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Abstract—Overlapping gradient communication with back-
ward computation is a popular technique to reduce communica-
tion cost in the widely adopted data parallel S-SGD training.
However, the resource contention between computation and
All-Reduce communication in GPU-based training reduces the
benefits of overlap. With GPU cluster network evolving from low
bandwidth TCP to high speed networks, more GPU resources
are required to efficiently utilize the bandwidth, making the
contention more noticeable. Existing communication libraries fail
to account for such contention when allocating GPU threads and
have suboptimal performance. In this paper, we propose to miti-
gate the contention by balancing the overlapped computation and
communication time. We formulate an optimization problem that
decides the communication thread allocation to reduce overall
backward time. We develop a dynamic programming based near-
optimal solution and extend it to co-optimize thread allocation
with tensor fusion. We conduct simulated study and real-world
experiment using an 8-node GPU cluster with 50Gb RDMA
network training four representative DNN models. Results show
that our method reduces backward time by 10%-20% compared
with Horovod-NCCL, by 6%-13% compared with tensor-fusion-
optimization-only methods. Simulation shows that our method
achieves the best scalability with a training speedup of 1.2x over
the best-performing baseline as we scale up cluster size.

I. INTRODUCTION

Data parallel distributed training with synchronous stochas-
tic gradient descent (S-SGD) has been widely adopted for
training deep learning models. In S-SGD, each worker main-
tains a consistent replica of the model and a split of the
dataset. In a training iteration, each worker first computes
the gradients based on its own data, and then updates its
model replica by aggregating the gradients from all workers,
following a predefined communication protocol such as the
widely adopted All-Reduce [1–3]. As gradient aggregation can
incur time-consuming data communication and may limit the
overall training throughput, many recent studies have focused
on improving the communication performance [4–7].

Among the numerous software/hardware solutions proposed
to mitigate the communication bottleneck of distributed train-
ing, overlapping communication behind computation is a pri-
mary technique [8–17]. Compared with other solutions like
increasing physical bandwidth or gradient compression [18–
20], communication-computation overlap neither incurs ex-
tra hardware cost nor hinders model accuracy. A typical
communication-computation overlap implementation exploits
the layered structure of DNN models. As soon as a layer
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Fig. 1. (a) Time cost of two overlapped communication (112.7 MB) and
computation (25.7 ms when executed without overlap) tasks in training Bert-
Base on an 8-node V100 GPU cluster inter-connected by 50Gb RDMA.
Allocating more GPU threads to communication can decrease the All-Reduce
time but increases computation time. (b) Normalized backward time of
training ResNet152 using batch size 8 and 64 with two thread allocation
policies for the communication task. The time in each group is normalized to
the time achieved by the 128-threads allocation.

finishes its gradient computation, the gradient communica-
tion of a layer can be performed at the same time as the
gradient computation of other layers. Since some layers of
a DNN model only have a small number of parameters,
launching a communication task for every layer incurs sig-
nificant startup overhead. As a solution, the tensor fusion
technique [10, 11, 21, 22] is used to group layers together
to perform communication.

However, the existing computation-communication overlap
strategies can be far from optimal. The root cause is that
the gradient communication and computation may contend
for resources, while the widely-used communication libraries,
e.g. NCCL [23] and oneCCL [24], fail to account for such
contention when allocating GPU threads to communication.
In GPU-based training, All-Reduce communication tasks are
launched as GPU kernels and are co-located with gradient
computation. Since communication kernels require computa-
tion resources to aggregate gradients during All-Reduce and
consume corresponding memory bandwidth to move the re-
duced data to the network, they incur contention with gradient
computation that is also in need of these resources [25]. As the
network speed of GPU clusters evolves from low-bandwidth
TCP to high-speed RDMA, more resources are required by
communication kernels in order to saturate the network band-
width, further exacerbating the resource contention between
communication and computation. Fig. 1(a) shows the time cost
of two overlapped tasks in training a BERT-Base model on an
8-node GPU cluster with a 50Gb RDMA network. Allocating
more GPU threads to communication can decrease the All-
Reduce time but noticeably slows down computation, e.g. as



we increase the number of threads allocated to communication
from 0 to 2048, we observe 38% increase in computation time.

The key to improving communication-computation overlap
efficiency is to balance the gradient communication time
and the gradient computation time with proper GPU-thread
allocation. Fig. 1(b) displays the overall backward time (after
overlap) of training ResNet152 using two different batch
sizes and two communication thread allocation policies. When
the batch size is 8 and 128 threads are allocated to the
communication task, communication takes longer, and thus
increasing the number of communication threads from 128 to
2048 shortens the overall backward time by 14%. In contrast,
when the batch size is 64 and 128 threads are allocated to
the communication task, computation takes longer, and thus
increasing the number of communication threads from 128 to
2048 lengthens the time by 2.6%.

Based on the above observations, our work proposes to
mitigate the influence of the contention by adjusting the
relative resource allocation of overlapped communication and
computation tasks. The contributions of our work are summa-
rized as follows:

• We identify that the thread allocation polices in existing
communication libraries are sub-optimal when used for
overlapped communication in distributed training. We
show through experiment that the influence of resource
contention between overlapped communication and com-
putation can be mitigated by balancing their time.

• We formulate an optimization problem that decides the
thread allocation for each communication task to re-
duce the overall backward time. We propose a Dynamic
Programming (DP) algorithm that finds a near-optimal
solution to the optimization problem with polynomial
time complexity, and we further extend the algorithm to
co-optimize thread allocation with tensor fusion.

