
A Higher-Order Abstract Syntax Approach to
Verified Compilation of Functional Programs

Yuting Wang and Gopalan Nadathur

Department of Computer Science and Engineering
University of Minnesota, Minneapolis

ESOP 2016, Eindhoven, Netherlands

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 1/17

Motivation for Verified Compilation

Formal verification is the only way to guarantee the absolute
correctness of software systems

Gap in the formal verification of programs:

Programs are proved correct relative to the model of the
high-level language in which they are written

Programs are executed only after compilation into low-level code

To close the gap, we must also formally verify the compilation process

Our interest is in verifying compiler transformations for functional
programming languages.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 2/17

Motivation for Verified Compilation

Formal verification is the only way to guarantee the absolute
correctness of software systems

Gap in the formal verification of programs:

Programs are proved correct relative to the model of the
high-level language in which they are written

Programs are executed only after compilation into low-level code

To close the gap, we must also formally verify the compilation process

Our interest is in verifying compiler transformations for functional
programming languages.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 2/17

Motivation for Verified Compilation

Formal verification is the only way to guarantee the absolute
correctness of software systems

Gap in the formal verification of programs:

Programs are proved correct relative to the model of the
high-level language in which they are written

Programs are executed only after compilation into low-level code

To close the gap, we must also formally verify the compilation process

Our interest is in verifying compiler transformations for functional
programming languages.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 2/17

Motivation for Verified Compilation

Formal verification is the only way to guarantee the absolute
correctness of software systems

Gap in the formal verification of programs:

Programs are proved correct relative to the model of the
high-level language in which they are written

Programs are executed only after compilation into low-level code

To close the gap, we must also formally verify the compilation process

Our interest is in verifying compiler transformations for functional
programming languages.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 2/17

Verified Compilation of Functional Programs

Compilation consists of two phases:

Transforming arbitrary functional programs into a simplified form

Using standard techniques to compile the simplified programs

Our focus is on the implementation and verification of the first phase

Characteristics of the transformations in the first phase:

Transformations are naturally described via syntax-directed rules

Transformations manipulate binding structure in complex ways

The content of our work
A rich form of higher-order abstract syntax (HOAS) has benefits in
implementing and verifying such transformations

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 3/17

Verified Compilation of Functional Programs

Compilation consists of two phases:

Transforming arbitrary functional programs into a simplified form

Using standard techniques to compile the simplified programs

Our focus is on the implementation and verification of the first phase

Characteristics of the transformations in the first phase:

Transformations are naturally described via syntax-directed rules

Transformations manipulate binding structure in complex ways

The content of our work
A rich form of higher-order abstract syntax (HOAS) has benefits in
implementing and verifying such transformations

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 3/17

Verified Compilation of Functional Programs

Compilation consists of two phases:

Transforming arbitrary functional programs into a simplified form

Using standard techniques to compile the simplified programs

Our focus is on the implementation and verification of the first phase

Characteristics of the transformations in the first phase:

Transformations are naturally described via syntax-directed rules

Transformations manipulate binding structure in complex ways

The content of our work
A rich form of higher-order abstract syntax (HOAS) has benefits in
implementing and verifying such transformations

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 3/17

Verified Compilation of Functional Programs

Compilation consists of two phases:

Transforming arbitrary functional programs into a simplified form

Using standard techniques to compile the simplified programs

Our focus is on the implementation and verification of the first phase

Characteristics of the transformations in the first phase:

Transformations are naturally described via syntax-directed rules

Transformations manipulate binding structure in complex ways

The content of our work
A rich form of higher-order abstract syntax (HOAS) has benefits in
implementing and verifying such transformations

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 3/17

An Overview of the Talk

We make the case using a framework comprising the specification
language λProlog and the interactive theorem prover Abella

We show that λProlog supports a concise, declarative
implementation of the transformations

We show that using Abella we can construct elegant proofs of
correctness for the λProlog programs

We argue that these benefits in fact derive from the underlying
support for HOAS and rule-based relational specifications

This talk focuses on typed closure conversion to make these points

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 4/17

An Overview of the Talk

We make the case using a framework comprising the specification
language λProlog and the interactive theorem prover Abella

We show that λProlog supports a concise, declarative
implementation of the transformations

We show that using Abella we can construct elegant proofs of
correctness for the λProlog programs

We argue that these benefits in fact derive from the underlying
support for HOAS and rule-based relational specifications

This talk focuses on typed closure conversion to make these points

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 4/17

An Overview of the Talk

We make the case using a framework comprising the specification
language λProlog and the interactive theorem prover Abella

We show that λProlog supports a concise, declarative
implementation of the transformations

We show that using Abella we can construct elegant proofs of
correctness for the λProlog programs

We argue that these benefits in fact derive from the underlying
support for HOAS and rule-based relational specifications

This talk focuses on typed closure conversion to make these points

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 4/17

The Closure Conversion Transformation

A transformation that replaces (nested) functions by closed functions
paired with environments with bindings for the free variables

For example,

let x = 3 in let y = 4 in
fn z => x + y + z

is transformed into

let x = 3 in let y = 4 in
<(fn z e => e.1 + e.2 + z), (x, y)>

Binding structure and substitution are central to this transformation:

Calculating the free variables in a nested function

Replacing these variables with projections from an environment

Not only must these operations be implemented, the implementations
must also be shown to preserve meanings of programs

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 5/17

The Closure Conversion Transformation

A transformation that replaces (nested) functions by closed functions
paired with environments with bindings for the free variables

For example,

let x = 3 in let y = 4 in
fn z => x + y + z

is transformed into

let x = 3 in let y = 4 in
<(fn z e => e.1 + e.2 + z), (x, y)>

Binding structure and substitution are central to this transformation:

Calculating the free variables in a nested function

Replacing these variables with projections from an environment

Not only must these operations be implemented, the implementations
must also be shown to preserve meanings of programs

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 5/17

The Closure Conversion Transformation

A transformation that replaces (nested) functions by closed functions
paired with environments with bindings for the free variables

For example,

let x = 3 in let y = 4 in
fn z => x + y + z

is transformed into

let x = 3 in let y = 4 in
<(fn z e => e.1 + e.2 + z), (x, y)>

Binding structure and substitution are central to this transformation:

Calculating the free variables in a nested function

Replacing these variables with projections from an environment

Not only must these operations be implemented, the implementations
must also be shown to preserve meanings of programs

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 5/17

The Closure Conversion Transformation

A transformation that replaces (nested) functions by closed functions
paired with environments with bindings for the free variables

For example,

let x = 3 in let y = 4 in
fn z => x + y + z

is transformed into

let x = 3 in let y = 4 in
<(fn z e => e.1 + e.2 + z), (x, y)>

Binding structure and substitution are central to this transformation:

Calculating the free variables in a nested function

Replacing these variables with projections from an environment

Not only must these operations be implemented, the implementations
must also be shown to preserve meanings of programs

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 5/17

The Specification Language λProlog

The language is based on logic programming style clauses that
transparently encode rule-based relational specifications

For example, consider the append relation specified by the rules

append [] l l
append l1 l2 l3

append (x : : l1) l2 (x : : l3)

These rules are captured directly in Prolog-like logical clauses:

append nil L L.
append (X :: L1) L2 (X :: L3) :- append L1 L2 L3.

