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ABSTRACT
We study how to reduce the reconfiguration time in hybrid optical-

electrical Datacenter Networks (DCNs). With a layer of Optical

Circuit Switches (OCSes), hybrid optical-electrical DCNs could

reconfigure their logical topologies to better match the on-going

traffic patterns, but the reconfiguration time could directly affect

the benefits of reconfigurability. The reconfiguration time consists

of the topology solver running time and the network convergence

time after triggering reconfiguration. However, existing topology

solvers either incur high algorithmic complexity or fail to minimize

the reconfiguration overhead.

In this paper, we propose a novel algorithm that combines the

ideas of bipartition and Minimum Cost Flow (MCF) to reduce the

overall reconfiguration time. For the first time, we formulate the

topology solving problem as an MCF problem with piecewise cost,

which strikes a better balance between solver complexity and solu-

tion optimality. Our evaluation shows that our algorithm can signif-

icantly reduce the network convergence time while consuming less

topology solver running time, making its overall performance su-

perior to existing algorithms. Our code and test cases are available

at a public repository [25].
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1 INTRODUCTION
The interest in hybrid optical-electrical Datacenter Networks (DCNs)

has been growing as it offers the capability of performing traffic-

aware topology designs. The dominant network topology utilized

in current DCNs is still the Clos topology [1, 12, 21]. It provides uni-

versal bandwidth to arbitrary traffic patterns, but can be highly cost-

suboptimal for bandwidth provision. As network bandwidth keeps

increasing, building Clos networks is becoming cost-prohibitive [7].

The traffic in DCNs is highly skewed and time-varying [4]. By adapt-

ing the network topology to the traffic patterns, the performance-

cost ratio can be improved. This necessitates a reconfigurable topol-

ogy, which can be achieved by introducing novel optical network

components [10] such as Optical Circuit Switches (OCSes), free-

space optics, wireless radios, etc.

We study how to reduce the reconfiguration time in hybrid

optical-electrical DCNs. When the DCN traffic pattern changes,

we may need to compute a new topology for this traffic pattern,

and then reconfigure the DCN from its old topology to this new

topology. The reconfiguration time consists of the topology solver

running time and the network convergence time after triggering

reconfiguration. The former one depends on the algorithmic com-

plexity and the latter one depends on the number of links to be

changed during the reconfiguration process
1
. Therefore, we need a

topology solver with low algorithmic complexity, while being able

to reduce the number of reconfigured links.

Existing algorithms are limited because they either incur high

topology solver running time or yield a highly suboptimal solution

that requires many link reconfigurations. The topology optimiza-

tion problem can be formulated as an Integer Linear Programming

(ILP) problem with the objective to minimize the total number of

reconfigured links. However, due to the NP-hardness of most ILP

problems, even the most advanced commercial ILP solver cannot

solve the problem directly at a real-world scale [26]. To reduce

the algorithmic complexity, some algorithms take advantage of

the homogeneity of the DCN physical topologies. Zhao et al. [26]

present a greedy minimal-rewiring algorithm using Minimum Cost

Flow (MCF), but experimental results show that the total number

of rewires can be far from optimal. On the other hand, Google’s

patent [17] presents an algorithm that utilizes the idea of bipartition

and achieves a lower number of rewires than the MCF-based algo-

rithm, but it is still based on ILP and can be very slow in practice.

In this paper, we propose an algorithm that combines the advan-

tages of MCF and bipartition to reduce the total number of rewires,

while ensuring a polynomial running time. The standard form of

1
We must ensure uninterrupted service during reconfiguration. If the change between

the old topology and the new topology is too large, the reconfiguration process need

to be preformed in several steps [20], which increases the total network convergence

time.

41

https://doi.org/10.1145/3600061.3600071
https://doi.org/10.1145/3600061.3600071
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3600061.3600071
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600061.3600071&domain=pdf&date_stamp=2023-09-05


APNET 2023, June 29–30, 2023, Hong Kong, China Shuyuan Zhang, Shu Shan, and Shizhen Zhao

an MCF problem has a linear cost for each link. We note that the

cost function of each link can be generalized to a convex piecewise

linear function. This observation allows us to develop a polynomial

algorithm with the minimum number of rewires for the case where

there are two OCSes. We then generalize this algorithm to the 𝑛-

OCS cases using an recursive bipartition approach. Our evaluation

shows that our algorithm exhibits very low algorithmic complexity,

while achieving a low rewiring ratio at the same time. Our code

and test cases are available at a public repository [25].