• We perform both real-world and simulated experiments
with popular DNN models to evaluate our approach. The
real-world experiment on an 8-node GPU cluster with
50Gb RDMA network shows that our method reduces the
backward time by 10% to 20% compared with the widely
adopted state-of-the-art distributed training framework
Horovod-NCCL, and by 6% to 13% compared with
state-of-the-art tensor-fusion-optimization-only methods.
Simulation results show that our approach achieves the
best system scalability, with a training speedup up to 1.2x
over the best-performing baseline.

II. BACKGROUND

A. Synchronous SGD

SGD. Stochastic gradient descent (SGD) is a widely adopted
algorithm for training deep learning models. SGD minimizes
the loss function by iteratively updating the model parameters
using gradients estimated on mini-batches of training data.
More specifically, the updating rule is

wi+1 = wi − λ∇ℓ(wi;Xi), (1)

where wi denotes the model parameters in the i-th iteration,
∇ℓ(wi;Xi) is the gradient of the loss function ℓ with respect
to a mini-batch Xi of the data, and λ is the learning rate.

Synchronous Data-Parallel SGD (S-SGD). S-SGD accel-
erates the training process by using multiple workers, i.e.
processors such as GPUs, to calculate gradients in parallel.
The training data is split into N parts and distributed among
N workers. In the i-th training iteration, worker n calculates
the gradient ∇ℓ(wi, X

n
i ) on a mini-batch Xn

i of its own data.
The workers then communicate with each other to aggregates
the gradients and update the model according to

wi+1 = wi −
λ

N

N∑
n=1

∇ℓ(wi;X
n
i ). (2)

Since the workers always use the same model parameters in
every iteration, S-SGD is equivalent to non-distributed SGD
with mini-batch Xi being the union of Xn

i , n = 1, 2, . . . , N .

B. All-Reduce

Gradient aggregation in S-SGD is typically accomplished
by a collective communication algorithm. There are different
types of such algorithms [1–3], among which All-Reduce is
by far the most widely adopted in S-SGD. In All-Reduce
each worker receives a partial sum of gradients from another
worker, adds to it the local gradients, and passes the result
to the next worker. This is repeated multiple times, at the
end of which every worker has the sum of all gradients. The
sum operations require compute resources provided by GPU
threads. The number of allocated threads determines the rate at
which gradients are summed and fed to the network. Without
enough threads, the network bandwidth may be underutilized.

The total time of a full All-Reduce operation is given by

tallreduce = a+
ĉ

x
, (3)

where the first term is the startup time and the second
the transmission time [10, 11]. Here ĉ is the total size of
transmitted data, and x the transmission rate, which is affected
by the communication thread allocation r. The quantities a and
ĉ depend on the specifics of the All-Reduce algorithm. In the
widely adopted ring-allreduce [1], N workers form a directed
ring topology and perform 2(N−1) rounds of communication.
In each round a worker sends to its next-hop peer 1

N gradient
size of data. In this case, a and ĉ are given by

a = 2(N − 1) · α, ĉ =
2(N − 1)

N
· c, (4)

where α is the average one-hop network latency and c is the
gradient size.

C. Communication and Backward Computation Overlap

DNN models typically have layered structures. As shown in
Fig. 2, in each iteration, forward computation is first performed
from layer 1 to layer L to calculate the loss. Backward
computation, i.e. backpropagation then calculates the gradients
from layer L to layer 1. Gradients for each layer are aggregated



through communication and used to update the model. As
there is no dependency between the gradient communication
of layer i+1 and the backward computation of layer i, they can
be performed simultaneously once the backward computation
of layer i + 1 completes. This is often exploited to overlap
communication and backward computation, effectively hiding
part of the communication time.
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Fig. 2. Communication and computation overlap in DNN training.

D. Tensor Fusion

Due to the startup overhead a, launching an All-Reduce for
a layer with small gradient size c can be of low efficiency.
Tensor fusion technique groups several layers and launches
one All-Reduce once their gradients have all been generated.
In such way, tensor fusion reduces the total overhead caused
by a. Tensor fusion incurs design tradeoffs, i.e. smaller tensor
groups cause higher overhead but provide opportunity for
making more fined-grained scheduling decisions. Our work
solves the problem of co-optimizing tensor fusion with com-
munication thread allocation to reduce overall backward time.

III. PROBLEM FORMULATION

In this section, we first model the effect of the contention
and then we give the problem formulation.

A. Contention Model

In GPU-based training with All-Reduce for gradient ag-
gregation, each communication/computation task is launched
as a CUDA kernel with a user-specified number of GPU
threads. Concurrent kernels may contend for resources as
their threads are all scheduled to shared hardware compute
units called streaming multiprocessors for execution. The
scheduler is typically implemented in hardware, the details
of which remain unknown to users [26, 27]. To capture the
contention between communication and computation kernels,
we build a model by taking the phenomenological approach
rather than from first principles. In our later optimization of
backward time, we decide the communication thread allocation
to control the compute resource for communication and adjust
the compute resource for gradient computation indirectly.
Such design avoids modification to the computation libraries
in deep learning frameworks and thus reduces deployment
cost. Corresponding to this design, we focus on how to
empirically measure the relationship between the time cost of
a fully-overlapped communication/computation task and the
number of threads allocated to the communication kernel. We
collect and analyze overlap examples by training a variety

of deep models [28–31] on GPUs of both Pascal [32] and
Volta [33] architectures with random thread allocation policies.
Our empirical observations and the models that we find to
approximate the relationships are as follows.

Observation 1. The actual compute resources scheduled to
computation decrease approximately linearly with the number
of threads r allocated to communication. The computation
time can be approximated by

g(b, r) =
b

α1 − α2 · r
, (5)

where b is the size of the computation as measured by
its execution time without any overlap, and α1 and α2 are
parameters to determined through curve fitting.

