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Motivation

Formalizing transportation of theorems and proofs about type
theories in different contexts.

Example:

z : nat s : nat→ nat

leaf : (nat→ bt)→ bt node : bt→ bt→ bt

Suppose given some property P about bt we prove

∀b : bt.P(b).

Question: After adding c : nat does the theorem still hold?

Answer: Yes. Because bt-terms (in normal form) cannot
contain nat-terms.
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Independence

Terms of a certain type can not depend on that of another type.

Definition (Independence)

The type τ2 is independent of τ1 in the context Γ if whenever
Γ, x :τ1 ` t : τ2 holds for some t , the β-normal form of t does not
contain x , i.e., Γ ` t : τ2 holds.

Independence

is a derived property of the given type theory

can be used to formalize transportation of theorems

Example: bt is independent of nat in the last example.
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Contributions (Overview)

Our contributions:

A methodology for formalizing proofs of independence

Encoding the type theory in a specification logic called HH

Proving independence in a reasoning logic called G

An algorithm for automatically checking independence

Derive the independence relation from the typing context

Simultaneously generate a proof of independence

We use the simply-typed λ-calculus (STLC) as an example.
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Elaboration of Independence Proofs

We want to prove the following lemma by induction:

∀t , if Γ, x :τ1 ` t : τ2 is derivable then so is Γ ` t : τ2.

Considering the independence of τ2 to τ1 alone is not enough.
Example: when t is an application t1 t2:

Γ, x :τ1 ` t1 : τ → τ2 Γ, x :τ1 ` t2 : τ

Γ, x :τ1 ` t1 t2 : τ2

Need to prove the independence of τ to τ1 for the new type τ .

Solution:

Since the context Γ is fixed, it is possible to finitely characterize
the types involved in the proof

Prove the independence lemmas for these types simultaneously

Realization: encode typing for the fixed context in a spec logic
and do inductive proof on the encoding.
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The Specification Logic HH

The specification logic is called the logic of higher-order
hereditary Harrop formulas (HH):

Provides an adequate set of devices for formalizing
SOS-style rules

Formulas has the following normal form:

F ::= ∀x̄ :τ̄ .F1 ⇒ · · · ⇒ Fn ⇒ A.

A sequent calculus for derive sequents of the form

Γ ` F (Γ = F1, ...,Fn)

Γ is called the context and F is called the goal

A derivation alternates between the following two phases:
Simplify the goal until it becomes atomic;
Perform backchaining on the atomic goal.

Yuting Wang , Kaustuv Chaudhuri Characterization of Independence in Type Theory 6/14



The Specification Logic HH

The specification logic is called the logic of higher-order
hereditary Harrop formulas (HH):

Provides an adequate set of devices for formalizing
SOS-style rules

Formulas has the following normal form:

F ::= ∀x̄ :τ̄ .F1 ⇒ · · · ⇒ Fn ⇒ A.

A sequent calculus for derive sequents of the form

Γ ` F (Γ = F1, ...,Fn)

Γ is called the context and F is called the goal

A derivation alternates between the following two phases:
Simplify the goal until it becomes atomic;
Perform backchaining on the atomic goal.

Yuting Wang , Kaustuv Chaudhuri Characterization of Independence in Type Theory 6/14



The Specification Logic HH

The specification logic is called the logic of higher-order
hereditary Harrop formulas (HH):

Provides an adequate set of devices for formalizing
SOS-style rules

Formulas has the following normal form:

F ::= ∀x̄ :τ̄ .F1 ⇒ · · · ⇒ Fn ⇒ A.

A sequent calculus for derive sequents of the form

Γ ` F (Γ = F1, ...,Fn)

Γ is called the context and F is called the goal

A derivation alternates between the following two phases:
Simplify the goal until it becomes atomic;
Perform backchaining on the atomic goal.

Yuting Wang , Kaustuv Chaudhuri Characterization of Independence in Type Theory 6/14



The Specification Logic HH

The specification logic is called the logic of higher-order
hereditary Harrop formulas (HH):

Provides an adequate set of devices for formalizing
SOS-style rules

Formulas has the following normal form:

F ::= ∀x̄ :τ̄ .F1 ⇒ · · · ⇒ Fn ⇒ A.

A sequent calculus for derive sequents of the form

Γ ` F (Γ = F1, ...,Fn)

Γ is called the context and F is called the goal

A derivation alternates between the following two phases:
Simplify the goal until it becomes atomic;
Perform backchaining on the atomic goal.

Yuting Wang , Kaustuv Chaudhuri Characterization of Independence in Type Theory 6/14



The Specification Logic HH

The specification logic is called the logic of higher-order
hereditary Harrop formulas (HH):

Provides an adequate set of devices for formalizing
SOS-style rules

Formulas has the following normal form:

F ::= ∀x̄ :τ̄ .F1 ⇒ · · · ⇒ Fn ⇒ A.

A sequent calculus for derive sequents of the form

Γ ` F (Γ = F1, ...,Fn)

Γ is called the context and F is called the goal

A derivation alternates between the following two phases:
Simplify the goal until it becomes atomic;
Perform backchaining on the atomic goal.