The structure of this paper is presented as follows. Section 2

outlines the limitations of existing algorithms and highlights the

importance of improving algorithm performance. In Section 3, we

formulate our model and outline the problem addressed. The de-

scription and analysis of our algorithm are presented in Section 4.

The performance of our algorithm is demonstrated through eval-

uations in Section 5. A discussion of related work is provided in

Section 6, and the paper concludes with our final thoughts and

proposed future work in Section 7.

2 MOTIVATION
2.1 Limitations of Existing Algorithms
As our problem can be formulated as an ILP problem, the most

straightforward approach is to use a general ILP solver to directly

solve the problem. We refer to this as the Brute Force Algorithm.

When the physical topology is uniform (See Definition 3.1), two

more practical algorithms have been proposed in the literature.

Specifically, Zhao et al. [26] propose a greedy algorithm that uti-

lizes MCF algorithms, while Google’s patent [17] presents a bipar-

tition algorithm. We refer to these algorithms as the Greedy MCF

Algorithm and the Bipartition Algorithm, respectively.

Brute Force Algorithm. Although this method is optimal, it is too

slow for our application. Our evaluations have shown that even the

most advanced commercial ILP solver, such as Gurobi [13], cannot

solve a small cluster having 4 OCSes within the time limit of 1

minute. In fact, in many cases, the solver fails to find a feasible

solution to our problem, because it does not exploit the special

structure of our problem.

GreedyMCFAlgorithm.As reported in [26], although thismethod

is fast, it has a poor approximation ratio. In the test cases presented

in the literature, the optimal reconfiguration ratio is below 10%,

whereas the reconfiguration ratio achieved by the algorithm is

around 20%. A possibility is that this algorithm focuses too much

on local optimal solutions at each step, losing sight of potential

future improvements.

Bipartition Algorithm. The bipartition of the algorithm requires

solving a subproblem, but the details of the solving process are not

provided in the original literature. It is only mentioned that an ILP

problem is solved. As a result, it cannot be guaranteed that this

method can be solved in polynomial time. In our evaluation, we

have found that this algorithm provides a better approximation

ratio than the Greedy MCF Algorithm, but it is significantly slower.

2.2 The Importance of Reducing
Reconfiguration Time

In this section, we highlight the importance of reducing reconfigu-

ration time in hybrid optical-electrical DCNs.

Effectiveness of computed optimal topology. Reducing recon-

figuration time is crucial to ensure that the computed optimal topol-

ogy is effective. The primary purpose of reconfigurable topology is

to allow the topology to adapt to the changing traffic pattern. The

target topology is determined at the start of the reconfiguration. If

the reconfiguration time is too long, the target topology may not

be able to reflect the current traffic pattern, which can affect the

performance of the topology.

Frequency of reconfiguration. Reducing reconfiguration time

is crucial to increasing the reconfiguration frequency, which may

improve the performance of reconfigurable DCNs. Google has an-

nounced its use of MEMS-based OCSes in the new generation of

Jupiter [20]. Currently its reconfiguration takes hours to finish,

while the reconfiguration time of MEMS-based OCSes is merely

tens or hundreds of milliseconds [22]. There is potential to increase

the reconfiguration frequency and previous literature has shown

that more frequent reconfiguration may improve the performance

of networks [23].

3 PROBLEM

A B C

A B C

(a) Physical topology and the
matching of the OCS.

A B C

(b) Corresponding logical
topology.

Figure 1: An example of the effect of OCSes. There are 3 nodes
connecting to a 3-port OCS. The dashed lines represent the
reconfigurable matching in the OCS.

An OCS possesses many input and output ports that can be

interconnected with (electrical) switches. A complete matching

between the input and output ports can be configured within the

OCS. The physical connections between the OCS and the switches

are referred to as the physical topology, while the corresponding
equivalent topology in the absence of the OCS is referred to as the

logical topology. An example of this is shown in Figure 1.

Remark. Our proposed model is not limited to OCSes, but can

be extended to encompass other components that serve similar

functions, such as patch panels.