Observation 2. The transmission rate, i.e. x in Eq. (3),
demonstrates a pattern of diminishing returns with the increase
of r. Given r and gradient size c, the transmission time can
be approximated by

p(c, r) =
ĉ

γ1 − γ2 · exp(−γ3 · rγ4)
, (6)

where γ1, γ2 and γ3 are parameters to be determined by curve
fitting, and we set an empirical value for γ4, i.e. 0.6. The
quantity ĉ is the total size of transmitted data determined by
gradient size c and the specifics of the All-Reduce algorithm,
e.g. Eq. (4) for ring-allreduce. We use q(c, r) to approxi-
mate the transmission time of non-overlapped communication.
q(c, r) has the same form as p(c, r) but with a different set of
parameters. We fit p(c, r) and q(c, r) with data of overlapped
and non-overlapped communication cases respectively.

Note that the functional relationships given by g(b, r) and
p(c, r) apply to different models, but each model requires its
own set of parameters. Although the effect of the contention
between communication and different computation kernels
within a model can be different, we do not further distinguish
them as we believe such differences can be mostly averaged
out at the model level. We will show in Section V-B that
our empirical models (5) and (6) achieve a high accuracy
when used to predict the backward time. Note that g(b, r) and
p(c, r) are regarded as black box functions in our formulation
(Sec III-B) and dynamic programming based solution (Sec IV),
they can be easily replaced if the functional relationship
changes with the development of GPU in the future.

B. Backward Time Optimization

Consider a model divided into K groups by tensor fusion.
Each group introduces a computation task and a communi-
cation task for computing and aggregating gradients, respec-
tively. As shown in Fig. 3, tensor groups are indexed from 1 to
K basing on their order in the backward computation. Assume
the scheduler is work-conserving for computation, so there is
no idle period between consecutive computation tasks. We also
assume the communication tasks are launched sequentially.
The communication of a group starts once all of its gradients
have been generated and the communication of the preceding
group has completed. Note that we do not use simultaneous
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Fig. 3. An example of backward time breakdown. Index on each communi-
cation/computation block indicates the tensor group it corresponds to.

communication [11], as the goal is not to maximize network
utilization, and we can increase the number of communication
threads for that purpose if needed.

The backward process is divided into K + 1 stages by the
start times of the communication tasks. The duration ti of stage
i can be decomposed as ti = tio+ tib+ tic, where tio is the time
for overlapped computation and communication, while tib and
tic are the residual, i.e. non-overlapped computation time and
communication time, respectively. The subscripts o, b and c
stand for overlap, backward computation and communication,
respectively. Note that t0o = tKo = 0, as stage 0 comprises only
the computation task of the group 1, while stage K comprises
only the communication task of the group K. Also note that
tib and tic cannot both be nonzero. In particular, tib is nonzero
only if the communication of group i completes before the
computation of group i+1, whereas tic is nonzero only if the
communication of group i completes after the computation of
the last group K.

Let R = {R1, R2, ..., RJ} be the set of possible GPU thread
allocations, and let ri ∈ R be the thread allocation for the
communication of tensor group i. The goal is to choose the
right (ri) to minimize the overall backward time, i.e.

min

K∑
i=0

(tio + tib + tic)

s.t. ri ∈ R, 1 ≤ i ≤ K.

(7)

Before the calculation of tio, tib, and tic, we first introduce
our models for overlap time and residual time when a com-
munication task of size c overlaps a computation task of size
b, with r threads allocated to communication.

Overlap Time. The overlap time fo(c, b, r) is given by

fo(c, b, r) =

{
0, c = 0 or b = 0,

min{p(c, r) + a, g(b, r)}, otherwise,
(8)

where p(c, r) is the transmission time when communication
is fully overlapped, g(b, r) is the computation time when
computation is fully overlapped, both given in the previous
subsection, and a is the startup overhead in All-Reduce. The
smaller one of p(c, r)+a and g(b, r) decides the overlap time.

Residual Time. To determine the residual time, let δb and
δc be the fractions of the remaining work in the computation
and communication tasks, respectively, when the overlapped

part is excluded. Assuming the processing speeds of both tasks
are uniform in time, we have

δb =

{
0, b = 0,

1− fo(c,b,r)
g(b,r) , otherwise.

(9)

and

δc =

{
0, c = 0,

1− fo(c,b,r)
p(c,r)+a , otherwise;

(10)

Recall that q(c, r) is the transmission time of a non-
overlapped communication task. Assuming uniform process-
ing speed, the residual computation time fb(c, b, r) and com-
munication time fc(c, b, r) are then given by

fb(c, b, r) = b · δb, fc(c, b, r) = (q(c, r) + a) · δc. (11)

Calculation of tio, tib and tic. We use sib to represent the size
of the overall unfinished backward computation at the begin-
ning of stage i, where s0b =

∑K
i=1 bi and sKb = 0. As tio and

tic are the overlapped and residual time of the communication
of tensor group i when it overlaps the remaining computation
sib, by Eq. (8) and Eq. (11),

tio = fo(ci, s
i
b, ri), tic = fc(ci, s

i
b, ri), (12)

where t0o = t0c = 0.
As tib is a period of non-overlapped computation, it can

be calculated by the difference of the remaining backward
computation size, i.e. tib is given by

tib = max{0, ŝib −
K∑

j=i+2

bj}, (13)

where ŝib is the remaining size when communication of tensor
group i ends, and

∑K
j=i+2 bj is the remaining size when

backward computation of tensor group i+1 ends. By Eq. (11),

ŝib = fb(ci, s
i
b, ri). (14)

It is the residual computation time when communication of
tensor group i overlaps the remaining computation sib. Finally,
we update the si+1

b as

si+1
b = ŝib − tib. (15)

IV. PROBLEM SOLUTION

In this section, we first propose a dynamic programming
based method to solve the optimization problem. Our al-
gorithm finds a near-optimal solution with polynomial time
complexity. Next, we extend the algorithm to co-optimize
thread allocation and tensor fusion.