A key point: These clauses are both logical specifications and
executable as programs

Notation: L ` G asserts that G is derivable from a set L of clauses.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 6/17

The Specification Language λProlog

The language is based on logic programming style clauses that
transparently encode rule-based relational specifications

For example, consider the append relation specified by the rules

append [] l l
append l1 l2 l3

append (x : : l1) l2 (x : : l3)

These rules are captured directly in Prolog-like logical clauses:

append nil L L.
append (X :: L1) L2 (X :: L3) :- append L1 L2 L3.

A key point: These clauses are both logical specifications and
executable as programs

Notation: L ` G asserts that G is derivable from a set L of clauses.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 6/17

The Specification Language λProlog

The language is based on logic programming style clauses that
transparently encode rule-based relational specifications

For example, consider the append relation specified by the rules

append [] l l
append l1 l2 l3

append (x : : l1) l2 (x : : l3)

These rules are captured directly in Prolog-like logical clauses:

append nil L L.
append (X :: L1) L2 (X :: L3) :- append L1 L2 L3.

A key point: These clauses are both logical specifications and
executable as programs

Notation: L ` G asserts that G is derivable from a set L of clauses.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 6/17

The Specification Language λProlog

The language is based on logic programming style clauses that
transparently encode rule-based relational specifications

For example, consider the append relation specified by the rules

append [] l l
append l1 l2 l3

append (x : : l1) l2 (x : : l3)

These rules are captured directly in Prolog-like logical clauses:

append nil L L.
append (X :: L1) L2 (X :: L3) :- append L1 L2 L3.

A key point: These clauses are both logical specifications and
executable as programs

Notation: L ` G asserts that G is derivable from a set L of clauses.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 6/17

The Specification Language λProlog

The language is based on logic programming style clauses that
transparently encode rule-based relational specifications

For example, consider the append relation specified by the rules

append [] l l
append l1 l2 l3

append (x : : l1) l2 (x : : l3)

These rules are captured directly in Prolog-like logical clauses:

append nil L L.
append (X :: L1) L2 (X :: L3) :- append L1 L2 L3.

A key point: These clauses are both logical specifications and
executable as programs

Notation: L ` G asserts that G is derivable from a set L of clauses.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 6/17

Treating Binding Structure in λProlog

A higher-order treatment of abstract syntax is supported in λProlog
through the following devices:

A simply typed λ-calculus is used to represent objects

Object-level binding can be encoded via meta-level abstraction

abs : (tm -> tm) -> tm app : tm -> tm -> tm
(λx .λy .x y) =⇒ abs (x\ abs (y\ app x y))

Capturing substitution related notions through β-conversion

Substitution modulo β-reduction respects meta-level binding

Supporting binding-sensitive structure analysis through
unification modulo λ-convertibility

Realizing recursion over binding structure via hypothetical and
generic goals

Γ, x : α ` t : β

Γ ` λx .t : α→ β

x /∈ dom(Γ)

⇒
of (abs T) (arr Ty1 Ty2) :-

pi x\
of x Ty1 => of (T x) Ty2.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 7/17

Treating Binding Structure in λProlog

A higher-order treatment of abstract syntax is supported in λProlog
through the following devices:

A simply typed λ-calculus is used to represent objects

Object-level binding can be encoded via meta-level abstraction

abs : (tm -> tm) -> tm app : tm -> tm -> tm
(λx .λy .x y) =⇒ abs (x\ abs (y\ app x y))

Capturing substitution related notions through β-conversion

Substitution modulo β-reduction respects meta-level binding

Supporting binding-sensitive structure analysis through
unification modulo λ-convertibility

Realizing recursion over binding structure via hypothetical and
generic goals

Γ, x : α ` t : β

Γ ` λx .t : α→ β

x /∈ dom(Γ)

⇒
of (abs T) (arr Ty1 Ty2) :-

pi x\
of x Ty1 => of (T x) Ty2.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 7/17

Treating Binding Structure in λProlog

A higher-order treatment of abstract syntax is supported in λProlog
through the following devices:

A simply typed λ-calculus is used to represent objects
Object-level binding can be encoded via meta-level abstraction

abs : (tm -> tm) -> tm app : tm -> tm -> tm
(λx .λy .x y) =⇒ abs (x\ abs (y\ app x y))

Capturing substitution related notions through β-conversion

Substitution modulo β-reduction respects meta-level binding

Supporting binding-sensitive structure analysis through
unification modulo λ-convertibility

Realizing recursion over binding structure via hypothetical and
generic goals

Γ, x : α ` t : β

Γ ` λx .t : α→ β

x /∈ dom(Γ)

⇒
of (abs T) (arr Ty1 Ty2) :-

pi x\
of x Ty1 => of (T x) Ty2.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 7/17

Treating Binding Structure in λProlog

A higher-order treatment of abstract syntax is supported in λProlog
through the following devices:

A simply typed λ-calculus is used to represent objects
Object-level binding can be encoded via meta-level abstraction

abs : (tm -> tm) -> tm app : tm -> tm -> tm
(λx .λy .x y) =⇒ abs (x\ abs (y\ app x y))

Capturing substitution related notions through β-conversion

Substitution modulo β-reduction respects meta-level binding

Supporting binding-sensitive structure analysis through
unification modulo λ-convertibility

Realizing recursion over binding structure via hypothetical and
generic goals

Γ, x : α ` t : β

Γ ` λx .t : α→ β

x /∈ dom(Γ)

⇒
of (abs T) (arr Ty1 Ty2) :-

pi x\
of x Ty1 => of (T x) Ty2.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 7/17

Treating Binding Structure in λProlog

A higher-order treatment of abstract syntax is supported in λProlog
through the following devices:

A simply typed λ-calculus is used to represent objects
Object-level binding can be encoded via meta-level abstraction

abs : (tm -> tm) -> tm app : tm -> tm -> tm
(λx .λy .x y) =⇒ abs (x\ abs (y\ app x y))

Capturing substitution related notions through β-conversion

Substitution modulo β-reduction respects meta-level binding

Supporting binding-sensitive structure analysis through
unification modulo λ-convertibility

Realizing recursion over binding structure via hypothetical and
generic goals

Γ, x : α ` t : β

Γ ` λx .t : α→ β

x /∈ dom(Γ)

⇒
of (abs T) (arr Ty1 Ty2) :-

pi x\
of x Ty1 => of (T x) Ty2.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 7/17

Treating Binding Structure in λProlog

A higher-order treatment of abstract syntax is supported in λProlog
through the following devices:

A simply typed λ-calculus is used to represent objects
Object-level binding can be encoded via meta-level abstraction

abs : (tm -> tm) -> tm app : tm -> tm -> tm
(λx .λy .x y) =⇒ abs (x\ abs (y\ app x y))

Capturing substitution related notions through β-conversion
Substitution modulo β-reduction respects meta-level binding