Consider a flat topology comprising of 𝑚 Top-of-Rack (ToR)

switches and 𝑛 OCSes, where the uplinks of the ToR switches are

only connected to the OCSes. The physical topology of the network

is characterized by two key parameters, denoted as 𝑎 ∈ Z𝑚×𝑛≥0 and

𝑏 ∈ Z𝑚×𝑛≥0 . Here, 𝑎 𝑗𝑘 represents the number of connections from
the 𝑘-th OCS to the 𝑗-th switch, and 𝑏𝑖𝑘 signifies the number of

connections from the 𝑖-th switch to the 𝑘-th OCS. Note that the

forwarding of OCSes is directional, so it may happen that 𝑎 𝑗𝑘 ≠
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𝑏𝑖𝑘 for some 𝑖, 𝑗, 𝑘 . The logical topology is characterized by 𝑐 ∈
Z𝑚×𝑚≥0 . 𝑐𝑖 𝑗 is the number of equivalent connections from the 𝑖-th

switch to the 𝑗-th switch. For convenience, we define index sets

𝐼 = {1, 2, . . . ,𝑚}, 𝐽 = {1, 2, . . . ,𝑚} and 𝐾 = {1, 2, . . . , 𝑛}.
Remark.We adopt a flat topology solely for the purpose of illustrat-

ing our approach, owing to its simplicity and ease of comprehension.

Nevertheless, our methodology can be effortlessly extended to ac-

commodate diverse network topologies. To illustrate, consider a

2-layer Clos topology wherein the two switch layers are treated as

a single layer, and our model is readily applicable.

The matching of all OCSes can be represented by 𝑥 ∈ Z𝑚×𝑚×𝑛≥0 .

𝑥𝑖 𝑗𝑘 is the number of equivalent connections from the 𝑖-th switch

to the 𝑗-th switch established by the forwarding of the 𝑘-th OCS.

Given the physical and logical topology, a feasible matching should

satisfy the following constraints.∑︁
𝑖∈𝐼

𝑥𝑖 𝑗𝑘 = 𝑎 𝑗𝑘 , ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (1)∑︁
𝑗∈ 𝐽

𝑥𝑖 𝑗𝑘 = 𝑏𝑖𝑘 , ∀𝑖 ∈ 𝐼 , 𝑘 ∈ 𝐾 (2)∑︁
𝑘∈𝐾

𝑥𝑖 𝑗𝑘 = 𝑐𝑖 𝑗 , ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (3)

Constraints (1) and (2) are derived from the limit of the physical

topology, and constraint (3) is derived from the limit of the logical

topology. We define the set of all feasible matchings as 𝑆 (𝑎, 𝑏, 𝑐).
In the rest of the paper, we use 𝑢 ∈ 𝑆 (𝛼, 𝛽, 𝑐′) and 𝑥 ∈ 𝑆 (𝑎, 𝑏, 𝑐) to
represent the old and new matching of OCSes, respectively. Here

𝑢 is a known parameter, while 𝑥 is the decision variables. Since

physical topology seldom changes, we assume that 𝛼 = 𝑎 and 𝛽 = 𝑏.

This means 𝑎 and 𝑏 are determined by 𝑢, so we only need two

parameters to determine our problem, 𝑐 and 𝑢.

In order to reduce the network convergence time, we need to

choose an objective function that properly reflects such time. One

possible choice is to use the minimum number of disconnections∑
𝑖∈𝐼

∑
𝑗∈ 𝐽

∑
𝑘∈𝐾 (𝑢𝑖 𝑗𝑘 −𝑥𝑖 𝑗𝑘 )+, where 𝑥+ := max{𝑥, 0} [26]. There-

fore, our target is to solve the following optimization problem,

denoted by OPT(𝑐,𝑢).

min

𝑥

∑︁
𝑖∈𝐼

∑︁
𝑗∈ 𝐽

∑︁
𝑘∈𝐾
(𝑢𝑖 𝑗𝑘 − 𝑥𝑖 𝑗𝑘 )+

s.t. 𝑥 ∈ 𝑆 (𝑎, 𝑏, 𝑐)
Remark. There is potential to refine the objective function. It

