Verified Transformation of Continuation-Passing
Style into Static Single Assignment Form

Siyu Liu Yuting Wang

John Hopcroft Center for Computer Science,
School of Electronic Information and Electrical Engineering,
Shanghai Jiao Tong University

TASE 2023,
Bristol, UK

Table of Contents

1. Background & Motivation

2. Implementation of CPS = SSA Transformation

3. Verification of CPS = SSA Transformation

4. Evaluation & Conclusion

Table of Contents

1. Background & Motivation

Intermediate Representations for Compilers

CPS (Continuation-Passing Style)
» Compilers for functional programming languages.
» Every control point is explicitly named via continuations.

» Facilitate control-flow analysis.

SSA (Static Single Assignment)
» Mainstream compiler infrastructures like LLVM and GCC.
» Every variable could be assigned only once.

> Facilitate data-flow analysis.

SSA programs can be represented by functional languages.

Motivation

There is no verified transformation from CPS to SSA.

Verified Functional Verified Imperative
Compilers Infrastructures
SOURCE > CPS p-fp > SSA > TARGET
CertiCoq Vellvm
MiniML Compiler CompCertSSA

Can verified compilers for functional programming languages
exploit the benefits of SSA?

Challenge & Approach

Most common techniques of compiler verification:

» \Verification via logical relations
Not compatible with the existing SSA infrastructures

» Verification via simulation

So we use verification via simulation.

Challenge: different components of program states:
» CPS: term, continuation information...
» SSA: program counter, variable information, stack...

Main Contributions 1

Design and verification of a transformation from PCF in CPS
to Simplified LLVM IR.

Verified Functional Verified Imperative
Compilers Infrastructures
SOURCE > CPS ofpee- > SSA > TARGET
CertiCoq Vellvm
MiniML Compiler @ CompCertSSA
g . .
PCF in CPS Simplified

LLVM IR

Main Contributions 2

Apply it to a compiler from PCF to LLVM IR.

Verified Functional Verified Imperative
Compilers Infrastructures
SOURCE > CPS Y St SSA > TARGET
CertiCoq Vellvm
MiniML Compiler @ CompCertSSA
. g Simplified Vellvm
PCF PCF in CPS LLVM IR > LIVMIR
PCF Program LLVM IR
Text Text

Table of Contents

2. Implementation of CPS = SSA Transformation

Source Language: PCF in CPS

CPS Transformation

PCF in direct style PCF in CPS
Syntax of PCF Example of PCF
opi=+|—|x |+ (fix f x —
ti=i|x|tt|ifzty tats ifz x 01)

|opt1t2|letx:t1int2 2

| fix f x t

Source Language: PCF in CPS

CPS Transformation

PCF in direct style PCF in CPS
Syntax of PCF Example of PCF
opi=+|—|x |+ (fix f x —
ti=i|x|tt|ifzty tats ifz x 01)

|opt1t2|letx:t1int2 2
| fix f x t

Syntax of CPS Example of CPS

vi=il|x letfun f k x = (ifz x
t:= letval x = vin t (letval x; = 0'in
kv |fkvlifzvtt, k x1)
| letop x = op x; xo in t (letval x, = 1in
| letcont k x =ty in t, k x2)) in
|letfun f kx =t int, (letval x3 = 2in

(letcont ky y = ki v in
(f k2 x3)))

Target SSA Language

Syntax Example of SSA
t="f define f (x)
f := define /1(/2) b by : by =icmp x 0; br¢ by ty fo;
b=1:¢ar to: x1 = 0; bryc ify;
a=x=c fo: xo =1; bryc ify;
c=v]opwv v ifo : e =9 [(to, x1), (o, x2)]; ret ry;
| icmp v; v» | call x v define main ()
phi =x=¢ (I, v); by : x3=2; y=call f x3; bry ko;
r:=retv |bry/ ko: o=y, ret reo;
| brc v /1 /2

| = string v:i=1i]|x

CPS = SSA Transformation

Key ideas:

CPS SSA

Variable binding = Assignment to a fresh variable
Continuation = A new basic block

Multiple application of

) X A ®-node
the same continuation

CPS = SSA Transformation

G: a recursive function

1. START: G takes the CPS term and an empty SSA program
with main function.
2. @G recursively translates the CPS term:

» Puts new components (basic blocks, instructions...) into the
SSA program.
» Updates the parameters.