Supporting binding-sensitive structure analysis through
unification modulo λ-convertibility

Realizing recursion over binding structure via hypothetical and
generic goals

Γ, x : α ` t : β

Γ ` λx .t : α→ β

x /∈ dom(Γ)

⇒
of (abs T) (arr Ty1 Ty2) :-

pi x\
of x Ty1 => of (T x) Ty2.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 7/17

Treating Binding Structure in λProlog

A higher-order treatment of abstract syntax is supported in λProlog
through the following devices:

A simply typed λ-calculus is used to represent objects
Object-level binding can be encoded via meta-level abstraction

abs : (tm -> tm) -> tm app : tm -> tm -> tm
(λx .λy .x y) =⇒ abs (x\ abs (y\ app x y))

Capturing substitution related notions through β-conversion
Substitution modulo β-reduction respects meta-level binding

Supporting binding-sensitive structure analysis through
unification modulo λ-convertibility

Realizing recursion over binding structure via hypothetical and
generic goals

Γ, x : α ` t : β

Γ ` λx .t : α→ β

x /∈ dom(Γ)

⇒
of (abs T) (arr Ty1 Ty2) :-

pi x\
of x Ty1 => of (T x) Ty2.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 7/17

Treating Binding Structure in λProlog

A higher-order treatment of abstract syntax is supported in λProlog
through the following devices:

A simply typed λ-calculus is used to represent objects
Object-level binding can be encoded via meta-level abstraction

abs : (tm -> tm) -> tm app : tm -> tm -> tm
(λx .λy .x y) =⇒ abs (x\ abs (y\ app x y))

Capturing substitution related notions through β-conversion
Substitution modulo β-reduction respects meta-level binding

Supporting binding-sensitive structure analysis through
unification modulo λ-convertibility

Realizing recursion over binding structure via hypothetical and
generic goals

Γ, x : α ` t : β

Γ ` λx .t : α→ β

x /∈ dom(Γ)

⇒
of (abs T) (arr Ty1 Ty2) :-

pi x\
of x Ty1 => of (T x) Ty2.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 7/17

Treating Binding Structure in λProlog

A higher-order treatment of abstract syntax is supported in λProlog
through the following devices:

A simply typed λ-calculus is used to represent objects
Object-level binding can be encoded via meta-level abstraction

abs : (tm -> tm) -> tm app : tm -> tm -> tm
(λx .λy .x y) =⇒ abs (x\ abs (y\ app x y))

Capturing substitution related notions through β-conversion
Substitution modulo β-reduction respects meta-level binding

Supporting binding-sensitive structure analysis through
unification modulo λ-convertibility

Realizing recursion over binding structure via hypothetical and
generic goals

Γ, x : α ` t : β

Γ ` λx .t : α→ β

x /∈ dom(Γ)

⇒
of (abs T) (arr Ty1 Ty2) :-

pi x\
of x Ty1 => of (T x) Ty2.

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 7/17

Rule-Based Specification of Closure Conversion

The transformation is parameterized by a mapping ρ of (source
language) free variables to target language expressions

We represent the closure conversion judgment as follows:

ρ .M M ′

The key rule is for transforming (nested) functions into closures

(x1, ..., xn) = fvars(λx .M) ρ . (x1, ..., xn) Me ρ′ .M M ′

ρ . λx .M 〈λy .λxe.M ′,Me〉
where ρ′ = [x → y , x1 → π1(xe), ..., xn → πn(xe)] and y , xe are fresh variables

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 8/17

Rule-Based Specification of Closure Conversion

The transformation is parameterized by a mapping ρ of (source
language) free variables to target language expressions

We represent the closure conversion judgment as follows:

ρ .M M ′

The key rule is for transforming (nested) functions into closures

(x1, ..., xn) = fvars(λx .M) ρ . (x1, ..., xn) Me ρ′ .M M ′

ρ . λx .M 〈λy .λxe.M ′,Me〉
where ρ′ = [x → y , x1 → π1(xe), ..., xn → πn(xe)] and y , xe are fresh variables

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 8/17

Rule-Based Specification of Closure Conversion

The transformation is parameterized by a mapping ρ of (source
language) free variables to target language expressions

We represent the closure conversion judgment as follows:

ρ .M M ′

The key rule is for transforming (nested) functions into closures

(x1, ..., xn) = fvars(λx .M) ρ . (x1, ..., xn) Me ρ′ .M M ′

ρ . λx .M 〈λy .λxe.M ′,Me〉
where ρ′ = [x → y , x1 → π1(xe), ..., xn → πn(xe)] and y , xe are fresh variables

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 8/17

Rule-Based Specification of Closure Conversion

The transformation is parameterized by a mapping ρ of (source
language) free variables to target language expressions

We represent the closure conversion judgment as follows:

ρ .M M ′

The key rule is for transforming (nested) functions into closures

(x1, ..., xn) = fvars(λx .M) ρ . (x1, ..., xn) Me ρ′ .M M ′

ρ . λx .M 〈λy .λxe.M ′,Me〉
where ρ′ = [x → y , x1 → π1(xe), ..., xn → πn(xe)] and y , xe are fresh variables

Computing free variables in the abstraction

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 8/17

Rule-Based Specification of Closure Conversion

The transformation is parameterized by a mapping ρ of (source
language) free variables to target language expressions

We represent the closure conversion judgment as follows:

ρ .M M ′

The key rule is for transforming (nested) functions into closures

(x1, ..., xn) = fvars(λx .M) ρ . (x1, ..., xn) Me ρ′ .M M ′

ρ . λx .M 〈λy .λxe.M ′,Me〉
where ρ′ = [x → y , x1 → π1(xe), ..., xn → πn(xe)] and y , xe are fresh variables

Creating an environment from bindings for the free variables

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 8/17

Rule-Based Specification of Closure Conversion

The transformation is parameterized by a mapping ρ of (source
language) free variables to target language expressions

We represent the closure conversion judgment as follows:

ρ .M M ′

The key rule is for transforming (nested) functions into closures

(x1, ..., xn) = fvars(λx .M) ρ . (x1, ..., xn) Me ρ′ .M M ′

ρ . λx .M 〈λy .λxe.M ′,Me〉
where ρ′ = [x → y , x1 → π1(xe), ..., xn → πn(xe)] and y , xe are fresh variables

Creating a mapping from free variables to projections to the
environment

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 8/17

Rule-Based Specification of Closure Conversion

The transformation is parameterized by a mapping ρ of (source
language) free variables to target language expressions

We represent the closure conversion judgment as follows:

ρ .M M ′

The key rule is for transforming (nested) functions into closures

(x1, ..., xn) = fvars(λx .M) ρ . (x1, ..., xn) Me ρ′ .M M ′

ρ . λx .M 〈λy .λxe.M ′,Me〉
where ρ′ = [x → y , x1 → π1(xe), ..., xn → πn(xe)] and y , xe are fresh variables

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 8/17

Computing Free Variables
We want to define fvars such that fvars M Vs FVs holds if

M is a source language term
Vs contains all the free variables in M
FVs contains exactly the free variables in M

The difficulty: M may contain abstractions and then we will need to
distinguish between free and bound variables in it

We can organize this computation in a logical way in λProlog:

For each abstraction encountered in the recursion over M,
introduce a new constant and mark it as bound
Collect the variables encountered in M that are not so marked

Some clauses in the definition of fvars that illustrate these ideas
fvars (abs M) Vs FVs :-
pi y\ bound y => fvars (M y) Vs FVs.

fvars X _ nil :- bound X.
fvars Y Vs (Y :: nil) :- member Y Vs.
...