should be noted that connections between switches and OCSes can

be regarded to be weighted. For instance, the cost of disconnecting

a link may relate to the volume of traffic on it. If 𝑢𝑖 𝑗𝑘 = 2, and we

assign weights of 1 and 2 to the two existing links, the updated

objective function of them can be expressed as

𝑓0 (𝑥𝑖 𝑗𝑘 ) =


−2𝑥𝑖 𝑗𝑘 + 3, 0 ≤ 𝑥𝑖 𝑗𝑘 < 1,

−𝑥𝑖 𝑗𝑘 + 2, 1 ≤ 𝑥𝑖 𝑗𝑘 < 2,

0, 𝑥𝑖 𝑗𝑘 ≥ 2,

(4)

which is a convex piecewise-linear function. In fact, our proposed

algorithm still works provided that the objective function can be ex-

pressed as

∑
𝑖∈𝐼

∑
𝑗∈ 𝐽

∑
𝑘∈𝐾 𝑓𝑖 𝑗𝑘 (𝑥𝑖 𝑗𝑘 ), where all 𝑓𝑖 𝑗𝑘 (·) are convex

and piecewise-linear. The function

∑
𝑖∈𝐼

∑
𝑗∈ 𝐽

∑
𝑘∈𝐾 (𝑢𝑖 𝑗𝑘 − 𝑥𝑖 𝑗𝑘 )+

introduced earlier serves as a particular example of this class of

functions. For the sake of simplicity, we continue to use it as our

objective function throughout the rest of the paper.

While this problem may seem easy, it turns out to be quite chal-

lenging. The following facts provide supporting evidence.

• It is NP-complete to determine whether 𝑆 (𝑎, 𝑏, 𝑐) is empty,

even when 𝑎 𝑗𝑘 , 𝑏𝑖𝑘 , 𝑐𝑖 𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 [14].

• Under the assumption 𝑃 ≠ 𝑁𝑃 , there is an 𝜖 > 0 s.t. there is

no polynomial-time 𝑛𝜖 -approximation algorithm for prob-

lem (5), which means that it is highly inapproximable. In

particular, there is no constant ratio approximation of prob-

lem (5) [9]. Even when 𝑎 𝑗𝑘 = 𝑏𝑖𝑘 = 𝑐𝑖 𝑗 = 1, 𝑝𝑖 𝑗𝑘 ∈ {0, 1},
∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 , problem (5) is still NP-hard [11].

min

𝑥

∑︁
𝑖∈𝐼

∑︁
𝑗∈ 𝐽

∑︁
𝑘∈𝐾

𝑝𝑖 𝑗𝑘𝑥𝑖 𝑗𝑘

s.t. 𝑥 ∈ 𝑆 (𝑎, 𝑏, 𝑐)
𝑚 = 𝑛

(5)

The problem is challenging partly because the physical topology

is arbitrary. However, since the physical topology is designed by

us, we can impose certain constraints on it to make the problem

easier to solve. One such constraint is as follows.

Definition 3.1. A physical topology is defined to be proportional,
if there exist 𝑟 ∈ Z𝑛

>0
and 𝛼, 𝛽 ∈ Z𝑚

>0
, s.t. 𝑎 𝑗𝑘 = 𝑟𝑘𝛼 𝑗 ,∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾

and 𝑏𝑖𝑘 = 𝑟𝑘𝛽𝑖 ,∀𝑖 ∈ 𝐼 , 𝑘 ∈ 𝐾 . Specifically, we say it is uniform if

𝑟𝑘 = 1,∀𝑘 ∈ 𝐾 .

The constraints of uniform physical topology have been pre-

sented in previous literature [26]. In this paper we relax this con-

straint slightly, allowing the physical topology to be proportional.

4 ALGORITHM DESIGN
4.1 An Exact Polynomial-Time Algorithm for a

Special Case
Our algorithm is inspired by the fact that when 𝑛 = 2, OPT(𝑐,𝑢)
can be exactly solved in polynomial time.

When 𝑛 = 2, constraint (3) becomes 𝑥𝑖 𝑗1 + 𝑥𝑖 𝑗2 = 𝑐𝑖 𝑗 , so we can

rewrite the objective function and other constraints using 𝑥𝑖 𝑗2 =

𝑐𝑖 𝑗 − 𝑥𝑖 𝑗1 to obtain the following problem.

min

𝑥𝑖 𝑗1

∑︁
𝑖∈𝐼

∑︁
𝑗∈ 𝐽
[(𝑢𝑖 𝑗1 − 𝑥𝑖 𝑗1)+ + (𝑢𝑖 𝑗2 − 𝑐𝑖 𝑗 + 𝑥𝑖 𝑗1)+]

s.t.