3. Translation is finished: Return the current SSA program.

Example of CPS = SSA Transformation

CPS Program SSA Program

letfun f k x = (ifz x
(letval x; = 0in
k Xl)
(letval x, = 1in
k x2))

Example of CPS = SSA Transformation

CPS Program

letfun f k x = (ifz x
(letval x; = 0in
k Xl)
(letval x, = 1in
k x2))

SSA Program

define f (x)
by : by =icmp x 0; br¢ by ty fo:

Example of CPS = SSA Transformation

CPS Program

(letval x; = 0in
k Xl)

(letval x, = 1in
k Xz))

SSA Program

define f (x)
by : by =icmp x 0; br¢ by ty fo:
to: x1 = 0; bryc ify;
i % = 1i br ify

Example of CPS = SSA Transformation

CPS Program SSA Program
define f (x)
by : by =icmp x 0; br¢ by ty fo:
k x1) to: x1 = 0; bryc ify;

fo: xo =1; bryc ify;
k x2)) ify: re = [(to, x1), (fo, x2)]; ret r;

Example of CPS = SSA Transformation

CPS Program

(letval x3 = 2 in
(letcont kp y =
Kinit y in
(f k2 x3)))

SSA Program

define f (x)
by : by =icmp x 0; bre by ty fo;
to: x1 = 0; bryc ify;
i % = 1i br ify
IfO L= ¢ [(t07 Xl)a (f07 X2)]; ret r;

define main ()
by x3=2; y =call f x3; bry k;
ka: ro=y; ret re;

CPS Program

letfun f k x = (ifz x
(letval x; = 0in
k Xl)
(letval x, = 1 in
k x2))
(letval x3 = 2 in
(letcont kp y =
Kiniz y in
(f k2 x3)))

Observations:

Example of CPS = SSA Transformation

SSA Program

define f (x)
by : by =icmp x 0; bre by tp fo:
to: x1 = 0; bryc ify;
fo: x=1; bruc ify;
IfO L= [(t07 X1)7 (f07 X2)]; ret ry;
define main ()
by x3=2; y =call f x3; bry k;
ka: ro=y; ret re;

» Continuations imply the ¢-nodes we need to insert.

» Fresh variables make sure every variable is assigned once.

Table of Contents

3. Verification of CPS = SSA Transformation

Verification via Simulation

g | Simplified

PCF in CPS LLVM IR

Extract Small-Step
Operational Semantics

Semantics of Semantics of
—_—

CPS Forward SSA

Simulation

What we need to verify via simulation:

Target programs preserve the behavior of source programs.

Forward Simulation From CompCert

> S cpsn

A\ 4

Scpsl > SCP52

; SSSG/II

A\ 4

Sssal > Sssa2

1. Invariant between the program states of CPS and SSA:
Scps ~ Issa

2. The invariant holds at the beginning:
initial (teps) ~ initial (tsss).

3. Simulation for internal executions (Star Simulation).

4. Then we can derive: the invariant holds at the end.

Prevent Infinite Stuttering

\4

Scpsl —)Scpsg — > ... > Scpm
~! ~ ’,” ~

Sssal

» Define a measure function M for source states.
» M is strictly decreasing: Scps1 — Scps2, M(Scps1) > M(Scps2).
» Stuttering could happen when a letcont term is evaluated.

» We use the number of letcont structures as M.

