
Schematic Polymorphism
in the Abella Proof Assistant

Gopalan Nadathur 1 Yuting Wang 2

1University of Minnesota, Twin Cities

2Yale University

PPDP, Frankfurt am main, September 2018

Yuting Wang Polymorphic Abella 1/13



The Abella Proof Assistant

An interactive theorem proving system with the following
characteristics

Based on a (first-order) logic over lambda terms that
incorporates (least and greatest) fixed point definitions

Embeds an executable (first-order) specification logic also
over lambda terms

Supports higher-order abstract syntax

Abella provides a vehicle for implementing and verifying
rule-based systems exploiting higher-order abstract syntax

One limitation: both the reasoning logic and the specification
logic are simply typed

Yuting Wang Polymorphic Abella 2/13



The Abella Proof Assistant

An interactive theorem proving system with the following
characteristics

Based on a (first-order) logic over lambda terms that
incorporates (least and greatest) fixed point definitions

Embeds an executable (first-order) specification logic also
over lambda terms

Supports higher-order abstract syntax

Abella provides a vehicle for implementing and verifying
rule-based systems exploiting higher-order abstract syntax

One limitation: both the reasoning logic and the specification
logic are simply typed

Yuting Wang Polymorphic Abella 2/13



The Abella Proof Assistant

An interactive theorem proving system with the following
characteristics

Based on a (first-order) logic over lambda terms that
incorporates (least and greatest) fixed point definitions

Embeds an executable (first-order) specification logic also
over lambda terms

Supports higher-order abstract syntax

Abella provides a vehicle for implementing and verifying
rule-based systems exploiting higher-order abstract syntax

One limitation: both the reasoning logic and the specification
logic are simply typed

Yuting Wang Polymorphic Abella 2/13



The Problems with Monomorphic Typing

In implementation and reasoning tasks, we often need to treat
library data structures and operations at different types

For example, in verified compilation we may need to

specify lists and operations on them for managing bound
variables in different intermediate languages

prove properties concerning these data structures

With monomorphic typing, such developments have to be
repeated several times

Our goal: to make them more concise and modular without
changing the theoretical underpinnings of Abella

Yuting Wang Polymorphic Abella 3/13



The Problems with Monomorphic Typing

In implementation and reasoning tasks, we often need to treat
library data structures and operations at different types

For example, in verified compilation we may need to

specify lists and operations on them for managing bound
variables in different intermediate languages

prove properties concerning these data structures

With monomorphic typing, such developments have to be
repeated several times

Our goal: to make them more concise and modular without
changing the theoretical underpinnings of Abella

Yuting Wang Polymorphic Abella 3/13



The Problems with Monomorphic Typing

In implementation and reasoning tasks, we often need to treat
library data structures and operations at different types

For example, in verified compilation we may need to

specify lists and operations on them for managing bound
variables in different intermediate languages

prove properties concerning these data structures

With monomorphic typing, such developments have to be
repeated several times

Our goal: to make them more concise and modular without
changing the theoretical underpinnings of Abella

Yuting Wang Polymorphic Abella 3/13



The Problems with Monomorphic Typing

In implementation and reasoning tasks, we often need to treat
library data structures and operations at different types

For example, in verified compilation we may need to

specify lists and operations on them for managing bound
variables in different intermediate languages

prove properties concerning these data structures

With monomorphic typing, such developments have to be
repeated several times

Our goal: to make them more concise and modular without
changing the theoretical underpinnings of Abella

Yuting Wang Polymorphic Abella 3/13



The Treatment of Fixed-Point Definitions

Predicate constants are treated as defined symbols whose
meanings are given by clauses of the form

∀x1 : α1, . . . , xn : αn. p t1 . . . tn , B

The logic is parameterized by a definition, which is a collection
of such clauses introduced in definition blocks

Example: ∀` : list. app nil ` ` , >
∀x : ι, ` : list, `2 : list, `3 : list.
app (x :: `1) `2 (x :: `3) , app `1 `2 `3

Definitions are given a fixed-point interpretation via rules for
introducing atomic formulas in a sequent-style presentation

The right introduction rule realizes the idea of backchaining

The left introduction rule codifies case analysis, which
builds in equality based on term structure