∑︁
𝑖∈𝐼

𝑥𝑖 𝑗1 = 𝑎 𝑗1, ∀𝑗 ∈ 𝐽 (6a)∑︁
𝑗∈ 𝐽

𝑥𝑖 𝑗1 = 𝑏𝑖1, ∀𝑖 ∈ 𝐼 (6b)

𝑥𝑖 𝑗1 ≤ 𝑐𝑖 𝑗 , ∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 (6c)∑︁
𝑖∈𝐼
(𝑐𝑖 𝑗 − 𝑥𝑖 𝑗1) = 𝑎 𝑗2, ∀𝑗 ∈ 𝐽 (6d)∑︁

𝑗∈ 𝐽
(𝑐𝑖 𝑗 − 𝑥𝑖 𝑗1) = 𝑏𝑖2, ∀𝑖 ∈ 𝐼 (6e)

Constraints (6d) and (6e) are redundant because if 𝑎 𝑗1 + 𝑎 𝑗2 ≠∑
𝑖∈𝐼 𝑐𝑖 𝑗 for some 𝑗 ∈ 𝐽 or 𝑏𝑖1 + 𝑏𝑖2 ≠

∑
𝑗∈ 𝐽 𝑐𝑖 𝑗 for some 𝑖 ∈ 𝐼 ,

then 𝑆 (𝑎, 𝑏, 𝑐) is empty. Otherwise, constraints (6d) and (6e) can be
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derived from constraints (6a) and (6b). In the following discussion

we will ignore constraints (6d) and (6e).

We can solve it using MCF algorithms. Integral MCF problem is

defined as follows. In a directed multigraph, each node may have

𝑠 ∈ Z units of supply. We say that a node has 𝑑 units of demand if

it has −𝑑 units of supply. There are flows on the arcs of the graph.

The sizes of flows are non-negative integers. The flows satisfy the

constraint that the amount of flow entering a node, including the

supply of the node, is equal to that leaving the node. Each arc have

a cost for each unit of flow and a capacity. The total amount of

flows that pass an arc cannot be greater than the capacity of the arc.

The goal is to find a flow allocation that satisfies the constraints

and has the smallest total cost.

The problem is thus equivalent to the following MCF problem.

There are 𝑚 supply nodes {𝑠1, 𝑠2, . . . , 𝑠𝑚} and 𝑚 demand nodes

{𝑑1, 𝑑2, . . . , 𝑑𝑚}. The supply node 𝑠𝑖 has 𝑏𝑖1 units of supply, and

the demand node 𝑑 𝑗 has 𝑎 𝑗1 units of demand. This setting models

the constraints (6a) and (6b). For each pair of (𝑠𝑖 , 𝑑 𝑗 ), consider the
function

𝑓𝑖 𝑗 (𝑥) = (𝑢𝑖 𝑗1 − 𝑥)+ + (𝑢𝑖 𝑗2 − 𝑐𝑖 𝑗 + 𝑥)+, 𝑥 ∈ [0, 𝑐𝑖 𝑗 ] .

This is a convex piecewise-linear function. Assume that it has 𝑞

noncontinuous points {𝑥1, 𝑥2, . . . , 𝑥𝑞} and define 𝑥0 = 0, 𝑥𝑞+1 = 𝑐𝑖 𝑗 .
Assume that on [𝑥𝑝−1, 𝑥𝑝 ] the slope of 𝑓𝑖 𝑗 (·) is𝛾𝑝 . Then we add𝑞+1
arcs from 𝑠𝑖 to 𝑑 𝑗 . For the 𝑝-th arc, the cost is 𝛾𝑝 and the capacity is

𝑥𝑝 − 𝑥𝑝−1. This models the objective function and constraint (6c).

Integral MCF problem is a special ILP that can be solved in

polynomial time, and in practice the solving is usually fast [24], so

when 𝑛 = 2, our problem can be solved efficiently.

4.2 The General Algorithm
For general cases where 𝑛 > 2, we can merge some OCSes to

be a larger OCS so that the physical topology can be seen as if

it has only 2 OCSes. The merging is an approximation because

it widens the range of reconfiguration. Then we can solve the

approximated problem using the algorithm in Section 4.1. To obtain

a real feasible solution, we then need to decompose the solution

on each imaginary OCS, which requires solving two subproblems

recursively. The formal pseudocode of this process is shown in

Algorithm 1.