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 9/17

Computing Free Variables
We want to define fvars such that fvars M Vs FVs holds if

M is a source language term
Vs contains all the free variables in M
FVs contains exactly the free variables in M

The difficulty: M may contain abstractions and then we will need to
distinguish between free and bound variables in it

We can organize this computation in a logical way in λProlog:

For each abstraction encountered in the recursion over M,
introduce a new constant and mark it as bound
Collect the variables encountered in M that are not so marked

Some clauses in the definition of fvars that illustrate these ideas
fvars (abs M) Vs FVs :-
pi y\ bound y => fvars (M y) Vs FVs.

fvars X _ nil :- bound X.
fvars Y Vs (Y :: nil) :- member Y Vs.
...

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 9/17

Computing Free Variables
We want to define fvars such that fvars M Vs FVs holds if

M is a source language term
Vs contains all the free variables in M
FVs contains exactly the free variables in M

The difficulty: M may contain abstractions and then we will need to
distinguish between free and bound variables in it

We can organize this computation in a logical way in λProlog:

For each abstraction encountered in the recursion over M,
introduce a new constant and mark it as bound
Collect the variables encountered in M that are not so marked

Some clauses in the definition of fvars that illustrate these ideas
fvars (abs M) Vs FVs :-
pi y\ bound y => fvars (M y) Vs FVs.

fvars X _ nil :- bound X.
fvars Y Vs (Y :: nil) :- member Y Vs.
...

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 9/17

Computing Free Variables
We want to define fvars such that fvars M Vs FVs holds if

M is a source language term
Vs contains all the free variables in M
FVs contains exactly the free variables in M

The difficulty: M may contain abstractions and then we will need to
distinguish between free and bound variables in it

We can organize this computation in a logical way in λProlog:

For each abstraction encountered in the recursion over M,
introduce a new constant and mark it as bound
Collect the variables encountered in M that are not so marked

Some clauses in the definition of fvars that illustrate these ideas
fvars (abs M) Vs FVs :-
pi y\ bound y => fvars (M y) Vs FVs.

fvars X _ nil :- bound X.
fvars Y Vs (Y :: nil) :- member Y Vs.
...

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 9/17

Creating Maps and Reifying the Environment

We need to generate environments representing bindings for free
variables and mappings from such environments for these variables

We realize this by defining the predicates mapvar and mapenv s.t.

mapenv Map FVs Env holds if Env is the reified environment for
FVs based on Map

mapvar FVs E Map holds if Map is the projection map on E for
the variables in FVs

These definitions are easy once we have fixed representations for
environments and mappings

For the latter, we use a list of items of the form (map X T) encoding
the mapping of the variable X to the term T

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 10/17

Creating Maps and Reifying the Environment

We need to generate environments representing bindings for free
variables and mappings from such environments for these variables

We realize this by defining the predicates mapvar and mapenv s.t.

mapenv Map FVs Env holds if Env is the reified environment for
FVs based on Map

mapvar FVs E Map holds if Map is the projection map on E for
the variables in FVs

These definitions are easy once we have fixed representations for
environments and mappings

For the latter, we use a list of items of the form (map X T) encoding
the mapping of the variable X to the term T

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 10/17

Creating Maps and Reifying the Environment

We need to generate environments representing bindings for free
variables and mappings from such environments for these variables

We realize this by defining the predicates mapvar and mapenv s.t.

mapenv Map FVs Env holds if Env is the reified environment for
FVs based on Map

mapvar FVs E Map holds if Map is the projection map on E for
the variables in FVs

These definitions are easy once we have fixed representations for
environments and mappings

For the latter, we use a list of items of the form (map X T) encoding
the mapping of the variable X to the term T

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 10/17

Creating Maps and Reifying the Environment

We need to generate environments representing bindings for free
variables and mappings from such environments for these variables

We realize this by defining the predicates mapvar and mapenv s.t.

mapenv Map FVs Env holds if Env is the reified environment for
FVs based on Map

mapvar FVs E Map holds if Map is the projection map on E for
the variables in FVs

These definitions are easy once we have fixed representations for
environments and mappings

For the latter, we use a list of items of the form (map X T) encoding
the mapping of the variable X to the term T

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 10/17

Implementing Closure Conversion

We want to define the predicate cc so that cc Map Vs M M’ holds if

Map is a mapping of the free variables to target language terms
Vs contains all the free variables in M
M is a source language term
M’ is the result of the transformation

The clause in the definition of this predicate that encodes the rule for
transforming an abstraction:

cc Map Vs
(abs M)
(clos (abs’ (y\ abs’ (xenv\))))

)

:-
(

pi x\ pi y\ pi xenv\
fvars (abs M) Vs FVs,
mapenv Map FVs PE,
mapvar FVs xenv NMap,
cc ((map x y) :: NMap) (x :: FVs) (M x) (P xenv y)

).

Note how the side conditions relating to names and all other aspects
of the rule are given a logical treatment

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 11/17

Implementing Closure Conversion

We want to define the predicate cc so that cc Map Vs M M’ holds if

Map is a mapping of the free variables to target language terms
Vs contains all the free variables in M
M is a source language term
M’ is the result of the transformation

The clause in the definition of this predicate that encodes the rule for
transforming an abstraction:

cc Map Vs
(abs M)
(clos (abs’ (y\ abs’ (xenv\))))

)

:-
(

pi x\ pi y\ pi xenv\
fvars (abs M) Vs FVs,
mapenv Map FVs PE,
mapvar FVs xenv NMap,
cc ((map x y) :: NMap) (x :: FVs) (M x) (P xenv y)

).

Note how the side conditions relating to names and all other aspects
of the rule are given a logical treatment

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 11/17

Implementing Closure Conversion

We want to define the predicate cc so that cc Map Vs M M’ holds if

Map is a mapping of the free variables to target language terms
Vs contains all the free variables in M
M is a source language term
M’ is the result of the transformation

The clause in the definition of this predicate that encodes the rule for
transforming an abstraction:

cc Map Vs
(abs M)
(clos (abs’ (y\ abs’ (xenv\ ________))))

__)

:-
(

pi x\ pi y\ pi xenv\
fvars (abs M) Vs FVs,
mapenv Map FVs PE,
mapvar FVs xenv NMap,
cc ((map x y) :: NMap) (x :: FVs) (M x) (P xenv y)

).