A. Dynamic Programming Solution

Let T (i, sp) denote the optimal time when stage i ends,
with backward computation of size sp processed. The optimal
backward time is represented by T (K,

∑K
i=1 bi). We use the

following equation to compute T (i, sp) recursively,

T (i, sp) = min
1≤j≤J,n(i)≤s′p≤sp

{T (i− 1, s′p) + h(ci, sp, s
′
p, Rj)}.

(16)



...

...
1 2

Backpropagation

KK

Chunk 1 2 3 ...4 5 Z-1 Z
...

...

...

...
...

CommunicationCompuation

Fig. 4. Discretization of Backward Computation.

The first term T (i − 1, s′p) is the optimal time when stage
i− 1 ends, with backward computation of size s′p processed.
The second term h(ci, sp, s

′
p, Rj) is the stage time, which is

the time of overlapping the communication of tensor group i,
whose size is ci, with the computation of size sp−s′p, with Rj

threads allocated to communication. We use n(i) to denote the
total computation size of tensor groups 1 to i. The condition
s′p ≥ n(i) ensures that the gradients of tensor group i have
been generated when its communication starts at T (i− 1, s′p).
The optimal time T (i, sp) is then obtained by minimizing over
all possibilities for s′p and Rj .

As sp is continuous, searching every possible sp is in-
feasible. Therefore, we discretize sp by dividing the overall
backward computation evenly into Z chunks, with each chunk
having a computation size w = 1

Z

∑K
i=1 bi, as shown in Fig. 4.

Furthermore, we assume that overlapped communication tasks
can start only at the edge of a computation chunk. With abuse
of notation, we use T (i, z) to denote the optimal time when
stage i ends, with z computation chunks processed. We use
the following equation to compute T (i, z) recursively,

T (i, z) = min
1≤j≤J,n(i)≤z′w≤zw

{T (i− 1, z′)

+h(ci, zw, z
′w,Rj)}.

(17)

The subproblem is finding T (i − 1, z′), and we minimize
over all possibilities for z′ and Rj to get T (i, z). Recall
that stage time ti, i.e. h(ci, zw, z′w,Rj) in this case, can be
decomposed as overlapped time tio, residual computation time
tib and residual communication time tic, by Eq. (8) and Eq. (11),

tio = fo(ci, (z − z′)w,Rj),

tib = fb(ci, (z − z′)w,Rj),

tic = fc(ci, (z − z′)w,Rj).

(18)

The stage time h(ci, zw, z
′w,Rj) is given by

h(ci, zw, z
′w,Rj) =

{
∞, z < Z and tic > 0,

tio + tib + tic, otherwise.
(19)

When z < Z, the backward computation of the last tensor
group K is not yet completed when stage i ends at T (i, z),
so the residual communication time tic must be zero. The first
case outputs an infinitely large stage time simply to exclude
the possibility violating this condition, i.e. tic > 0, when we
search all possibilities for z′.

For a given Z, we can find T (K,Z) and the corresponding
thread allocations (r∗i ) using dynamic programming with a

polynomial time complexity and polynomial space complexity
of O(K · Z2 · J) and O(K · Z) respectively. In practice, we
will remove the constraint that each communication starts at
the edge of a computation chunk. We use T̂ (K,Z) to denote
the backward time achieved by (r∗i ) without the constraint.
Theorem 1 below shows that with a proper configuration for
Z, our algorithm can find a solution that is close to the optimal
thread allocation chosen from the set R. Theorem 1 is based
on the following three assumptions.

Assumption 1. Computations in a DNN model are homoge-
nous when contending with communications.

Assumption 2. Overlap with computation does not accelerate
the execution of communication.

Assumption 3. Overlapped execution time does not exceed
the sum of sequential execution time.

The first assumption is based on our study in Sec. III-A,
where we find that the time of different overlapped computa-
tion tasks in a DNN model can be well-approximated using
the same set of parameters in Eq. (5). The second and third
assumptions are intuitive and consistent with our observations.

Theorem 1. Under the above assumptions, the solution (r∗i )
is a K−1

Z -approximation to the thread allocation problem (7),
i.e.

T̂ (K,Z) ≤ (1 +
K − 1

Z
)T ∗, (20)

where T ∗ is the optimal backward time.

The proof is given in Sec. IV-C. Eq. (20) shows that we
can choose Z ≥ K−1

ϵ to guarantee that the solution we find
achieves a backward time within 1 + ϵ times the optimal T ∗.

To sum up, for a model with a given tensor fusion plan,
our allocation algorithm finds a solution close to the optimal
thread allocation in the given set R. This algorithm can be used
in combination with existing tensor fusion algorithms [9, 10].
Next, we further extend the DP algorithm to jointly optimize
thread allocation and tensor fusion. Co-optimization with
tensor fusion provides the opportunity to further balance the
communication startup overhead and the benefits of perform-
ing more fine-grained communication thread allocation.

B. Thread Allocation and Tensor Fusion Co-optimization

1) Dynamic Programming: The DP algorithm for co-
optimization is similar to that in Sec. IV-A. To emphasize
the similarity, we abuse the notation and use T (l, z) to denote
the optimal time when we merge the first l layers into a tensor
group and overlaps their communication with z computation
chunks. The optimal backward time is represented by T (L,Z).
We use the following equation to compute T (l, z) recursively,

T (l, z) = min
1≤j≤J,n(l)≤z′w≤zw,0≤l′≤l

{T (l′, z′)

+h(

l∑
i=l′+1

ci, zw, z
′w,Rj)}.