Nowwe focus on the correctness of our algorithm. If the function

call solve(𝑐Root, 𝑢Root) successfully returns, it is obvious that the

return value is a feasible solution of OPT(𝑐Root, 𝑢Root). However,
it is not trivial that the function call will return. The tricky part

is that the OPT(𝑐,𝑢′) in line 8 is not necessarily feasible. Here we

prove that OPT(𝑐,𝑢′) is always feasible.

Theorem 4.1. The function call solve(𝑐Root, 𝑢Root) will always
return successfully.

Proof. To avoid confusion, here we temporarily rename the

OPT(𝑐,𝑢′) in line 8 toOPT(𝑐Sub, 𝑢Sub). Obviously, there exist𝐾1, 𝐾2,
s.t. {𝐾1, 𝐾2} is a non-empty bipartition of some subset of 𝐾 , and

2 {𝑆1, 𝑆2 } is defined to be a non-empty bipartition of 𝑆 if 𝑆1 ∪ 𝑆2 = 𝑆 , 𝑆1 ∩ 𝑆2 = ∅
and 𝑆1, 𝑆2 ≠ ∅.

Algorithm 1: The general algorithm.

1 Function solve(𝑐 , 𝑢):
2 𝑠 ← the number of the third dimension of 𝑢

3 if 𝑠 = 1 then
4 return 𝑐
5 end
6 Choose any non-empty bipartition

2{𝐾1, 𝐾2} of
{1, 2, . . . , 𝑠}. WLOG, assume that 𝐾1 = {1, 2, . . . , 𝑡},
𝐾2 = {𝑡 + 1, 𝑡 + 2, . . . , 𝑠}

7 𝑢′
𝑖 𝑗𝑝
← ∑

𝑘∈𝐾𝑝
𝑢𝑖 𝑗𝑘 ,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , 𝑝 ∈ {1, 2}

⊲ The merging step.

8 𝑥∗ ← the optimal solution of OPT(𝑐,𝑢′)
⊲ Using the algorithm in Section 4.1.

9 𝑢
(1)
𝑖 𝑗𝑘
← 𝑢𝑖 𝑗𝑘 ,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾1

10 𝑢
(2)
𝑖, 𝑗,(𝑘−𝑡 ) ← 𝑢𝑖 𝑗𝑘 ,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾2

11 𝑐
(𝑝 )
𝑖 𝑗
← ∑

𝑘∈𝐾𝑝
𝑥∗
𝑖 𝑗𝑘
,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , 𝑝 ∈ {1, 2}

12 𝑥 (𝑝 ) ← solve(𝑐 (𝑝 ) , 𝑢 (𝑝 ) ),∀𝑝 ∈ {1, 2}
⊲ The decomposition step.

13 𝑥∗
𝑖 𝑗𝑘
← 𝑥

(1)
𝑖 𝑗𝑘
,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾1

14 𝑥∗
𝑖 𝑗𝑘
← 𝑥

(2)
𝑖, 𝑗,(𝑘−𝑡 ) ,∀𝑖 ∈ 𝐼 , 𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾2

15 return 𝑥∗

𝑢Sub
𝑖 𝑗𝑝

=
∑
𝑘∈𝐾𝑝

𝑢Root
𝑖 𝑗𝑘

, ∀𝑝 ∈ {1, 2}. Then

𝑥𝑖 𝑗1 =

∑
𝑘∈𝐾1

𝑟𝑘∑
𝑘∈𝐾1∪𝐾2

𝑟𝑘
·

∑︁
𝑘∈𝐾1∪𝐾2

𝑢Root
𝑖 𝑗𝑘

satisfies all the constraints of OPT(𝑐Sub, 𝑢Sub), except for the con-
straint that 𝑥 must be integers, because