Yuting Wang Polymorphic Abella 4/13



The Treatment of Fixed-Point Definitions

Predicate constants are treated as defined symbols whose
meanings are given by clauses of the form

∀x1 : α1, . . . , xn : αn. p t1 . . . tn , B

The logic is parameterized by a definition, which is a collection
of such clauses introduced in definition blocks

Example: ∀` : list. app nil ` ` , >
∀x : ι, ` : list, `2 : list, `3 : list.
app (x :: `1) `2 (x :: `3) , app `1 `2 `3

Definitions are given a fixed-point interpretation via rules for
introducing atomic formulas in a sequent-style presentation

The right introduction rule realizes the idea of backchaining

The left introduction rule codifies case analysis, which
builds in equality based on term structure

Yuting Wang Polymorphic Abella 4/13



The Treatment of Fixed-Point Definitions

Predicate constants are treated as defined symbols whose
meanings are given by clauses of the form

∀x1 : α1, . . . , xn : αn. p t1 . . . tn , B

The logic is parameterized by a definition, which is a collection
of such clauses introduced in definition blocks

Example: ∀` : list. app nil ` ` , >
∀x : ι, ` : list, `2 : list, `3 : list.
app (x :: `1) `2 (x :: `3) , app `1 `2 `3

Definitions are given a fixed-point interpretation via rules for
introducing atomic formulas in a sequent-style presentation

The right introduction rule realizes the idea of backchaining

The left introduction rule codifies case analysis, which
builds in equality based on term structure

Yuting Wang Polymorphic Abella 4/13



The Left Introduction Rule for Definitions

Let S be the sequent Σ : Γ,A −→ F , where Σ represents the
eigenvariable context

Let CSU(A,A′) represents a complete set of unifiers for (the
atomic formulas or terms) A and A′

For definition D, let cases(S,D) be the set of sequents

{Σθ : Γθ,Bθ −→ Fθ | ∀x . A′ , B ∈ D and θ ∈ CSU(A,A′)}

where Σθ removes eigenvariables in the domain of θ and adds
those in its range

Then the left introduction rule is the following

cases(Σ : Γ,A −→ F ,D)

Σ : Γ,A −→ F

A point to note: this rule is sensitive to type information

Yuting Wang Polymorphic Abella 5/13



The Left Introduction Rule for Definitions

Let S be the sequent Σ : Γ,A −→ F , where Σ represents the
eigenvariable context

Let CSU(A,A′) represents a complete set of unifiers for (the
atomic formulas or terms) A and A′

For definition D, let cases(S,D) be the set of sequents

{Σθ : Γθ,Bθ −→ Fθ | ∀x . A′ , B ∈ D and θ ∈ CSU(A,A′)}

where Σθ removes eigenvariables in the domain of θ and adds
those in its range

Then the left introduction rule is the following

cases(Σ : Γ,A −→ F ,D)

Σ : Γ,A −→ F

A point to note: this rule is sensitive to type information

Yuting Wang Polymorphic Abella 5/13



The Left Introduction Rule for Definitions

Let S be the sequent Σ : Γ,A −→ F , where Σ represents the
eigenvariable context

Let CSU(A,A′) represents a complete set of unifiers for (the
atomic formulas or terms) A and A′

For definition D, let cases(S,D) be the set of sequents

{Σθ : Γθ,Bθ −→ Fθ | ∀x . A′ , B ∈ D and θ ∈ CSU(A,A′)}

where Σθ removes eigenvariables in the domain of θ and adds
those in its range

Then the left introduction rule is the following

cases(Σ : Γ,A −→ F ,D)

Σ : Γ,A −→ F

A point to note: this rule is sensitive to type information

Yuting Wang Polymorphic Abella 5/13



The Left Introduction Rule for Definitions

Let S be the sequent Σ : Γ,A −→ F , where Σ represents the
eigenvariable context

Let CSU(A,A′) represents a complete set of unifiers for (the
atomic formulas or terms) A and A′