(21)



The first term T (l′, z′) is the optimal time of merging the first
l′ layers into tensor groups and overlapping their communica-
tion with z′ computation chunks. We use n(l) to denote the
total computation size from layer 1 to layer l. Layer l′ + 1 to
l form the new tensor group and its communication overlaps
with (z−z′)w computation chunks. We search all possibilities
for l′, z′ and Rj to get the minimal time for T (l, z).

For a given Z, we can find T (L,Z) and the corresponding
thread allocations (r̂∗i ) using dynamic programming with a
polynomial time complexity and polynomial space complexity
of O(L2 ·Z2 · J) and O(L ·Z) respectively. We use T̂ (L,Z)
to denote the backward time achieved by (r̂∗i ) without the
computation chunk edge constraint. Theorem 2 below shows
that with a proper configuration for Z, our algorithm can find a
solution close to the optimal thread allocation chosen from the
set R. The proof is similar to that of Theorem 1 and omitted.

Theorem 2. Under Assumptions 1 to 3, the solution (r̂∗i ) is a
L−1
Z -approximation to the thread allocation and tensor fusion

co-optimization problem, i.e.

T̂ (L,Z) ≤ (1 +
L− 1

Z
)T ∗. (22)

2) Limited Number of Tensor Groups: Recall that the time
complexity of solving T (L,Z) is O(L2 · Z2 · J), and L can
have a large value as some models may have up to thousands
of layers. Theorem 2 suggests that we may need Z to be at the
same or a higher order of L to guarantee a solution close to
the optimal, such solution can incur high cost. To reduce the
solution time, we further add a limit for the maximum number
of tensor groups K by explicitly specifying the number of
tensor groups of each subproblem in the DP, i.e. with abuse
of notation, we use T (i, l, z) to denote the optimal time when
we merge the first l layers into i tensor groups and overlaps
their communication with z computation chunks. The optimal
backward time is represented by T (K,L,Z). We use the
following equation to compute T (i, l, z) recursively,

T (i, l, z) = min
1≤j≤J,n(l)≤z′w≤zw,0≤l′≤l

{T (i− 1, l′, z′)

+h(

l∑
i=l′+1

ci, zw, z
′w,Rj)}.

(23)

The choice of K is a trade-off. A larger value of K increases
solution time but may generate better performance. The im-
plementation of our DP algorithm is given in Algorithm 1 and
the complete procedure of LIBRA in Algorithm 2. Note that
the model profiling and overlap data collection in Libra (line
1 and line 2 in Algorithm 2) incur only minute-level cost, as
we only need to run a few iterations under each setting to
obtain the data. Such overhead can be marginal as a training
task usually takes hours or even up to days.

C. Proof of Theorem 1

We first introduce two lemmas.

Algorithm 1: Dynamic Programming Solution
Input: K, Z, L, c, b, R
Output: tensor group size X, thread allocation Y

1 Initialize T[0...K][0...L][0...Z] with element ∞;
2 Initialize LOG[0...K][0...L][0...Z] with element (−1,−1,−1);

// Used to log (l′, z′, Rj) for each T [i][l][z]
3 w ← 1

Z

∑L
i=1 b[i];

4 for z = 0 to Z do
5 T[0][0][z]← z · w;

6 for i = 1 to K, l = 1 to L, z = 1 to Z do
7 topt ←∞, last hop← (−1,−1,−1);
8 zmin ← GetMinChunkID(b, l, w);
9 for l′ = 0 to l, z′ = zmin to z, j = 1 to J do

10 h← GetStageTime(
∑l

i=l′+1 c[i], zw, z′w,R[j]);
11 tnew ← T[i− 1][l′][z′] + h;
12 if tnew < topt then
13 topt ← tnew, last hop← (l′, z′,R[j]);

14 T[i][l][z]← topt;
15 LOG[i][l][z]← last hop;

16 GatherResults(LOG,X,Y);
17 Function GetMinChunkID(b, l, w):
18 id← 1;
19 while id · w <

∑l
i=1 b[i] do

20 id← id+ 1;

21 return id;

22 Function GetStageTime(c, zw, z
′
w, r):

23 to = ..., tb = ..., tc = ...; // Get the overlapped time, residual
computation and communication time

24 if zw < Z · w and t2 > 0 then
25 return ∞;
26 else
27 return to + tb + tc;

28 Function GatherResults(LOG,X,Y):
29 // Get tensor group size and their thread allocation with

subproblem information in LOG
30 ...

Algorithm 2: LIBRA

Input: K, Z, R, model
1 Profile model on the given cluster under its training settings;
2 Collect overlap data by training model with random thread

allocation and tensor fusion policies;
3 Fit the contention model with the collected data;
4 Get tensor fusion X and thread allocation Y from Algorithm 1;
5 Run data parallel S-SGD with X and Y.

Lemma 3. Let v(i, sib;ϕ) denote the time for the commu-
nication from tensor groups i to K to overlap the rest sib
computation under thread allocation policy ϕ. For ∀ ŝib ≥ sib ,

v(i, ŝib;ϕ) ≥ v(i, sib;ϕ). (24)

Proof. By Assumption 1, v(i, ŝib;ϕ) can be regarded as the
backward time after appending △t = ŝib − sib computation
to the last tensor group K. By Assumption 2, the appended
computation will not decrease the backward time.



Lemma 4. For ∀ △t ≥ 0,

v(i, sib;ϕ) ≤ v(i, sib −△t;ϕ) +△t. (25)

Proof. Note that v(i, sib − △t;ϕ) + △t can be regarded as
the time when we force the last △t computation to be
processed without overlap. By Assumption 3, allowing the △t
computation to overlap with communication does not increase
backward time.

