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1. Background & Motivation



Intermediate Representations for Compilers

CPS (Continuation-Passing Style)
» Compilers for functional programming languages.
» Every control point is explicitly named via continuations.

» Facilitate control-flow analysis.

SSA (Static Single Assignment)
» Mainstream compiler infrastructures like LLVM and GCC.
» Every variable could be assigned only once.

> Facilitate data-flow analysis.

SSA programs can be represented by functional languages.



Motivation

There is no verified transformation from CPS to SSA.

Verified Functional Verified Imperative
Compilers Infrastructures
SOURCE > CPS  p-fp > SSA > TARGET
CertiCoq Vellvm
MiniML Compiler CompCertSSA

Can verified compilers for functional programming languages
exploit the benefits of SSA?



Challenge & Approach

Most common techniques of compiler verification:

» \Verification via logical relations
Not compatible with the existing SSA infrastructures

» Verification via simulation

So we use verification via simulation.

Challenge: different components of program states:
» CPS: term, continuation information...
» SSA: program counter, variable information, stack...



Main Contributions 1

Design and verification of a transformation from PCF in CPS
to Simplified LLVM IR.

Verified Functional Verified Imperative
Compilers Infrastructures
SOURCE > CPS  ofpee- > SSA >  TARGET
CertiCoq Vellvm
MiniML Compiler @ CompCertSSA
g . .
PCF in CPS Simplified

LLVM IR




Main Contributions 2

Apply it to a compiler from PCF to LLVM IR.

Verified Functional Verified Imperative
Compilers Infrastructures
SOURCE > CPS Y St SSA > TARGET
CertiCoq Vellvm
MiniML Compiler @ CompCertSSA
. g Simplified Vellvm
PCF PCF in CPS LLVM IR > LIVMIR
PCF Program LLVM IR
Text Text
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2. Implementation of CPS = SSA Transformation



Source Language: PCF in CPS

CPS Transformation

PCF in direct style PCF in CPS
Syntax of PCF Example of PCF
opi=+|—|x |+ (fix f x —
ti=i|x|tt|ifzty tats ifz x 01)

|opt1t2|letx:t1int2 2

| fix f x t



Source Language: PCF in CPS

CPS Transformation

PCF in direct style PCF in CPS
Syntax of PCF Example of PCF
opi=+|—|x |+ (fix f x —
ti=i|x|tt|ifzty tats ifz x 01)

|opt1t2|letx:t1int2 2
| fix f x t

Syntax of CPS Example of CPS

vi=il|x letfun f k x = (ifz x
t:= letval x = vin t (letval x; = 0'in
kv |fkvlifzvtt, k x1)
| letop x = op x; xo in t (letval x, = 1in
| letcont k x =ty in t, k x2)) in
|letfun f kx =t int, (letval x3 = 2in

(letcont ky y = ki v in
(f k2 x3)))



Target SSA Language

Syntax Example of SSA
t="f define f (x)
f := define /1(/2) b by : by =icmp x 0; br¢ by ty fo;
b=1:¢ar to: x1 = 0; bryc ify;
a=x=c fo: xo =1; bryc ify;
c=v]opwv v ifo : e =9 [(to, x1), (o, x2)]; ret ry;
| icmp v; v» | call x v define main ()
phi =x=¢ (I, v); by : x3=2; y=call f x3; bry ko;
r:=retv |bry/ ko: o=y, ret reo;
| brc v /1 /2

| = string v:i=1i]|x



CPS = SSA Transformation

Key ideas:

CPS SSA

Variable binding = Assignment to a fresh variable
Continuation = A new basic block

Multiple application of

) X A ®-node
the same continuation



CPS = SSA Transformation

G: a recursive function

1. START: G takes the CPS term and an empty SSA program
with main function.
2. @G recursively translates the CPS term:

» Puts new components (basic blocks, instructions...) into the
SSA program.
» Updates the parameters.

3. Translation is finished: Return the current SSA program.



Example of CPS = SSA Transformation

CPS Program SSA Program

letfun f k x = (ifz x
(letval x; = 0in
k Xl)
(letval x, = 1in
k x2))



Example of CPS = SSA Transformation

CPS Program

letfun f k x = (ifz x
(letval x; = 0in
k Xl)
(letval x, = 1in
k x2))

SSA Program

define f (x)
by : by =icmp x 0; br¢ by ty fo:



Example of CPS = SSA Transformation

CPS Program

(letval x; = 0in
k Xl)

(letval x, = 1in
k Xz))

SSA Program

define f (x)
by : by =icmp x 0; br¢ by ty fo:
to: x1 = 0; bryc ify;
i % = 1i br ify



Example of CPS = SSA Transformation

CPS Program SSA Program
define f (x)
by : by =icmp x 0; br¢ by ty fo:
k x1) to: x1 = 0; bryc ify;

fo: xo =1; bryc ify;
k x2)) ify: re = [(to, x1), (fo, x2)]; ret r;



Example of CPS = SSA Transformation

CPS Program

(letval x3 = 2 in
(letcont kp y =
Kinit y in
(f k2 x3)))

SSA Program

define f (x)
by : by =icmp x 0; bre by ty fo;
to: x1 = 0; bryc ify;
i % = 1i br ify
IfO L= ¢ [(t07 Xl)a (f07 X2)]; ret r;

define main ()
by x3=2; y =call f x3; bry k;
ka: ro=y; ret re;



CPS Program

letfun f k x = (ifz x
(letval x; = 0in
k Xl)
(letval x, = 1 in
k x2))
(letval x3 = 2 in
(letcont kp y =
Kiniz y in
(f k2 x3)))

Observations:

Example of CPS = SSA Transformation

SSA Program

define f (x)
by : by =icmp x 0; bre by tp fo:
to: x1 = 0; bryc ify;
fo: x=1; bruc ify;
IfO L= [(t07 X1)7 (f07 X2)]; ret ry;
define main ()
by x3=2; y =call f x3; bry k;
ka: ro=y; ret re;

» Continuations imply the ¢-nodes we need to insert.