(i) for constraint (6c),

𝑥𝑖 𝑗1 ≤
∑︁

𝑘∈𝐾1∪𝐾2

𝑢Root
𝑖 𝑗𝑘

=
∑︁
𝑘∈𝐾1

𝑢Root
𝑖 𝑗𝑘
+

∑︁
𝑘∈𝐾2

𝑢Root
𝑖 𝑗𝑘

= 𝑢Sub𝑖 𝑗1 + 𝑢
Sub

𝑖 𝑗2

= 𝑐Sub𝑖 𝑗 ,

(ii) for constraint (6a),∑︁
𝑖∈𝐼

𝑥𝑖 𝑗1 =

∑
𝑘∈𝐾1

𝑟𝑘∑
𝑘∈𝐾1∪𝐾2

𝑟𝑘
·

∑︁
𝑘∈𝐾1∪𝐾2

∑︁
𝑖∈𝐼

𝑢Root
𝑖 𝑗𝑘

=

∑
𝑘∈𝐾1

𝑟𝑘∑
𝑘∈𝐾1∪𝐾2

𝑟𝑘
·

∑︁
𝑘∈𝐾1∪𝐾2

𝑎Root
𝑗𝑘

=

∑
𝑘∈𝐾1

𝑟𝑘∑
𝑘∈𝐾1∪𝐾2

𝑟𝑘
· 𝛼 𝑗

∑︁
𝑘∈𝐾1∪𝐾2

𝑟𝑘 (Definition 3.1)

=
∑︁
𝑘∈𝐾1

𝑎Root
𝑗𝑘

=
∑︁
𝑖∈𝐼

∑︁
𝑘∈𝐾1

𝑢Root
𝑖 𝑗𝑘

=
∑︁
𝑖∈𝐼

𝑢Sub𝑖 𝑗1

= 𝑎Sub𝑗1 ,
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(iii) and similarly, for constraint (6b),

∑
𝑗∈ 𝐽 𝑥𝑖 𝑗1 = 𝑏

Sub

𝑖1
.

A famous property of MCF problems is that if there exists a real

number feasible solution, then there must exist an integer feasible

solution [24], so OPT(𝑐Sub, 𝑢Sub) is feasible. □

We now analyze the time complexity. For simplicity, we assume

that in line 6, we always choose an even bipartition, i.e., 𝑡 = ⌊𝑠/2⌋.
Assume that the time needed for the root call solve(𝑐Root, 𝑢Root)
is 𝑇 (𝑚,𝑛). Then the recursive step in line 12 takes 2𝑇 (𝑚,𝑛/2). The
running time of line 8 depends on the concrete MCF algorithm used.

For example, the time complexity of the cost-scaling algorithm

is 𝑂 (𝑁 2𝑀 log(𝑁𝐶)), where 𝑁 is the number of nodes, 𝑀 is the

number of arcs, and 𝐶 is the largest arc cost [16]. Our algorithm

requires constructing a graph with 2𝑚 nodes and at most 3𝑚2
arcs.

Therefore, if we use the cost-scaling algorithm for line 8, its time

complexity will be 𝑂 (𝑚4
log𝑚). Other simple array copying and

summing operation in our algorithm takes 𝑂 (𝑚2𝑛). Therefore, we
have {

𝑇 (𝑚,𝑛) = 𝑇 (𝑚,𝑛/2) +𝑂 (𝑚4
log𝑚) +𝑂 (𝑚2𝑛),

𝑇 (𝑚, 1) = 1.

Applying the Master Theorem [5], we obtain that the time complex-

ity is 𝑂 (𝑚4𝑛 log𝑚 +𝑚2𝑛 log𝑛), where the first factor𝑚4𝑛 log𝑚 is

the main factor.

5 EVALUATION
5.1 Evaluation Setup
Simulation Scenario. Our evaluation setup considers a DCN

where ToR switches are interconnected via a layer of OCSes that

have uniform connections to the ToR switches. We assume con-

tinuous monitoring of the traffic between ToR switches, and our

objective is to switch the OCSes at a fixed interval of Δ𝑡 to enable

the logical topology to adapt to changes in the traffic pattern.

Data source.We use the open traffic traces of Facebook datacenters

to generate the desired logical topologies [3]. In detail, given the

traffic matrix 𝑇 aggregated in a time period, where 𝑇𝑖 𝑗 represents

the volume of traffic from the 𝑖-th switch to the 𝑗-th switch, the

desired logical topology 𝑥𝑖 𝑗 ∈ {0, 1}𝑚×𝑚 is obtained by solving the

following problem.

min

𝑥

∑︁
𝑖∈𝐼

∑︁
𝑗∈ 𝐽

𝑇𝑖 𝑗𝑥𝑖 𝑗

s.t.