For definition D, let cases(S,D) be the set of sequents

{Σθ : Γθ,Bθ −→ Fθ | ∀x . A′ , B ∈ D and θ ∈ CSU(A,A′)}

where Σθ removes eigenvariables in the domain of θ and adds
those in its range

Then the left introduction rule is the following

cases(Σ : Γ,A −→ F ,D)

Σ : Γ,A −→ F

A point to note: this rule is sensitive to type information

Yuting Wang Polymorphic Abella 5/13



The Left Introduction Rule for Definitions

Let S be the sequent Σ : Γ,A −→ F , where Σ represents the
eigenvariable context

Let CSU(A,A′) represents a complete set of unifiers for (the
atomic formulas or terms) A and A′

For definition D, let cases(S,D) be the set of sequents

{Σθ : Γθ,Bθ −→ Fθ | ∀x . A′ , B ∈ D and θ ∈ CSU(A,A′)}

where Σθ removes eigenvariables in the domain of θ and adds
those in its range

Then the left introduction rule is the following

cases(Σ : Γ,A −→ F ,D)

Σ : Γ,A −→ F

A point to note: this rule is sensitive to type information
Yuting Wang Polymorphic Abella 5/13



Encoding the Specification Logic

The specification logic is encoded by capturing its derivation
relation in a definition

For example, limiting to the Horn clause fragment, the latter can
be done by the following definition for the seq predicate

seq true , >
∀g1 : o,g2 : o. seq (g1 & g2) , (seq g1) ∧ (seq g2)

∀a : o. seq (atm a) , ∃g : o.(prog a g) ∧ (seq g)

where prog is used to encode particular specifications, e.g.

∀` : list. prog (append nil ` `) true , >
∀x : ι, `1 : list, `2 : list, `3 : list.
prog (append (x :: `1) `2 (x :: `3)) (atm (append `1 `2 `3)) , >

Note: this encoding relies on the specifications also being
simply typed

Yuting Wang Polymorphic Abella 6/13



Encoding the Specification Logic

The specification logic is encoded by capturing its derivation
relation in a definition

For example, limiting to the Horn clause fragment, the latter can
be done by the following definition for the seq predicate

seq true , >
∀g1 : o,g2 : o. seq (g1 & g2) , (seq g1) ∧ (seq g2)

∀a : o. seq (atm a) , ∃g : o.(prog a g) ∧ (seq g)

where prog is used to encode particular specifications, e.g.

∀` : list. prog (append nil ` `) true , >
∀x : ι, `1 : list, `2 : list, `3 : list.
prog (append (x :: `1) `2 (x :: `3)) (atm (append `1 `2 `3)) , >

Note: this encoding relies on the specifications also being
simply typed

Yuting Wang Polymorphic Abella 6/13



Encoding the Specification Logic

The specification logic is encoded by capturing its derivation
relation in a definition

For example, limiting to the Horn clause fragment, the latter can
be done by the following definition for the seq predicate

seq true , >
∀g1 : o,g2 : o. seq (g1 & g2) , (seq g1) ∧ (seq g2)

∀a : o. seq (atm a) , ∃g : o.(prog a g) ∧ (seq g)

where prog is used to encode particular specifications, e.g.

∀` : list. prog (append nil ` `) true , >
∀x : ι, `1 : list, `2 : list, `3 : list.
prog (append (x :: `1) `2 (x :: `3)) (atm (append `1 `2 `3)) , >

Note: this encoding relies on the specifications also being
simply typed

Yuting Wang Polymorphic Abella 6/13



Encoding the Specification Logic

The specification logic is encoded by capturing its derivation
relation in a definition

For example, limiting to the Horn clause fragment, the latter can
be done by the following definition for the seq predicate

seq true , >
∀g1 : o,g2 : o. seq (g1 & g2) , (seq g1) ∧ (seq g2)

∀a : o. seq (atm a) , ∃g : o.(prog a g) ∧ (seq g)

where prog is used to encode particular specifications, e.g.

∀` : list. prog (append nil ` `) true , >
∀x : ι, `1 : list, `2 : list, `3 : list.
prog (append (x :: `1) `2 (x :: `3)) (atm (append `1 `2 `3)) , >

Note: this encoding relies on the specifications also being
simply typed

Yuting Wang Polymorphic Abella 6/13



Schematizing the Language

Realized by introducing type variables and mechanisms for
using them in type and term formation

Add type constructors and permit variables in type
expressions

Type term constants with type schemata that make explicit
the parameterization, e.g.