Note how the side conditions relating to names and all other aspects
of the rule are given a logical treatment

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 11/17

Implementing Closure Conversion

We want to define the predicate cc so that cc Map Vs M M’ holds if

Map is a mapping of the free variables to target language terms
Vs contains all the free variables in M
M is a source language term
M’ is the result of the transformation

The clause in the definition of this predicate that encodes the rule for
transforming an abstraction:

cc Map Vs
(abs M)
(clos (abs’ (y\ abs’ (xenv\ ________))))

__) :-
(

pi x\ pi y\ pi xenv\

fvars (abs M) Vs FVs,

mapenv Map FVs PE,
mapvar FVs xenv NMap,
cc ((map x y) :: NMap) (x :: FVs) (M x) (P xenv y)

).

Note how the side conditions relating to names and all other aspects
of the rule are given a logical treatment

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 11/17

Implementing Closure Conversion

We want to define the predicate cc so that cc Map Vs M M’ holds if

Map is a mapping of the free variables to target language terms
Vs contains all the free variables in M
M is a source language term
M’ is the result of the transformation

The clause in the definition of this predicate that encodes the rule for
transforming an abstraction:

cc Map Vs
(abs M)
(clos (abs’ (y\ abs’ (xenv\ ________))))

PE) :-
(

pi x\ pi y\ pi xenv\

fvars (abs M) Vs FVs,
mapenv Map FVs PE,

mapvar FVs xenv NMap,
cc ((map x y) :: NMap) (x :: FVs) (M x) (P xenv y)

).

Note how the side conditions relating to names and all other aspects
of the rule are given a logical treatment

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 11/17

Implementing Closure Conversion

We want to define the predicate cc so that cc Map Vs M M’ holds if

Map is a mapping of the free variables to target language terms
Vs contains all the free variables in M
M is a source language term
M’ is the result of the transformation

The clause in the definition of this predicate that encodes the rule for
transforming an abstraction:

cc Map Vs
(abs M)
(clos (abs’ (y\ abs’ (xenv\ ________))))

PE) :-
(

pi x\ pi y\

pi xenv\
fvars (abs M) Vs FVs,
mapenv Map FVs PE,
mapvar FVs xenv NMap,

cc ((map x y) :: NMap) (x :: FVs) (M x) (P xenv y)

).

Note how the side conditions relating to names and all other aspects
of the rule are given a logical treatment

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 11/17

Implementing Closure Conversion

We want to define the predicate cc so that cc Map Vs M M’ holds if

Map is a mapping of the free variables to target language terms
Vs contains all the free variables in M
M is a source language term
M’ is the result of the transformation

The clause in the definition of this predicate that encodes the rule for
transforming an abstraction:

cc Map Vs
(abs M)
(clos (abs’ (y\ abs’ (xenv\ P xenv y))))

PE) :-
(pi x\ pi y\ pi xenv\

fvars (abs M) Vs FVs,
mapenv Map FVs PE,
mapvar FVs xenv NMap,
cc ((map x y) :: NMap) (x :: FVs) (M x) (P xenv y)).

Note how the side conditions relating to names and all other aspects
of the rule are given a logical treatment

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 11/17

Implementing Closure Conversion

We want to define the predicate cc so that cc Map Vs M M’ holds if

Map is a mapping of the free variables to target language terms
Vs contains all the free variables in M
M is a source language term
M’ is the result of the transformation

The clause in the definition of this predicate that encodes the rule for
transforming an abstraction:

cc Map Vs
(abs M)
(clos (abs’ (y\ abs’ (xenv\ P xenv y))))

PE) :-
(pi x\ pi y\ pi xenv\

fvars (abs M) Vs FVs,
mapenv Map FVs PE,
mapvar FVs xenv NMap,
cc ((map x y) :: NMap) (x :: FVs) (M x) (P xenv y)).

Note how the side conditions relating to names and all other aspects
of the rule are given a logical treatment

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 11/17

The Theorem Prover Abella
Abella also encodes relational specifications but does this in a way
that we can reason about them

Relations are encoded through clauses of the form:

∀~X .H(~X) , B(~X)

append nil L L , >;

append (X :: L1) L2 (X :: L3) , append L1 L2 L3

Such definitions get a fixed-point interpretation, allowing for case
analysis based reasoning

∀L1 L2,append nil L1 L2 ⊃ L1 = L2

In fact, definitions can be given a least fixed-point interpretation,
leading to inductive reasoning

∀L1 L2 L3 L′
3,append L1 L2 L3 ⊃ append L1 L2 L′

3 ⊃ L3 = L′
3

Abella also uses λ-terms for representing objects and has a
special quantifier ∇ for a proof-level treatment of such binders

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 12/17

The Theorem Prover Abella
Abella also encodes relational specifications but does this in a way
that we can reason about them

Relations are encoded through clauses of the form:

∀~X .H(~X) , B(~X)

append nil L L , >;

append (X :: L1) L2 (X :: L3) , append L1 L2 L3

Such definitions get a fixed-point interpretation, allowing for case
analysis based reasoning

∀L1 L2,append nil L1 L2 ⊃ L1 = L2

In fact, definitions can be given a least fixed-point interpretation,
leading to inductive reasoning

∀L1 L2 L3 L′
3,append L1 L2 L3 ⊃ append L1 L2 L′

3 ⊃ L3 = L′
3

Abella also uses λ-terms for representing objects and has a
special quantifier ∇ for a proof-level treatment of such binders

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 12/17

The Theorem Prover Abella
Abella also encodes relational specifications but does this in a way
that we can reason about them

Relations are encoded through clauses of the form:

∀~X .H(~X) , B(~X)

append nil L L , >;

append (X :: L1) L2 (X :: L3) , append L1 L2 L3

Such definitions get a fixed-point interpretation, allowing for case
analysis based reasoning

∀L1 L2,append nil L1 L2 ⊃ L1 = L2

In fact, definitions can be given a least fixed-point interpretation,
leading to inductive reasoning

∀L1 L2 L3 L′
3,append L1 L2 L3 ⊃ append L1 L2 L′

3 ⊃ L3 = L′
3

Abella also uses λ-terms for representing objects and has a
special quantifier ∇ for a proof-level treatment of such binders

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 12/17

The Theorem Prover Abella
Abella also encodes relational specifications but does this in a way
that we can reason about them

Relations are encoded through clauses of the form:

∀~X .H(~X) , B(~X)

append nil L L , >;

append (X :: L1) L2 (X :: L3) , append L1 L2 L3

Such definitions get a fixed-point interpretation, allowing for case
analysis based reasoning

∀L1 L2,append nil L1 L2 ⊃ L1 = L2

In fact, definitions can be given a least fixed-point interpretation,
leading to inductive reasoning

∀L1 L2 L3 L′
3,append L1 L2 L3 ⊃ append L1 L2 L′

3 ⊃ L3 = L′
3

Abella also uses λ-terms for representing objects and has a
special quantifier ∇ for a proof-level treatment of such binders

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 12/17

The Theorem Prover Abella
Abella also encodes relational specifications but does this in a way
that we can reason about them

Relations are encoded through clauses of the form:

∀~X .H(~X) , B(~X)

append nil L L , >;

append (X :: L1) L2 (X :: L3) , append L1 L2 L3

Such definitions get a fixed-point interpretation, allowing for case
analysis based reasoning