Now we prove Theorem 1. Under the optimal thread allo-
cation policy ϕ∗ that achieves T ∗, denote the communication
start time of tensor group i as τ∗i , and the size of the overall
remaining computation at τ∗i as si∗b . The overall backward
time can be written as T ∗ = τ∗i + v(i, si∗b ;ϕ∗). We perform
K − 1 rounds of iterative adjustment to the communication
start time to make each communication start at the edge of
computation chunks. We use T (j), τ (j)i , si,(j)b to denote the
new overall backward time, communication start time and
remaining computation size at τ (j)i in round j, with T (1) = T ∗,
τ
(1)
i = τ∗i and s

i,(1)
b = si∗b . In round j, we insert a waiting

interval △t(j) before τ
(j)
j+1 to move τ

(j)
j+1 to a time point

corresponding to the closest computation chunk edge. The
overall backward time after this adjustment can be represented
as T (j+1) = τ

(j)
j+1+△τ (j)+v(j+1, s

j+1,(j)
b −△t(j);ϕ∗). As

△t(j) is smaller than w, we have

T (j+1) ≤ τ
(j)
j+1 + w + v(j + 1, s

j+1,(j)
b −△t(j);ϕ∗)

≤ τ
(j)
j+1 + w + v(j + 1, s

j+1,(j)
b ;ϕ∗)

= T (j) + w,

(26)

where the second inequality uses Lemma 3. Thus after K − 1
rounds of adjustment, we have T (K) ≤ T (1)+(K−1)w. Since
each communication starts at the edge of each computation
chunk, T (K,Z) is the optimal of T (K), and we have

T (K,Z) ≤ T (K) ≤ T ∗ + (K − 1)w = T ∗ +
K − 1

Z

K∑
i=1

bi.

(27)
Recall that in practice we do not require communication to

start at the edge of computation chunks; the communication
of a tensor group starts immediately once its gradients are
generated and communication of its preceding group has
completed. The iterative adjustment above that obtains T (K)

from T ∗ can be used to obtain T (K,Z) from T̂ (K,Z), so we
have T̂ (K,Z) ≤ T (K,Z). Reusing the notations in previous
proof, i.e. notations corresponding to T ∗ for T̂ (K,Z), and
those corresponding to T (K) for T (K,Z) , we have

T (j+1) = τ
(j)
j+1 +△t(j) + v(j + 1, s

j+1,(j)
b −△t(j);ϕ∗)

≥ τ
(j)
j+1 + v(j + 1, s

j+1,(j)
b ;ϕ∗)

= T (j),
(28)

where the inequality uses Lemma 4. After K − 1 rounds of
adjustment, we have T (K) ≥ T (1), i.e. T (K,Z) ≥ T̂ (K,Z).

As the overall backward time is no shorter than the non-
overlapped backward computation time, i.e. T ∗ ≥

∑K
i=1 bi,

we have T̂ (K,Z) ≤ T ∗ + K−1
Z T ∗.

V. EVALUATION

In this section we first validate the accuracy of our per-
formance model given in Section III. Then we evaluate the
proposed algorithm in a real-world testbed. Finally, we con-
duct simulation study for system scalability.

A. Methodology

Testbed. Our real-world experiment uses an 8-node GPU
cluster inter-connected by an RDMA network. Each node has
an Nvidia Tesla V100 GPU and a peak bandwidth of 50Gbps.
The operating system is Ubuntu 18.04, and the deep learning
framework is Tensorflow v2.1.0 with library CUDA-10.1 and
CuDNNv7. We implement our algorithm with the distributed
training framework Horovod v0.20.3 [21] and communication
library NCCL v2.4.8 [23]. We use the widely adopted ring-
allreduce algorithm [1] for gradient communication.

TABLE I
MODELS USED FOR EVALUATION.

Model name Parameter size Batch size per GPU

Xception ∼ 22M 32
ResNet152 ∼ 60M 32
VGG16 ∼ 138M 128
BERT-Base ∼ 110M 32

Benchmark DNN models. We use four representative DNN
models for evaluation. Xception [28], ResNet152 [29] and
VGG16 [30] represent three types of the popular CNN models
for image classification. BERT-Base is a transformer model for
natural language processing. We train the CNN models on the
ImageNet dataset [34] and BERT-Base on the BookCorpus
dataset [35] with commonly used batch size. The detailed
parameter size of each model is shown in Table. I.

Baselines. We compare LIBRA with the following baselines.
• SynEASGD (SE): SynEASGD [22] does not overlap

communication and computation. It merges all gradients
in a single communication task at the end of computation.

• Horovod-NCCL (H-N): Horovod-NCCL is a most widely
adopted state-of-the-art distributed training framework.
Horovod performs tensor fusion by dynamically grouping
all gradients that are ready for communication in a pre-
defined time window [36]. NCCL uses a set of compli-
cated heuristic rules to allocate communication threads.

• MG-N: This baseline combines MG-WFBP [10], a state-
of-the-art tensor fusion algorithm, with the communica-
tion thread allocation of NCCL.

We also compare the basic version of LIBRA that optimizes
thread allocation for a given tensor fusion plan. We use MG-
WFBP for tensor fusion and call this variant LIBRA-M.

LIBRA Settings. We set the maximum number of tensor
group K = 10 and Z = 150 as we only observe marginal
performance gain by further increasing the values. The set R



of allowed thread numbers includes powers of 2 from 128 to
4096. We use the same Z and R for LIBRA-M.

B. Performance Model Validation

We validate the accuracy of our performance model in
Section III as follows. We first fit the model using data col-
lected by profiling with randomly generated thread allocation
and tensor fusion plans as in Algorithm 2. Then we use it
to predict the backward time for training with LIBRA and
the baselines in the previous subsection. Fig. 5 compares
the predictions against measurements. The left four groups
of points correspond to the four benchmark DNN models
trained on an 8-node cluster. The prediction errors are in the
range of 0.5% to 7% with an average of 2.7%, confirming the
effectiveness of our model.