:: : [A]A→ (listA)→ (listA)

Instances of constants depicted using types as subscripts,
e.g., ::[int], ::[bool], ::[int→bool]

Permit type instantiation for constants in the type checking
process underlying term formation

Terms with type variables in their types represent a collection of
simply typed terms

Yuting Wang Polymorphic Abella 7/13



Schematizing the Language

Realized by introducing type variables and mechanisms for
using them in type and term formation

Add type constructors and permit variables in type
expressions

Type term constants with type schemata that make explicit
the parameterization, e.g.

:: : [A]A→ (listA)→ (listA)

Instances of constants depicted using types as subscripts,
e.g., ::[int], ::[bool], ::[int→bool]

Permit type instantiation for constants in the type checking
process underlying term formation

Terms with type variables in their types represent a collection of
simply typed terms

Yuting Wang Polymorphic Abella 7/13



Schematizing the Language

Realized by introducing type variables and mechanisms for
using them in type and term formation

Add type constructors and permit variables in type
expressions

Type term constants with type schemata that make explicit
the parameterization, e.g.

:: : [A]A→ (listA)→ (listA)

Instances of constants depicted using types as subscripts,
e.g., ::[int], ::[bool], ::[int→bool]

Permit type instantiation for constants in the type checking
process underlying term formation

Terms with type variables in their types represent a collection of
simply typed terms

Yuting Wang Polymorphic Abella 7/13



Schematic Clauses

A clause parameterized by a list of type variables Ψ:

[Ψ]∀x : α. A , B

A proviso: all the type variables in the body must appear in the
head of the clause

Such a clause represents a possibly infinite collection of
clauses under type instantiation

This kind of parameterization permits the encoding of
schematic specification logic clauses, e.g.

[A]∀` : list A. prog (append[A] nil[A] ` `) true , >
[A]∀x : A, `1 : list A, `2 : list A, `3 : list A.
prog (append[A] (x ::[A] `1) `2 (x ::[A] `3))

(atm (append[A] `1 `2 `3)) , >

Yuting Wang Polymorphic Abella 8/13



Schematic Clauses

A clause parameterized by a list of type variables Ψ:

[Ψ]∀x : α. A , B

A proviso: all the type variables in the body must appear in the
head of the clause

Such a clause represents a possibly infinite collection of
clauses under type instantiation

This kind of parameterization permits the encoding of
schematic specification logic clauses, e.g.

[A]∀` : list A. prog (append[A] nil[A] ` `) true , >
[A]∀x : A, `1 : list A, `2 : list A, `3 : list A.
prog (append[A] (x ::[A] `1) `2 (x ::[A] `3))

(atm (append[A] `1 `2 `3)) , >

Yuting Wang Polymorphic Abella 8/13



Schematic Clauses

A clause parameterized by a list of type variables Ψ:

[Ψ]∀x : α. A , B

A proviso: all the type variables in the body must appear in the
head of the clause

Such a clause represents a possibly infinite collection of
clauses under type instantiation

This kind of parameterization permits the encoding of
schematic specification logic clauses, e.g.

[A]∀` : list A. prog (append[A] nil[A] ` `) true , >
[A]∀x : A, `1 : list A, `2 : list A, `3 : list A.
prog (append[A] (x ::[A] `1) `2 (x ::[A] `3))

(atm (append[A] `1 `2 `3)) , >

Yuting Wang Polymorphic Abella 8/13



Schematic Definition Blocks

A block can also be parameterized by type variable header
All the type variables in the type of each predicate constant
defined in the block must appear in the header

Each defined predicate must appear at the most general
type throughout the definition

For example, the polymorphic predicate

app : [A]list A→ list A→ list A→ prop

is defined by the following block parameterized by A:

∀` : list A. app[A] nil[A] ` ` , >
∀x : A, ` : list A, `2 : list A, `3 : list A.
app[A] (x ::[A] `1) `2 (x ::[A] `3) , app[A] `1 `2 `3

A schematic block represents actual definition blocks generated
by type instantiation