∀L1 L2,append nil L1 L2 ⊃ L1 = L2

In fact, definitions can be given a least fixed-point interpretation,
leading to inductive reasoning

∀L1 L2 L3 L′
3,append L1 L2 L3 ⊃ append L1 L2 L′

3 ⊃ L3 = L′
3

Abella also uses λ-terms for representing objects and has a
special quantifier ∇ for a proof-level treatment of such binders

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 12/17

The Theorem Prover Abella
Abella also encodes relational specifications but does this in a way
that we can reason about them

Relations are encoded through clauses of the form:

∀~X .H(~X) , B(~X)

append nil L L , >;

append (X :: L1) L2 (X :: L3) , append L1 L2 L3

Such definitions get a fixed-point interpretation, allowing for case
analysis based reasoning

∀L1 L2,append nil L1 L2 ⊃ L1 = L2

In fact, definitions can be given a least fixed-point interpretation,
leading to inductive reasoning

∀L1 L2 L3 L′
3,append L1 L2 L3 ⊃ append L1 L2 L′

3 ⊃ L3 = L′
3

Abella also uses λ-terms for representing objects and has a
special quantifier ∇ for a proof-level treatment of such binders

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 12/17

The Theorem Prover Abella
Abella also encodes relational specifications but does this in a way
that we can reason about them

Relations are encoded through clauses of the form:

∀~X .H(~X) , B(~X)

append nil L L , >;

append (X :: L1) L2 (X :: L3) , append L1 L2 L3

Such definitions get a fixed-point interpretation, allowing for case
analysis based reasoning

∀L1 L2,append nil L1 L2 ⊃ L1 = L2

In fact, definitions can be given a least fixed-point interpretation,
leading to inductive reasoning

∀L1 L2 L3 L′
3,append L1 L2 L3 ⊃ append L1 L2 L′

3 ⊃ L3 = L′
3

Abella also uses λ-terms for representing objects and has a
special quantifier ∇ for a proof-level treatment of such binders

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 12/17

The Theorem Prover Abella
Abella also encodes relational specifications but does this in a way
that we can reason about them

Relations are encoded through clauses of the form:

∀~X .H(~X) , B(~X)

append nil L L , >;

append (X :: L1) L2 (X :: L3) , append L1 L2 L3

Such definitions get a fixed-point interpretation, allowing for case
analysis based reasoning

∀L1 L2,append nil L1 L2 ⊃ L1 = L2

In fact, definitions can be given a least fixed-point interpretation,
leading to inductive reasoning

∀L1 L2 L3 L′
3,append L1 L2 L3 ⊃ append L1 L2 L′

3 ⊃ L3 = L′
3

Abella also uses λ-terms for representing objects and has a
special quantifier ∇ for a proof-level treatment of such binders

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 12/17

Characterizing Variable Occurrences in Terms

The full form of definitional clauses is actually the following

∀~X .(∇~z.H(~X , ~z)) , B(~X)

Such a clause signifies that an instance of H is true if the
corresponding instance of B is true, provided

~z is instantiated with distinct, “names” arising from ∇ quantifiers

~X is instantiated with terms not containing these names

A classic use of this definitional form is to realize substitution for free
variables in terms that are represented by ∇ quantified names

app_subst nil M M , >;
∇ x, app_subst ((map x V) :: ML) (R x) M ,
app_subst ML (R V) M.

Here, the “pattern” (R x) is used to bind R to the term with x
abstracted out and applying R to V then realizes the substitution

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 13/17

Characterizing Variable Occurrences in Terms

The full form of definitional clauses is actually the following

∀~X .(∇~z.H(~X , ~z)) , B(~X)

Such a clause signifies that an instance of H is true if the
corresponding instance of B is true, provided

~z is instantiated with distinct, “names” arising from ∇ quantifiers

~X is instantiated with terms not containing these names

A classic use of this definitional form is to realize substitution for free
variables in terms that are represented by ∇ quantified names

app_subst nil M M , >;
∇ x, app_subst ((map x V) :: ML) (R x) M ,
app_subst ML (R V) M.

Here, the “pattern” (R x) is used to bind R to the term with x
abstracted out and applying R to V then realizes the substitution

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 13/17

Characterizing Variable Occurrences in Terms

The full form of definitional clauses is actually the following

∀~X .(∇~z.H(~X , ~z)) , B(~X)

Such a clause signifies that an instance of H is true if the
corresponding instance of B is true, provided

~z is instantiated with distinct, “names” arising from ∇ quantifiers

~X is instantiated with terms not containing these names

A classic use of this definitional form is to realize substitution for free
variables in terms that are represented by ∇ quantified names

app_subst nil M M , >;
∇ x, app_subst ((map x V) :: ML) (R x) M ,
app_subst ML (R V) M.

Here, the “pattern” (R x) is used to bind R to the term with x
abstracted out and applying R to V then realizes the substitution

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 13/17

Characterizing Variable Occurrences in Terms

The full form of definitional clauses is actually the following

∀~X .(∇~z.H(~X , ~z)) , B(~X)

Such a clause signifies that an instance of H is true if the
corresponding instance of B is true, provided

~z is instantiated with distinct, “names” arising from ∇ quantifiers

~X is instantiated with terms not containing these names

A classic use of this definitional form is to realize substitution for free
variables in terms that are represented by ∇ quantified names

app_subst nil M M , >;
∇ x, app_subst ((map x V) :: ML) (R x) M ,
app_subst ML (R V) M.

Here, the “pattern” (R x) is used to bind R to the term with x
abstracted out and applying R to V then realizes the substitution

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 13/17

Characterizing Variable Occurrences in Terms

The full form of definitional clauses is actually the following

∀~X .(∇~z.H(~X , ~z)) , B(~X)

Such a clause signifies that an instance of H is true if the
corresponding instance of B is true, provided

~z is instantiated with distinct, “names” arising from ∇ quantifiers

~X is instantiated with terms not containing these names

A classic use of this definitional form is to realize substitution for free
variables in terms that are represented by ∇ quantified names

app_subst nil M M , >;
∇ x, app_subst ((map x V) :: ML) (R x) M ,
app_subst ML (R V) M.

Here, the “pattern” (R x) is used to bind R to the term with x
abstracted out and applying R to V then realizes the substitution

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 13/17

Characterizing Variable Occurrences in Terms

The full form of definitional clauses is actually the following

∀~X .(∇~z.H(~X , ~z)) , B(~X)

Such a clause signifies that an instance of H is true if the
corresponding instance of B is true, provided

~z is instantiated with distinct, “names” arising from ∇ quantifiers

~X is instantiated with terms not containing these names

A classic use of this definitional form is to realize substitution for free
variables in terms that are represented by ∇ quantified names

app_subst nil M M , >;
∇ x, app_subst ((map x V) :: ML) (R x) M ,
app_subst ML (R V) M.