∑︁
𝑖∈𝐼

𝑥𝑖 𝑗 =
∑︁
𝑘∈𝐾

𝑎 𝑗𝑘 , ∀𝑗 ∈ 𝐽∑︁
𝑗∈ 𝐽

𝑥𝑖 𝑗 =
∑︁
𝑘∈𝐾

𝑏𝑖𝑘 , ∀𝑖 ∈ 𝐼

Each trace provides information for one day. We choose Δ𝑡 = 10

mins, so each trace will provide around 144 test cases.

Parameters. As for physical topology, we assume that each ToR

switch has 32 uplinks that are equally connected to the OCSes. We

tested our algorithm on cases where there are 4, 8, and 16 OCSes.

We use the traces of Facebook Cluster A and B, which have 155 and

324 ToR switches, respectively.

Implementation. We implemented our simulation program in

Java, using Gurobi as the ILP solver and the JGraphT library [18]

for the MCF problem solver.
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Figure 2: The average running time. Note that the vertical
axis of the graphs is plotted on a logarithmic scale.
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Figure 3: The average number of disconnections.

5.2 Evaluation Results
The results of the evaluation are summarized in Figure 2 and Figure

3. We did not include the results of the Brute Force Algorithm,

because even in the simplest cases (Cluster A with 4 OCSes), this

algorithm sometimes cannot find a feasible solution in 1 minute.

Running time. Figure 2 displays the running time of the evaluated

algorithms. Our proposed algorithm overwhelmingly outperforms

the others in terms of speed, and in some instances, it is up to 10

times faster than the second fastest algorithm, the Greedy MCF

Algorithm.

Number of disconnections. Figure 3 shows the number of dis-

connections of the schemes calculated by the algorithms. The ap-

proximation ratio of our algorithm is comparable to that of the

Bipartition Algorithm, and in most cases, our algorithm has a better

approximation ratio than the Greedy MCF Algorithm.

To conclude, our algorithm achieves significant speed improve-

ments while maintaining a comparable approximation ratio.

6 RELATEDWORK
In this section, we mainly focus on the related theoretical results

concerning this problem. A comprehensive discussion of the ad-

vantages and disadvantages of the existing practical algorithms has

been presented in Section 2.1.

The Graver basis and 𝑛-fold ILP. By imposing a constraint

𝑥𝑖 𝑗𝑘 ∈ {0, 1}, the objective function can be transformed into a

purely linear form. Then our problem falls into the category of

𝑛-fold ILP problems [8], which can be solved in polynomial time

by leveraging the unique structure of the Graver basis of the con-

straint matrix, provided that𝑚 is considered as a constant. Recently,
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a state-of-the-art algorithm has been proposed to solve such prob-

lems in near-linear time [15]. Unfortunately, these algorithms suffer

from the limitation that the Graver basis needs to be determined

in advance, which has an exponential size of 𝑚 [6]. To address

this issue, Altmanová et al. [2] proposed an improved algorithm.

However, it is still impractical for the scale of our problem.

Convex cost MCF problem. Essentially, the bipartition step of

our algorithm involves solving an integral MCF problem with a

convex objective function. Such problems can be easily converted

to ones with a purely linear objective function by splitting each arc

into multiple arcs, as we do in the paper. The advantages of this

approach is that we can apply mature classic MCF algorithms, but

the disadvantage is that if we consider the weighted case (see the

remark for function (4)), the piecewise-linear objective function

in the equivalent MCF problem may have too many intervals, so

there will be too many arcs in the corresponding graph. A possible

improvement is to use algorithms specialized for convex cost MCF

problems, such as [19].

7 CONCLUSION AND FUTUREWORK
In this paper, we presented a polynomial-time algorithm for reduc-

ing the reconfiguration time in hybrid optical-electrical DCNs. The

evaluation driven by real-world traces showed that our algorithm

outperforms existing approaches. We believe that our proposed

algorithm can enhance the performance of hybrid optical-electrical

DCNs and facilitate the adoption of OCSes in DCNs.

Moving forward, we intend to further study this field. Specifically,

we aim to establish more theoretical properties of our algorithm,

such as worst-case bounds. Moreover, we plan to conduct experi-

ments on actual hardware instead of software simulators to validate

the effectiveness of our algorithm in a practical setting.
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