Yuting Wang Polymorphic Abella 9/13



Schematic Definition Blocks

A block can also be parameterized by type variable header
All the type variables in the type of each predicate constant
defined in the block must appear in the header

Each defined predicate must appear at the most general
type throughout the definition

For example, the polymorphic predicate

app : [A]list A→ list A→ list A→ prop

is defined by the following block parameterized by A:

∀` : list A. app[A] nil[A] ` ` , >
∀x : A, ` : list A, `2 : list A, `3 : list A.
app[A] (x ::[A] `1) `2 (x ::[A] `3) , app[A] `1 `2 `3

A schematic block represents actual definition blocks generated
by type instantiation

Yuting Wang Polymorphic Abella 9/13



Schematic Definition Blocks

A block can also be parameterized by type variable header
All the type variables in the type of each predicate constant
defined in the block must appear in the header

Each defined predicate must appear at the most general
type throughout the definition

For example, the polymorphic predicate

app : [A]list A→ list A→ list A→ prop

is defined by the following block parameterized by A:

∀` : list A. app[A] nil[A] ` ` , >
∀x : A, ` : list A, `2 : list A, `3 : list A.
app[A] (x ::[A] `1) `2 (x ::[A] `3) , app[A] `1 `2 `3

A schematic block represents actual definition blocks generated
by type instantiation

Yuting Wang Polymorphic Abella 9/13



Schematic Theorems and their Proofs

A schematic theorem is a formula with type variables that is
provable at all its potential type instances

We allow only for the construction of proofs that are themselves
schematic wrt types, based on the following ideas

Proof states are represented as sequents parameterized
by a set of type variables, i.e. of the form

[Ψ] Σ : Γ −→ F

Proof rules are lifted in such a way that they hold fixed the
collection of parameterizing type variables

The type instantiation of the lifted rules must yield actual
proof rules

The lifting of proof rules is in fact straightforward except for the
left introduction rule for definitions

Yuting Wang Polymorphic Abella 10/13



Schematic Theorems and their Proofs

A schematic theorem is a formula with type variables that is
provable at all its potential type instances

We allow only for the construction of proofs that are themselves
schematic wrt types, based on the following ideas

Proof states are represented as sequents parameterized
by a set of type variables, i.e. of the form

[Ψ] Σ : Γ −→ F

Proof rules are lifted in such a way that they hold fixed the
collection of parameterizing type variables

The type instantiation of the lifted rules must yield actual
proof rules

The lifting of proof rules is in fact straightforward except for the
left introduction rule for definitions

Yuting Wang Polymorphic Abella 10/13



Schematic Theorems and their Proofs

A schematic theorem is a formula with type variables that is
provable at all its potential type instances

We allow only for the construction of proofs that are themselves
schematic wrt types, based on the following ideas

Proof states are represented as sequents parameterized
by a set of type variables, i.e. of the form

[Ψ] Σ : Γ −→ F

Proof rules are lifted in such a way that they hold fixed the
collection of parameterizing type variables

The type instantiation of the lifted rules must yield actual
proof rules

The lifting of proof rules is in fact straightforward except for the
left introduction rule for definitions

Yuting Wang Polymorphic Abella 10/13



Schematic Theorems and their Proofs

A schematic theorem is a formula with type variables that is
provable at all its potential type instances

We allow only for the construction of proofs that are themselves
schematic wrt types, based on the following ideas

Proof states are represented as sequents parameterized
by a set of type variables, i.e. of the form

[Ψ] Σ : Γ −→ F

Proof rules are lifted in such a way that they hold fixed the
collection of parameterizing type variables

The type instantiation of the lifted rules must yield actual
proof rules

The lifting of proof rules is in fact straightforward except for the
left introduction rule for definitions

Yuting Wang Polymorphic Abella 10/13



Schematic Theorems and their Proofs

A schematic theorem is a formula with type variables that is
provable at all its potential type instances

We allow only for the construction of proofs that are themselves
schematic wrt types, based on the following ideas

Proof states are represented as sequents parameterized
by a set of type variables, i.e. of the form

[Ψ] Σ : Γ −→ F

Proof rules are lifted in such a way that they hold fixed the
collection of parameterizing type variables