Here, the “pattern” (R x) is used to bind R to the term with x
abstracted out and applying R to V then realizes the substitution

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 13/17

Reasoning About λProlog Programs Using Abella

Abella supports this possibility via the two-level logic approach:

The entire specification logic is itself encoded into Abella

The judgment L ` G is represented by the Abella relation {L ` G}
The derivation rules are captured in a definition of {−}

Specifications in λProlog are introduced into Abella as a
parameter of the definition of {−}

Finally, theorems about λProlog specifications become theorems
about specific {−} predicates

For example, the preservation of types by evaluation is stated as
follows:

∀ M T V , {` of M T} ⊃ {` eval M V} ⊃ {` of V T}

This approach also allows us to exploit the meta-theory of the
specification logic in reasoning and to capture informal styles of proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 14/17

Reasoning About λProlog Programs Using Abella

Abella supports this possibility via the two-level logic approach:

The entire specification logic is itself encoded into Abella

The judgment L ` G is represented by the Abella relation {L ` G}
The derivation rules are captured in a definition of {−}

Specifications in λProlog are introduced into Abella as a
parameter of the definition of {−}

Finally, theorems about λProlog specifications become theorems
about specific {−} predicates

For example, the preservation of types by evaluation is stated as
follows:

∀ M T V , {` of M T} ⊃ {` eval M V} ⊃ {` of V T}

This approach also allows us to exploit the meta-theory of the
specification logic in reasoning and to capture informal styles of proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 14/17

Reasoning About λProlog Programs Using Abella

Abella supports this possibility via the two-level logic approach:

The entire specification logic is itself encoded into Abella

The judgment L ` G is represented by the Abella relation {L ` G}
The derivation rules are captured in a definition of {−}

Specifications in λProlog are introduced into Abella as a
parameter of the definition of {−}

Finally, theorems about λProlog specifications become theorems
about specific {−} predicates

For example, the preservation of types by evaluation is stated as
follows:

∀ M T V , {` of M T} ⊃ {` eval M V} ⊃ {` of V T}

This approach also allows us to exploit the meta-theory of the
specification logic in reasoning and to capture informal styles of proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 14/17

Reasoning About λProlog Programs Using Abella

Abella supports this possibility via the two-level logic approach:

The entire specification logic is itself encoded into Abella

The judgment L ` G is represented by the Abella relation {L ` G}
The derivation rules are captured in a definition of {−}

Specifications in λProlog are introduced into Abella as a
parameter of the definition of {−}

Finally, theorems about λProlog specifications become theorems
about specific {−} predicates

For example, the preservation of types by evaluation is stated as
follows:

∀ M T V , {` of M T} ⊃ {` eval M V} ⊃ {` of V T}

This approach also allows us to exploit the meta-theory of the
specification logic in reasoning and to capture informal styles of proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 14/17

Reasoning About λProlog Programs Using Abella

Abella supports this possibility via the two-level logic approach:

The entire specification logic is itself encoded into Abella

The judgment L ` G is represented by the Abella relation {L ` G}
The derivation rules are captured in a definition of {−}

Specifications in λProlog are introduced into Abella as a
parameter of the definition of {−}

Finally, theorems about λProlog specifications become theorems
about specific {−} predicates

For example, the preservation of types by evaluation is stated as
follows:

∀ M T V , {` of M T} ⊃ {` eval M V} ⊃ {` of V T}

This approach also allows us to exploit the meta-theory of the
specification logic in reasoning and to capture informal styles of proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 14/17

Reasoning About λProlog Programs Using Abella

Abella supports this possibility via the two-level logic approach:

The entire specification logic is itself encoded into Abella

The judgment L ` G is represented by the Abella relation {L ` G}
The derivation rules are captured in a definition of {−}

Specifications in λProlog are introduced into Abella as a
parameter of the definition of {−}

Finally, theorems about λProlog specifications become theorems
about specific {−} predicates

For example, the preservation of types by evaluation is stated as
follows:

∀ M T V , {` of M T} ⊃ {` eval M V} ⊃ {` of V T}

This approach also allows us to exploit the meta-theory of the
specification logic in reasoning and to capture informal styles of proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 14/17

Semantics Preservation for Closure Conversion

Equivalence between closed values in the source and target
languages can be defined in a logical relation style:

Values of atomic types are equivalent if they are identical

Values of function types are equivalent if they yield equivalent
results given equivalent arguments

Extended to arbitrary closed terms via evaluation

All this can be formalized in Abella by the definition of sim T M M’

Actually, to state the correctness of closure conversion, what we need
is equivalence between programs containing free variables

Such an equivalence can be based on equivalence of closed terms
under equivalent closed substitutions

As seen with app_subst, substitutions and their equivalence can be
formalized in a simple, logical way in Abella

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 15/17

Semantics Preservation for Closure Conversion

Equivalence between closed values in the source and target
languages can be defined in a logical relation style:

Values of atomic types are equivalent if they are identical

Values of function types are equivalent if they yield equivalent
results given equivalent arguments

Extended to arbitrary closed terms via evaluation

All this can be formalized in Abella by the definition of sim T M M’

Actually, to state the correctness of closure conversion, what we need
is equivalence between programs containing free variables

Such an equivalence can be based on equivalence of closed terms
under equivalent closed substitutions

As seen with app_subst, substitutions and their equivalence can be
formalized in a simple, logical way in Abella

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 15/17

Semantics Preservation for Closure Conversion

Equivalence between closed values in the source and target
languages can be defined in a logical relation style:

Values of atomic types are equivalent if they are identical

Values of function types are equivalent if they yield equivalent
results given equivalent arguments

Extended to arbitrary closed terms via evaluation

All this can be formalized in Abella by the definition of sim T M M’

Actually, to state the correctness of closure conversion, what we need
is equivalence between programs containing free variables

Such an equivalence can be based on equivalence of closed terms
under equivalent closed substitutions

As seen with app_subst, substitutions and their equivalence can be
formalized in a simple, logical way in Abella

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 15/17

Semantics Preservation for Closure Conversion

Equivalence between closed values in the source and target
languages can be defined in a logical relation style:

Values of atomic types are equivalent if they are identical

Values of function types are equivalent if they yield equivalent
results given equivalent arguments

Extended to arbitrary closed terms via evaluation

All this can be formalized in Abella by the definition of sim T M M’

Actually, to state the correctness of closure conversion, what we need
is equivalence between programs containing free variables

Such an equivalence can be based on equivalence of closed terms
under equivalent closed substitutions

As seen with app_subst, substitutions and their equivalence can be
formalized in a simple, logical way in Abella

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 15/17

Semantics Preservation for Closure Conversion

Equivalence between closed values in the source and target
languages can be defined in a logical relation style:

Values of atomic types are equivalent if they are identical

Values of function types are equivalent if they yield equivalent
results given equivalent arguments

Extended to arbitrary closed terms via evaluation

All this can be formalized in Abella by the definition of sim T M M’

Actually, to state the correctness of closure conversion, what we need
is equivalence between programs containing free variables

Such an equivalence can be based on equivalence of closed terms
under equivalent closed substitutions

As seen with app_subst, substitutions and their equivalence can be
formalized in a simple, logical way in Abella

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 15/17

Semantics Preservation for Closure Conversion

Equivalence between closed values in the source and target
languages can be defined in a logical relation style:

Values of atomic types are equivalent if they are identical

Values of function types are equivalent if they yield equivalent
results given equivalent arguments

Extended to arbitrary closed terms via evaluation

All this can be formalized in Abella by the definition of sim T M M’

Actually, to state the correctness of closure conversion, what we need
is equivalence between programs containing free variables

Such an equivalence can be based on equivalence of closed terms
under equivalent closed substitutions

As seen with app_subst, substitutions and their equivalence can be
formalized in a simple, logical way in Abella

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 15/17

Semantics Preservation for Closure Conversion

Equivalence between closed values in the source and target
languages can be defined in a logical relation style:

Values of atomic types are equivalent if they are identical

Values of function types are equivalent if they yield equivalent
results given equivalent arguments

Extended to arbitrary closed terms via evaluation

All this can be formalized in Abella by the definition of sim T M M’

Actually, to state the correctness of closure conversion, what we need
is equivalence between programs containing free variables

Such an equivalence can be based on equivalence of closed terms
under equivalent closed substitutions

As seen with app_subst, substitutions and their equivalence can be
formalized in a simple, logical way in Abella

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 15/17

Formalizing the Correctness of Closure Conversion

The correctness property is as follows:

Assume M is transformed into M ′ by closure conversion,
then under any equivalent and closed substitutions δ and δ′,
M[δ] is equivalent to M ′[δ′].

We can define subst_equiv such that subst_equiv L ML ML’
holds for substitutions ML and ML’ equivalent in the typing context L

Then the correctness theorem becomes the following:

∀ L ML ML’ Map T P P’ M M’,
...
subst_equiv L ML ML’ ⊃ {L ` of M T} ⊃ {cc Map Vs M M’} ⊃
app_subst ML M P ⊃ app_subst’ ML’ M’ P’ ⊃ sim T P P’.

This theorem can be proved by induction on {cc Map Vs M M’}

The logical nature of the specification, the meta-level treatment of
substitution, etc, all conspire to yield a concise and transparent proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 16/17

Formalizing the Correctness of Closure Conversion

The correctness property is as follows:

Assume M is transformed into M ′ by closure conversion,
then under any equivalent and closed substitutions δ and δ′,
M[δ] is equivalent to M ′[δ′].

We can define subst_equiv such that subst_equiv L ML ML’
holds for substitutions ML and ML’ equivalent in the typing context L

Then the correctness theorem becomes the following:

∀ L ML ML’ Map T P P’ M M’,
...
subst_equiv L ML ML’ ⊃ {L ` of M T} ⊃ {cc Map Vs M M’} ⊃
app_subst ML M P ⊃ app_subst’ ML’ M’ P’ ⊃ sim T P P’.

This theorem can be proved by induction on {cc Map Vs M M’}

The logical nature of the specification, the meta-level treatment of
substitution, etc, all conspire to yield a concise and transparent proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 16/17

Formalizing the Correctness of Closure Conversion

The correctness property is as follows:

Assume M is transformed into M ′ by closure conversion,
then under any equivalent and closed substitutions δ and δ′,
M[δ] is equivalent to M ′[δ′].

We can define subst_equiv such that subst_equiv L ML ML’
holds for substitutions ML and ML’ equivalent in the typing context L

Then the correctness theorem becomes the following:

∀ L ML ML’ Map T P P’ M M’,
...
subst_equiv L ML ML’ ⊃ {L ` of M T} ⊃ {cc Map Vs M M’} ⊃
app_subst ML M P ⊃ app_subst’ ML’ M’ P’ ⊃ sim T P P’.

This theorem can be proved by induction on {cc Map Vs M M’}

The logical nature of the specification, the meta-level treatment of
substitution, etc, all conspire to yield a concise and transparent proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 16/17

Formalizing the Correctness of Closure Conversion

The correctness property is as follows:

Assume M is transformed into M ′ by closure conversion,
then under any equivalent and closed substitutions δ and δ′,
M[δ] is equivalent to M ′[δ′].

We can define subst_equiv such that subst_equiv L ML ML’
holds for substitutions ML and ML’ equivalent in the typing context L

Then the correctness theorem becomes the following:

∀ L ML ML’ Map T P P’ M M’,
...
subst_equiv L ML ML’ ⊃ {L ` of M T} ⊃ {cc Map Vs M M’} ⊃
app_subst ML M P ⊃ app_subst’ ML’ M’ P’ ⊃ sim T P P’.

This theorem can be proved by induction on {cc Map Vs M M’}

The logical nature of the specification, the meta-level treatment of
substitution, etc, all conspire to yield a concise and transparent proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 16/17

Formalizing the Correctness of Closure Conversion

The correctness property is as follows:

Assume M is transformed into M ′ by closure conversion,
then under any equivalent and closed substitutions δ and δ′,
M[δ] is equivalent to M ′[δ′].

We can define subst_equiv such that subst_equiv L ML ML’
holds for substitutions ML and ML’ equivalent in the typing context L

Then the correctness theorem becomes the following:

∀ L ML ML’ Map T P P’ M M’,
...
subst_equiv L ML ML’ ⊃ {L ` of M T} ⊃ {cc Map Vs M M’} ⊃
app_subst ML M P ⊃ app_subst’ ML’ M’ P’ ⊃ sim T P P’.

This theorem can be proved by induction on {cc Map Vs M M’}

The logical nature of the specification, the meta-level treatment of
substitution, etc, all conspire to yield a concise and transparent proof

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 16/17

Conclusion and Future Work

In this talk and the paper, we have

argued for the usefulness of λProlog and Abella in realizing
verified compiler transformations

implemented closure conversion and other transformations in
λProlog for a language with recursion

verified these implementations using semantics preservation
based on step-indexed logical relations

Future Work:

Exploring the effectiveness of our approach when different or
deeper notions of correctness are used

Implementing and verifying compilation of real-world functional
languages such as a subset of SML

Building automation and polymorphism into Abella to further
reduce the proof effort

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 17/17

Conclusion and Future Work

In this talk and the paper, we have

argued for the usefulness of λProlog and Abella in realizing
verified compiler transformations

implemented closure conversion and other transformations in
λProlog for a language with recursion

verified these implementations using semantics preservation
based on step-indexed logical relations

Future Work:

Exploring the effectiveness of our approach when different or
deeper notions of correctness are used

Implementing and verifying compilation of real-world functional
languages such as a subset of SML

Building automation and polymorphism into Abella to further
reduce the proof effort

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 17/17

Conclusion and Future Work

In this talk and the paper, we have

argued for the usefulness of λProlog and Abella in realizing
verified compiler transformations

implemented closure conversion and other transformations in
λProlog for a language with recursion

verified these implementations using semantics preservation
based on step-indexed logical relations

Future Work:

Exploring the effectiveness of our approach when different or
deeper notions of correctness are used

Implementing and verifying compilation of real-world functional
languages such as a subset of SML

Building automation and polymorphism into Abella to further
reduce the proof effort

Yuting Wang and Gopalan Nadathur Verified Transformations on Functional Programs 17/17