Yuting Wang , Kaustuv Chaudhuri Characterization of Independence in Type Theory 6/14



An Encoding of STLC in HH

The encoding is based on types-as-predicates principle:

Atomic types and constants are imported into HH signature

For every atomic type b, define a predicate b̂ : b → o

Define a mapping J−K from STLC types τ to predicates
τ → o:

JbK = λt . b̂ t if b is an atomic type.
Jτ1 → τ2K = λt .∀x :τ1. Jτ1K x ⇒ Jτ2K (t x)

A typing judgment Γ ` t : τ is encoded as an HH sequent

JΓK ` JτK t

where JΓK = {Jτ1K x1, . . . , JτnK xn}
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Example of Encoding

Assume the following STLC signature Γ:

z : nat s : nat→ nat

leaf : (nat→ bt)→ bt node : bt→ bt→ bt

Define two predicates ˆnat : nat→ o and b̂t : bt→ o.

Constants are encoded as the following clauses
ˆnat z. ∀x . ˆnat x ⇒ ˆnat (s x).

∀x . (∀y . ˆnat y ⇒ b̂t (x y))⇒ b̂t (leaf x).

∀x y . b̂t x ⇒ b̂t y ⇒ b̂t (node y x).

Example of encoding typing judgments:

Γ, x : nat→ bt, y : bt ` node (leaf x) y : bt

is encoded as the following HH sequent:

JΓK, (∀y . ˆnat y ⇒ b̂t (x y)), b̂t y ` b̂t (node (leaf x) y)
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Independence as Strengthening Lemmas

Now τ2 is independent of τ1 can be stated as follows:
If JΓK, Jτ1K x ` Jτ2K t is derivable in HH, then so is JΓK ` Jτ2K t .

It is an instance of strengthening lemmas.

Example: bt is independent of nat:

If JΓK, ˆnat x ` b̂t t is derivable, then so is JΓK ` b̂t t ,
where Γ is the signature in the last example.

Proof by Induction: the context may be dynamically extended
when backchaining on:

∀x . (∀y . ˆnat y ⇒ b̂t (x y))⇒ b̂t (leaf x).

We prove a generalized lemma:

If (JΓK,∆, ˆnat x ` b̂t t) is derivable, then so is
(JΓK,∆ ` b̂t t), where ∆ is the dynamic context.
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A Two-level Logic Approach

G is an intuitionistic logic base on Church’s STT.

Atomic predicates are interpreted through fixed-point
definitions

Example: the definition for addition of naturals is:

add z N N , >; add (s N1) N2 (s N3) , add N1 N2 N3

We can also give them a least (greatest) fixed point
reading, leading to support for (co)-inductive reasoning

A new quantifier ∇ for variables representing names.

HH is encoded as a fixed-point definition for the predicate seq

An HH sequent L ` G is encoded as seq L G

Derivation rules are encoded as definitions for seq

We write {L ` G} for seq L G.
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Formalizing Independence in G

τ2 is independent of τ1 can be stated as follows in G

∀t .∇x . {JΓK, Jτ1K x ` Jτ2K (t x)} ⊃ ∃t ′. t = (λy . t ′) ∧ {JΓK ` Jτ2K t ′}.

The possibility that t may contain x is expressed by t x

The ordering of binders t ′ and y in ∃t ′. t = (λy . t ′) conclude that
t does not contain x .

Example: bt is independent of nat

∀t .∇x . {JΓK, ˆnat x ` b̂t (t x)} ⊃ ∃t ′. t = (λy . t ′) ∧ {JΓK ` b̂t t ′}

We prove a generalized lemma:

∀∆ t .∇x .ctx ∆ ⊃ {JΓK,∆, ˆnat x ` b̂t (t x)}
⊃ ∃t ′. t = (λy . t ′) ∧ {JΓK,∆ ` b̂t t ′}

where ctx defines the dynamically extended context
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Automatically Checking Independence

Main Idea: To prove the strengthening lemma

{Γ,a1 x ` a2 t} ⊃ {Γ ` a2 t}

Show a1 x is never used in the derivation of Γ,a1 x ` a2 t .

Algorithm for deriving the independence relation:

For every predicate a, compute the context of sequents with
atomic goals of head a.

By examining the context, compute a set S(a) of all predicates
that a can depend on.

For any b 6∈ S(a), every predicate in S(a) is independent of b.
Generate a proof for this by mutual induction.

Since a ∈ S(a), a is independent of b.

Example: For our example, S(b̂t) = {b̂t}. Thus bt is
independent of nat.
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Related Work: Subordination

Subordination is a popular notion for characterizing
dependence in type theory:

For every (sub)type τ1 → · · · → τn → A, derive that τi is
subordinate to A

Subordination is closed under reflexivity and transitivity.

Non-subordination is used to show the transportation of proofs.
Example: In Canonical LF, non-subordination is used to show
the adequacy of encodings.

Problems with subordination:

It is built into the given type theory, thus completely trusted

(Non-)subordination is an (under)over-approximation of the
(in)dependence.

Example: nat is subordinate to bt by the type of leaf.
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Conclusion

Developed a methodology for formalizing independence
Implementation in a framework based on proof theory

Use STLC as an example

Developed an algorithm to derive and prove independence
Automatically generate the independence relation

Automatically derive the proof of independence

Future Work:
Using the methodology in other logical frameworks

Extension to other type theories (e.g. LF).

Examples in Abella:

http://abella-prover.org/independence

Thank you!
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