The type instantiation of the lifted rules must yield actual
proof rules

The lifting of proof rules is in fact straightforward except for the
left introduction rule for definitions

Yuting Wang Polymorphic Abella 10/13



Schematic Theorems and their Proofs

A schematic theorem is a formula with type variables that is
provable at all its potential type instances

We allow only for the construction of proofs that are themselves
schematic wrt types, based on the following ideas

Proof states are represented as sequents parameterized
by a set of type variables, i.e. of the form

[Ψ] Σ : Γ −→ F

Proof rules are lifted in such a way that they hold fixed the
collection of parameterizing type variables

The type instantiation of the lifted rules must yield actual
proof rules

The lifting of proof rules is in fact straightforward except for the
left introduction rule for definitions

Yuting Wang Polymorphic Abella 10/13



The Schematic Definition Left Rule

Key difficulty in lifting the def-L rule: the CSUs for different type
instances of terms may not have the same structure
As a consequence, the precise structure of the def-L rule may
be different at different type instances

We overcome this difficulty by using the following ideas:

Formalizing type-generic CSUs for type-schematic terms

Permitting case analysis against a clause only if one exists
using such CSUs that covers all type instances

Defining def-L to apply only if the concluding sequent has
a type generic case analysis wrt every clause

The premise sequents are then the collection of all the
sequents resulting from case analysis on each clause

Yuting Wang Polymorphic Abella 11/13



The Schematic Definition Left Rule

Key difficulty in lifting the def-L rule: the CSUs for different type
instances of terms may not have the same structure
As a consequence, the precise structure of the def-L rule may
be different at different type instances

We overcome this difficulty by using the following ideas:

Formalizing type-generic CSUs for type-schematic terms

Permitting case analysis against a clause only if one exists
using such CSUs that covers all type instances

Defining def-L to apply only if the concluding sequent has
a type generic case analysis wrt every clause

The premise sequents are then the collection of all the
sequents resulting from case analysis on each clause

Yuting Wang Polymorphic Abella 11/13



The Schematic Definition Left Rule

Key difficulty in lifting the def-L rule: the CSUs for different type
instances of terms may not have the same structure
As a consequence, the precise structure of the def-L rule may
be different at different type instances

We overcome this difficulty by using the following ideas:

Formalizing type-generic CSUs for type-schematic terms

Permitting case analysis against a clause only if one exists
using such CSUs that covers all type instances

Defining def-L to apply only if the concluding sequent has
a type generic case analysis wrt every clause

The premise sequents are then the collection of all the
sequents resulting from case analysis on each clause

Yuting Wang Polymorphic Abella 11/13



The Schematic Definition Left Rule

Key difficulty in lifting the def-L rule: the CSUs for different type
instances of terms may not have the same structure
As a consequence, the precise structure of the def-L rule may
be different at different type instances

We overcome this difficulty by using the following ideas:

Formalizing type-generic CSUs for type-schematic terms

Permitting case analysis against a clause only if one exists
using such CSUs that covers all type instances

Defining def-L to apply only if the concluding sequent has
a type generic case analysis wrt every clause

The premise sequents are then the collection of all the
sequents resulting from case analysis on each clause

Yuting Wang Polymorphic Abella 11/13



The Schematic Definition Left Rule

Key difficulty in lifting the def-L rule: the CSUs for different type
instances of terms may not have the same structure
As a consequence, the precise structure of the def-L rule may
be different at different type instances

We overcome this difficulty by using the following ideas:

Formalizing type-generic CSUs for type-schematic terms

Permitting case analysis against a clause only if one exists
using such CSUs that covers all type instances

Defining def-L to apply only if the concluding sequent has
a type generic case analysis wrt every clause

The premise sequents are then the collection of all the
sequents resulting from case analysis on each clause

Yuting Wang Polymorphic Abella 11/13



The Schematic Definition Left Rule

Key difficulty in lifting the def-L rule: the CSUs for different type
instances of terms may not have the same structure
As a consequence, the precise structure of the def-L rule may
be different at different type instances

We overcome this difficulty by using the following ideas:

Formalizing type-generic CSUs for type-schematic terms

Permitting case analysis against a clause only if one exists
using such CSUs that covers all type instances

Defining def-L to apply only if the concluding sequent has
a type generic case analysis wrt every clause

The premise sequents are then the collection of all the
sequents resulting from case analysis on each clause

Yuting Wang Polymorphic Abella 11/13



Soundness and Completeness

The schematic proof system is sound

Theorem:
Type instantiations of schematic proofs yield valid proofs in the
underlying simply typed logic

However, the system is not complete

For example, given p : [A]A→ ι and g : ι→ prop defined by
the clause ∀x : nat. g (p[nat] x) , >, consider

[A]∀x : A.(g (p[A] x)) ∨ (g (p[A] x) ⊃ ⊥)

Every type instance of this formula has a proof:

A = nat: prove the left formula by backchaining

A 6= nat: prove the right branch by case analysis

However, there is no schematic proof for the formula

Yuting Wang Polymorphic Abella 12/13



Soundness and Completeness

The schematic proof system is sound

Theorem:
Type instantiations of schematic proofs yield valid proofs in the
underlying simply typed logic

However, the system is not complete

For example, given p : [A]A→ ι and g : ι→ prop defined by
the clause ∀x : nat. g (p[nat] x) , >, consider

[A]∀x : A.(g (p[A] x)) ∨ (g (p[A] x) ⊃ ⊥)

Every type instance of this formula has a proof:

A = nat: prove the left formula by backchaining

A 6= nat: prove the right branch by case analysis

However, there is no schematic proof for the formula

Yuting Wang Polymorphic Abella 12/13



Soundness and Completeness

The schematic proof system is sound

Theorem:
Type instantiations of schematic proofs yield valid proofs in the
underlying simply typed logic

However, the system is not complete

For example, given p : [A]A→ ι and g : ι→ prop defined by
the clause ∀x : nat. g (p[nat] x) , >, consider

[A]∀x : A.(g (p[A] x)) ∨ (g (p[A] x) ⊃ ⊥)

Every type instance of this formula has a proof:

A = nat: prove the left formula by backchaining

A 6= nat: prove the right branch by case analysis

However, there is no schematic proof for the formula

Yuting Wang Polymorphic Abella 12/13



Soundness and Completeness

The schematic proof system is sound

Theorem:
Type instantiations of schematic proofs yield valid proofs in the
underlying simply typed logic

However, the system is not complete

For example, given p : [A]A→ ι and g : ι→ prop defined by
the clause ∀x : nat. g (p[nat] x) , >, consider

[A]∀x : A.(g (p[A] x)) ∨ (g (p[A] x) ⊃ ⊥)

Every type instance of this formula has a proof:

A = nat: prove the left formula by backchaining

A 6= nat: prove the right branch by case analysis

However, there is no schematic proof for the formula

Yuting Wang Polymorphic Abella 12/13



Soundness and Completeness

The schematic proof system is sound

Theorem:
Type instantiations of schematic proofs yield valid proofs in the
underlying simply typed logic

However, the system is not complete

For example, given p : [A]A→ ι and g : ι→ prop defined by
the clause ∀x : nat. g (p[nat] x) , >, consider

[A]∀x : A.(g (p[A] x)) ∨ (g (p[A] x) ⊃ ⊥)

Every type instance of this formula has a proof:

A = nat: prove the left formula by backchaining

A 6= nat: prove the right branch by case analysis

However, there is no schematic proof for the formula
Yuting Wang Polymorphic Abella 12/13



Conclusion

These ideas have been developed to cover the full
reasoning and specification logics underlying Abella

They have also been implemented and used in our
compiler verification work; see Yuting’s doctoral thesis

This work builds on the approach to polymorphism in
λProlog [Nadathur and Pfenning, 1992]

A light-weight approach that could be used in related
systems like Twelf and Beluga

Download Abella with schematic polymorphism at

https://github.com/abella-prover/abella/tree/
schm-poly-type-unif

Official release coming soon!
Yuting Wang Polymorphic Abella 13/13

https://github.com/abella-prover/abella/tree/schm-poly-type-unif
https://github.com/abella-prover/abella/tree/schm-poly-type-unif

