
able: https://docs.broadcom.com/doc/12398014

[47] H. Liu et al., “Scheduling techniques for hybrid circuit/packet networks,”
in Proc. 11th ACM Conf. Emerg. Netw. Experiments Technol., Dec. 2015,
pp. 1–13.

[48] Gurobi Optimization. (2019). Gurobi Optimizer Reference Manual.
[Online]. Available: http://www.gurobi.com

[49] R. W. Irving and M. R. Jerrum, “Three-dimensional statistical data
security problems,” SIAM J. Comput., vol. 23, no. 1, pp. 170–184,
Feb. 1994.

[50] A. V. Goldberg and M. Kharitonov, “On implementing scaling push-
relabel algorithms,” in Network Flows and Matching: First DIMACS
Implementation Challenge. Providence, RI, USA: American Mathemat-
ical Society, 1993.

[51] A. V. Goldberg and R. E. Tarjan, “A new approach to the maximum-flow
problem,” J. ACM, vol. 35, no. 4, pp. 921–940, Oct. 1988.

[52] P. Johnson. (2017). With the Public Clouds of Amazon, Microsoft and
Google, Big Data is the Proverbial Big Deal. [Online]. Available:
https://www.forbes.com/sites/johnsonpierr/2017/06/15/with-the-public-
clouds-of-amazon-microsoft-and-google-big-data-is-the-proverbial-big-
deal/?sh=80b1efb2ac3c

[53] M. Y. Teh. (2021). First Release of Reconfigurable Network Topol-
ogy Evaluation Framework. [Online]. Available: https://doi.org/10.5281/
zenodo.4897956

[54] N. Dukkipati and N. McKeown, “Why flow-completion time is the right
metric for congestion control,” ACM SIGCOMM Comput. Commun.
Rev., vol. 36, no. 1, pp. 59–62, 2006.

[55] (2017). Netbench. [Online]. Available: https://github.com/ndal-
eth/netbench

[56] M. Alizadeh et al., “Data center TCP (DCTCP),” in Proc. ACM
SIGCOMM Conf., 2010, pp. 63–74.

[57] G. C. Sankaran and K. M. Sivalingam, “Domain sizing in optical traffic
grooming based data center networks,” in Proc. IEEE 4th Int. Conf.
Cloud Netw. (CloudNet), Oct. 2015, pp. 94–99.

[58] S. Bojja Venkatakrishnan, M. Alizadeh, and P. Viswanath, “Costly cir-
cuits, submodular schedules and approximate Carathéodory theorems,”
in Proc. SIGMETRICS, 2016, pp. 75–88.

[59] M. Wang et al., “Neural network meets DCN: Traffic-driven topology
adaptation with deep learning,” in Proc. Abstr. ACM Int. Conf. Meas.
Modeling Comput. Syst., Jun. 2018, pp. 1–25.

[60] M. Y. Teh et al., “TAGO: Rethinking routing design in high performance
reconfigurable networks,” in Proc. Int. Conf. High Perform. Comput.,
Netw., Storage Anal., Nov. 2020, pp. 1–16.

[61] R. Zhang-Shen and N. McKeown, “Designing a fault-tolerant network
using valiant load-balancing,” in Proc. 27th Conf. Comput. Commun.,
Apr. 2008, pp. 2360–2368.

[62] C. Zhanga, J. Kurosea, D. Towsley, Z. Ge, and Y. Liu, “Optimal routing
with multiple traffic matrices tradeoff between average and worst case
performance,” in Proc. 13TH IEEE Int. Conf. Netw. Protocols (ICNP),
2005, pp. 215–224.

[63] Y. Chang, S. Rao, and M. Tawarmalani, “Robust validation of network
designs under uncertain demands and failures,” in Proc. NSDI, 2017,
pp. 347–362.

[64] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental
tradeoffs,” in Proc. Conf. Appl., Technol., Archit., Protocols Comput.
Commun., 2003, pp. 313–324.

[65] J. Edmonds and R. M. Karp, “Theoretical improvements in algorith-
mic efficiency for network flow problems,” J. ACM, vol. 19, no. 2,
pp. 248–264, Apr. 1972.

Min Yee Teh received the bachelor’s degree in
electrical engineering from Brown University in
2016 and the M.S. and Ph.D. degrees in elec-
trical engineering from Columbia University in
2017 and 2021, respectively. His Ph.D. work was
supported by the Wei Family Foundation Fellowship.
His research interests lie in reconfigurable optical
circuit-switched networks, network load balancing,
and data center network topology design.

Shizhen Zhao received the bachelor’s degree from
Shanghai Jiao Tong University in 2010 and the Ph.D.
degree from Purdue University in 2015. From Sep-
tember 2015 to January 2019, he worked at Google’s
Networking Team. He is currently a Tenure-Track
Associate Professor with the John Hopcroft Cen-
ter, Shanghai Jiao Tong University. He has pub-
lished papers in top-tier conferences and journals,
including NSDI, SIGMETRICS, MOBICOM, ICNP,
INFOCOM, IEEE/ACM TRANSACTIONS ON NET-
WORKING, and IEEE TRANSACTIONS ON AUTO-

MATIC CONTROL. His current research interests include optimizing optical
circuit-switched data center networks.

Peirui Cao received the B.S. degree from Southeast
University and the M.S. degree from Beihang Uni-
versity. He is currently pursuing the Ph.D. degree
with the John Hopcroft Center for Computer Sci-
ence, Shanghai Jiao Tong University. His research
interests include optimizing network performance,
data center networks, and network measurement.

Keren Bergman (Fellow, IEEE) received the B.S.
degree in electrical engineering from Bucknell Uni-
versity in 1988 and the M.S. and Ph.D. degrees in
electrical engineering from M.I.T. in 1991 and 1994,
respectively. She is currently the Charles Batchelor
Professor in electrical engineering at Columbia Uni-
versity, where she also works as the Faculty Director
of the Columbia Nano Initiative. At Columbia, she
leads the Lightwave Research Laboratory, encom-
passing multiple cross-disciplinary programs at the
intersection of computing and photonics. She serves

on the Leadership Council of the American Institute of Manufacturing
(AIM) photonics leading projects that support the institute’s silicon photonics
manufacturing capabilities and Datacom applications. She was a recipient of
the 2016 IEEE Photonics Engineering Award. She is a fellow of the Optica.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