Forward Simulation

Take the CPS and SSA programs introduced before as an example:

CPS Program SSA Program
(letcont ky y = define main ()
Kinit ¥ in b1 x3=2; y=call f x3; bry ko;
(f ko Xg))) ko i reo = y; ret ryo;

Scpsl : ((f ko X3), /OC)
Sssal : (tssaa (main, bla 1)a (main7 empty,O), IOCssa; Sempty)

Scpsl

S ssal

Forward Simulation

Take the CPS and SSA programs introduced before as an example:

CPS Program SSA Program

(letcont ky y = define main ()

Kinit y in by x3=2; y=call f x3; bry ko;
(f ko Xg))) ko i reo = y; ret ryo;

Scpsl ((f k2 X3) /OC)
Sssal (tssaa (mam, bla 1)7 (main7 emPty, O), IOCssa; Sempty)
5cps2 ((init }/) loc [k2 — tcps])
Sesa (t5527 (mam k270)7 (main> b1, 1); locssa, Sempty)

Scpsl —_—> ScpsZ

Sssal —_—> SssaZ

Forward Simulation

Take the CPS and SSA programs introduced before as an example:

CPS Program SSA Program
(letcont ky y = define main ()
Kinie y in bi: x3=2; y=call f x3; bry ko;
(f k2 x3))) kot r =y; ret re;
cpsl ((f k2 X3), /OC)
Sesat (tssaa (main, b1, 1); (main7 empty, O)a loCssa, Sempty)
cps2 ((init }/) loc [k2 — tcps])
Sesa (t5527 (mam k270)7 (main> b1, 1); locssa, Sempty)
Scpsl > Scpsz > .. > Scpsn
* * *

> Sssan

v

S ssal > S s5a2

Semantics

Small-step Operational Semantics of CPS

Judgement: (teps, loceps) — (téps, /océps)

loceps k = (letcont k x =ty in ty)

Rule:
(k v, loceps) — (t1[v/x], loceps)

Small-step Operational Semantics of SSA

Judgement: (pc, ppc, l0¢ssa, Sssa) — (pc’, ppc’, locl,,, ske,)

Rule:
code,; pc = (y=callfv) argf=x

(Pca ppc, l0Cssa, sssa) — ((f’ b1a0)7 pc, locss, [X = Vo], pUSh Sssa pC)

Forward Simulation

Define the invariant ~:

Predicate between CPS program states and SSA program states

locps k = letcont k x; = tinu
code,: pc = x3 = x codey (pc+1) = bryc k

(k X, /OCcps) ~ (t5537 pc, ppc, locsss X1 —+ X, Sssa)

teps = letcont k x; = tinu (u,loceps) ~ (tssa, PC, PPC, 10Cssa, Sssa)
(t,loceps k + teps) ~ (tssa, (pc.lg, k,0), pc, 10Cssa, Sssa)

(tcpSa IOCcps k — tcps) ~ (t5537 pc, ppc, IOCssaa sssa)

Table of Contents

4. Evaluation & Conclusion

Development & Evaluation

Development is carried out in Coq
(PCF parser is implemented in OCaml).

The complete artifact can be accessed in Zenodo:

https://zenodo.org/record/7882331

May 1,2023

Liu Siyu; @ Wang Yuting

[Sotvors] open ccess
Verified transformation from CPS to SSA

Artifact for TASE23: Verified Transformation of Continuation-Passing Style into Static Single Assignment Form

Combination of Forward Simulation,

Backward Simulation

Categories Contents LOC Proportion(%)
Language Definitions PCF, CPS, SSA 702 23.9
Transformations PCF—CPS, CPS—SSA, 717 245
SSA—Vellvm LLVM IR
PCF—CPS Forward Simulation,
Verification CPS—SSA Forward Simulation, 1513 51.6

https://zenodo.org/record/7882331

Conclusion

. g Simplified Vellvm
PCE PCF in CPS LLVM IR LLVM IR
PCF Program LLVM IR
Text Text

» Provide a verified transformation algorithm from CPS to SSA.
Build a prototype compiler for PCF that targets LLVM IR.

v

» Provides a foundation for developing verified functional
compilers that may exploit the benefits of SSA compilation
infrastructures.

In the future

Link verified functional compilers to verified SSA infrastructures.

Q&A

Thank You For Listening!

	Background & Motivation
	Implementation of CPS SSA Transformation
	Verification of CPS SSA Transformation
	Evaluation & Conclusion