We also test how our model generalizes with respect to
cluster size. Since it depends on the cluster size only through
the startup overhead a and the transmitted data ĉ in All-
Reduce, we can easily convert the model fitted on one cluster
size to a different cluster size by correcting a and ĉ using the
corresponding formulas, e.g. Eq. (4). The right two groups
of points in Fig. 5 show the results for VGG16, when we
apply the model obtained above on the 8-node cluster to 2-
node and 4-node clusters after correction. A comparison of
the three groups for VGG16 confirms that our model has good
generalization ability. In Section V-D we will use the model
for simulation study as we scale up the cluster size.
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Fig. 5. Comparison between predicted and measured backward time. All
models are fitted on an 8-node cluster. The fitted models are tested on the
same 8-node cluster for the left four groups, and on a 2- and 4-node cluster
for the right two groups, indicated by N = 2 and N = 4, respectively.

C. Real-world Experiment

Overall Performance. As the communication-computation
overlap technique affects neither training convergence nor
model accuracy, we focus on training throughput, i.e. the num-
ber of data samples processed per unit time, when comparing
different methods. Fig. 6 shows that our method LIBRA outper-
forms all the baselines. The improvement is 11.3%-26.9% over
SE (no overlap), 5.8%-13.8% over H-N, and 4.2%-6.2% over
MG-N, the best-performing method without communication
thread optimization. The variant LIBRA-M improves upon
MG-N by 4.1%, demonstrating a clear benefit of incorporating
our communication thread optimization into existing tensor
fusion policies. LIBRA achieves additional improvement over
LIBRA-M through co-optimization with tensor fusion, which
suggests that the tensor fusion policy of MG-WFBP is no

longer optimal in the presence of contention. Fig. 6 also
shows the simulated throughput of MG-N in a contention-
free environment (MG-CF), which cannot be achieve without
additional resource. Note the 10.7% gap between MG-CF and
MG-N due to contention. LIBRA narrows the gap to 5.5%,
showing its effectiveness in mitigating contention.
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Fig. 6. Overall training performance.

Time Breakdown. Fig. 7 shows the average computation
and residual, i.e. non-overlapped communication time of a
training iteration. LIBRA reduces the overall backward time
by 12.1%-29.1% compared with SE, by 10.1%-20.4% com-
pared with H-N and by 5.6%-13.0% compared with MG-N.
Compared with the ideal MG-CF, the backward time of MG-N
is on average 22.5% higher, and LIBRA reduces the excess to
10.9%. In terms of the residual communication time, LIBRA-
M and LIBRA achieve an average reduction of 11.0% and
50.1% over MG-N, respectively, without increasing computa-
tion time. Since the tensor fusion algorithm of MG-N is proved
optimal in minimizing residual communication time for fixed
thread allocation in a contention-free environment [10], the
above observation reaffirms the importance of thread allocation
optimization in the presence of contention.
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Fig. 7. Backward time breakdown.

Fig. 8 compares the computation and communication time
of different methods. Note that LIBRA and LIBRA-M tend to
balance the computation and communication time, which is
most salient in Figs. 8(c) and 8(d). In Fig. 8(a), the computa-
tion time of LIBRA almost matches that of SE, which cannot
be further reduced without additional computation resource.
It is interesting to note in Fig. 8(b), LIBRA-M reduces both
computation and communication time compared to MG-N,
which uses the same tensor fusion plan. More detailed analysis
shows that the critical path varies between computation and



communication for different tensor groups, and LIBRA-M
strives to reduce whichever time on the critical path.
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Fig. 8. Communication and computation time after overlap.

D. Simulation

Due to hardware limitation, we extend the evaluation to
larger clusters by simulation based on our performance model.
The generalization of a model fitted on a real 8-node clus-
ter to other cluster sizes has been explained and validated
in Sec V-B. We increase the number of nodes from 16
to 2048. Fig. 9 shows the per-node throughput, normalized
by the single-node throughput. Note that the ideal linear
scalability corresponds to a horizontal line with value one.
While none of the methods achieve linear scalability, with
all curves eventually bending down due to the increasing
startup overhead in Eq. (4), LIBRA consistently outperforms
the baselines. As the system scales up, the improvement
of LIBRA over H-N and MG-N increases, reaching 20.0%
and 21.0%, respectively, for training VGG16 on a 2048-
node cluster (Fig. 9(c)). Meanwhile, the improvements of
the overlap methods over SE decrease. This is because SE
launches only one communication task and hence suffers less
from the increase of startup overhead mentioned above.

We also observe that LIBRA-M achieves better scalability
than MG-N, manifesting the benefits of thread allocation
optimization. On the other hand, there is a notable gap between
LIBRA-M and LIBRA when the cluster size is large (512-
2048), highlighting the importance of co-optimizing thread
allocation and tensor fusion when the startup overhead is large.

VI. RELATED WORK

Comm-comp Contention Mitigation. The contention prob-
lem can be eliminated by offloading communication to a
separate device [25]. However, this approach is expensive as it
requires not only additional customized hardware but also the
design of a new communication library. Our work provides a
simple low-cost alternative to mitigate the contention problem.
Our method is purely algorithmic and easy to implement.

Comm-comp Overlap Optimization. Several works focus
on overlapping communication with backward computation.
WFBP [9] launches a communication task as soon as gradients
are ready. MG-WFBP [10] performs tensor fusion to merge
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Fig. 9. Simulated per-node training throughput on clusters with 16 to 2048
nodes. Results are normalized to the throughput of training with a single node.

short communication tasks into a single one to reduce the
startup overhead. ASC-WFBP [11] launches simultaneous
communication tasks to increase network utilization with TCP.
None of them considers the effect of contention.