» Fresh variables make sure every variable is assigned once.
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3. Verification of CPS = SSA Transformation



Verification via Simulation

g | Simplified

PCF in CPS LLVM IR

Extract Small-Step
Operational Semantics

Semantics of Semantics of
—_—

CPS Forward SSA

Simulation

What we need to verify via simulation:

Target programs preserve the behavior of source programs.



Forward Simulation From CompCert

> S cpsn

A\ 4

Scpsl > SCP52

; SSSG/II

A\ 4

Sssal > Sssa2

1. Invariant between the program states of CPS and SSA:
Scps ~ Issa

2. The invariant holds at the beginning:
initial (teps) ~ initial (tsss).

3. Simulation for internal executions (Star Simulation).

4. Then we can derive: the invariant holds at the end.



Prevent Infinite Stuttering

\4

Scpsl —)Scpsg — > ... > Scpm
~! ~ ’,” ~

Sssal

» Define a measure function M for source states.
» M is strictly decreasing: Scps1 — Scps2, M(Scps1) > M(Scps2).
» Stuttering could happen when a letcont term is evaluated.

» We use the number of letcont structures as M.



Forward Simulation

Take the CPS and SSA programs introduced before as an example:

CPS Program SSA Program
(letcont ky y = define main ()
Kinit ¥ in b1 x3=2; y=call f x3; bry ko;
(f ko Xg))) ko i reo = y; ret ryo;

Scpsl : ((f ko X3), /OC)
Sssal : (tssaa (main, bla 1)a (main7 empty,O), IOCssa; Sempty)

Scpsl

S ssal



Forward Simulation

Take the CPS and SSA programs introduced before as an example:

CPS Program SSA Program

(letcont ky y = define main ()

Kinit y in by x3=2; y=call f x3; bry ko;
(f ko Xg))) ko i reo = y; ret ryo;

Scpsl ((f k2 X3) /OC)
Sssal (tssaa (mam, bla 1)7 (main7 emPty, O), IOCssa; Sempty)
5cps2 (( init }/) loc [k2 — tcps])
Sesa (t5527 (mam k270)7 (main> b1, 1); locssa, Sempty)

Scpsl —_—> ScpsZ

Sssal —_—> SssaZ



Forward Simulation

Take the CPS and SSA programs introduced before as an example:

CPS Program SSA Program
(letcont ky y = define main ()
Kinie y in bi: x3=2; y=call f x3; bry ko;
(f k2 x3))) kot r =y; ret re;
cpsl ((f k2 X3), /OC)
Sesat (tssaa (main, b1, 1); (main7 empty, O)a loCssa, Sempty)
cps2 (( init }/) loc [k2 — tcps])
Sesa (t5527 (mam k270)7 (main> b1, 1); locssa, Sempty)
Scpsl > Scpsz > .. > Scpsn
* * *

> Sssan

v

S ssal > S s5a2



Semantics

Small-step Operational Semantics of CPS

Judgement: (teps, loceps) — (téps, /océps)

loceps k = (letcont k x =ty in ty)

Rule:
(k v, loceps) — (t1[v/x], loceps)

Small-step Operational Semantics of SSA

Judgement: (pc, ppc, l0¢ssa, Sssa) — (pc’, ppc’, locl,,, ske,)

Rule:
code,; pc = (y=callfv) argf=x

(Pca ppc, l0Cssa, sssa) — ((f’ b1a0)7 pc, locss, [X = Vo], pUSh Sssa pC)



Forward Simulation

Define the invariant ~:

Predicate between CPS program states and SSA program states

locps k = letcont k x; = tinu
code,: pc = x3 = x codey (pc+1) = bryc k

(k X, /OCcps) ~ (t5537 pc, ppc, locsss X1 —+ X, Sssa)

teps = letcont k x; = tinu  (u,loceps) ~ (tssa, PC, PPC, 10Cssa, Sssa)
(t,loceps k + teps) ~ (tssa, (pc.lg, k,0), pc, 10Cssa, Sssa)

(tcpSa IOCcps k — tcps) ~ (t5537 pc, ppc, IOCssaa sssa)
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4. Evaluation & Conclusion



Development & Evaluation

Development is carried out in Coq
(PCF parser is implemented in OCaml).

The complete artifact can be accessed in Zenodo:

https://zenodo.org/record/7882331

May 1,2023

Liu Siyu; @ Wang Yuting

[ Sotvors ] open ccess
Verified transformation from CPS to SSA

Artifact for TASE23: Verified Transformation of Continuation-Passing Style into Static Single Assignment Form

Combination of Forward Simulation,

Backward Simulation

Categories Contents LOC Proportion(%)
Language Definitions PCF, CPS, SSA 702 23.9
Transformations PCF—CPS, CPS—SSA, 717 245
SSA—Vellvm LLVM IR
PCF—CPS Forward Simulation,
Verification CPS—SSA Forward Simulation, 1513 51.6



https://zenodo.org/record/7882331

Conclusion

. g Simplified Vellvm
PCE PCF in CPS LLVM IR LLVM IR
PCF Program LLVM IR
Text Text

» Provide a verified transformation algorithm from CPS to SSA.
Build a prototype compiler for PCF that targets LLVM IR.

v

» Provides a foundation for developing verified functional
compilers that may exploit the benefits of SSA compilation
infrastructures.

In the future

Link verified functional compilers to verified SSA infrastructures.



Q&A

Thank You For Listening!
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