Other works further allow communication to be overlapped
with forward computation through priority-based scheduling,
which can be performed either at the tensor level [13–16] or at
the packet level [17]. Except for ByteScheduler [14], all those
works focus on the parameter-server architecture. Extending
our thread allocation optimization to forward computation
overlap is an interesting future work.

VII. CONCLUSION

In data parallel S-SGD, overlapping communication with
backward computation is a popular technique to improve
training throughput. However, the resource contention between
computation and All-Reduce communication hinders the per-
formance. This paper proposes a contention-aware GPU thread
allocation algorithm that balances the time of overlapped com-
putation and communication to reduce the overall backward
time. We model the contention and formulate an optimization
problem to decide the communication thread allocation. We
develop a dynamic programming based near-optimal solution
with polynomial complexity and we further extend the algo-
rithm to co-optimize thread allocation with tensor fusion. Our
real-world and simulated experiments show that our algorithm
effectively mitigates the effect of contention.

ACKNOWLEDGMENT

This work was supported in part by National
Natural Science Foundation of China (No. 42050105,
62072302, 62272292, 61902246, 62262018, 62020106005,
62061146002, 61960206002), the Open Research Project
of the State Key Laboratory of Media Convergence and
Communication, Communication University of China, China
(No.SKLMCC2021KF011).



REFERENCES

[1] Baidu Research, “baidu-allreduce,” 2017. https://github.com/
baidu-research/baidu-allreduce.

[2] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of
collective communication operations in MPICH,” The Interna-
tional Journal of High Performance Computing Applications,
vol. 19, no. 1, pp. 49–66, 2005.

[3] P. Patarasuk and X. Yuan, “Bandwidth optimal all-reduce al-
gorithms for clusters of workstations,” JPDC, vol. 69, no. 2,
pp. 117–124, 2009.

[4] S. Shi, Z. Tang, X. Chu, C. Liu, W. Wang, and B. Li, “A quan-
titative survey of communication optimizations in distributed
deep learning,” IEEE Network, vol. 35, no. 3, pp. 230–237,
2020.

[5] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing,
“Geeps: Scalable deep learning on distributed GPU with a GPU-
specialized parameter server,” in Proc. of EuroSys, pp. 1–16,
2016.

[6] L. Luo, J. Nelson, L. Ceze, A. Phanishayee, and A. Krish-
namurthy, “Parameter hub: a rack-scale parameter server for
distributed deep neural network training,” in Proc. of SoCC,
pp. 41–54, 2018.

[7] S. Kim, G.-I. Yu, H. Park, S. Cho, E. Jeong, H. Ha, S. Lee, J. S.
Jeong, and B.-G. Chun, “Parallax: Sparsity-aware data parallel
training of deep neural networks,” in Proc. of the Fourteenth
EuroSys, pp. 1–15, 2019.

[8] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li,
A. Paszke, J. Smith, B. Vaughan, P. Damania, and S. Chintala,
“Pytorch distributed: Experiences on accelerating data parallel
training,” VLDB Endow., 2020.

[9] H. Zhang, Z. Zheng, S. Xu, W. Dai, Q. Ho, X. Liang, Z. Hu,
J. Wei, P. Xie, and E. P. Xing, “Poseidon: An efficient com-
munication architecture for distributed deep learning on GPU
clusters,” in ATC, pp. 181–193, 2017.

[10] S. Shi, X. Chu, and B. Li, “MG-WFBP: Merging gradients
wisely for efficient communication in distributed deep learning,”
IEEE TPDS, vol. 32, no. 8, pp. 1903–1917, 2021.

[11] S. Shi, X. Chu, and B. Li, “Exploiting simultaneous communi-
cations to accelerate data parallel distributed deep learning,” in
Proc. of INFOCOM, pp. 1–10, 2021.

[12] S. Shi, Q. Wang, X. Chu, B. Li, Y. Qin, R. Liu, and
X. Zhao, “Communication-efficient distributed deep learning
with merged gradient sparsification on GPUs,” in Proc. of IEEE
INFOCOM, pp. 406–415, 2020.

[13] Y. Bao, Y. Peng, Y. Chen, and C. Wu, “Preemptive all-reduce
scheduling for expediting distributed dnn training,” in Proc. of
IEEE INFOCOM, pp. 626–635, 2020.

[14] Y. Peng, Y. Zhu, Y. Chen, Y. Bao, B. Yi, C. Lan, C. Wu, and
C. Guo, “A generic communication scheduler for distributed
DNN training acceleration,” in SOSP, pp. 16–29, 2019.

[15] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhi-
menko, “Priority-based parameter propagation for distributed
dnn training,” MLSys, pp. 132–145, 2019.

[16] S. H. Hashemi, S. Abdu Jyothi, and R. Campbell, “Tictac:
Accelerating distributed deep learning with communication
scheduling,” MLSys, pp. 418–430, 2019.

[17] Q. Duan, Z. Wang, Y. Xu, S. Liu, and J. Wu, “Mercury: A
simple transport layer scheduler to accelerate distributed DNN
training,” in INFOCOM, pp. 350–359, 2022.

[18] Y. Yu, J. Wu, and L. Huang, “Double quantization
for communication-efficient distributed optimization,” NIPS,
vol. 32, 2019.

[19] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsi-
fication for communication-efficient distributed optimization,”
NIPS, vol. 31, 2018.

[20] T. Vogels, S. P. Karimireddy, and M. Jaggi, “Powersgd: Practical

low-rank gradient compression for distributed optimization,”
NIPS, vol. 32, 2019.

[21] A. Sergeev and M. Del Balso, “Horovod: fast and easy
distributed deep learning in Tensorflow,” arXiv preprint
arXiv:1802.05799, 2018.
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