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visit and the incidental nature of hospital visits. That is, each
longitudinal EHR is a sequence of patient visits that show
their evolving conditions as well as sporadic incidences, where
the diagnosis codes of each visit are unordered. Thus, this
technical challenge raises the question of how to alleviate these
limitations to design a black-box adversarial attack approach
against health risk prediction models that takes the properties
of EHRs into consideration.

To solve these challenges, in this paper we propose a new
black-box adversarial attack method named MedAttacker to
explore the robustness of health risk prediction models, as
shown in Figure 1. To cope with the unique EHR structure,
MedAttacker adopts an approach that bridges score-based and
reinforcement learning attacks, which has two steps including
hierarchical position selection and substitute selection. It
attacks the risk prediction models by taking the temporal
context into consideration, and it can search better globally
optimized adversarial examples by adopting a hybrid frame-
work of reinforcement learning and score-based principles.

II. RELATED WORK

Adversarial attack research on EHR data is still in the
early stage. Existing progress is that [4] proposes a white-box
adversarial attack method for the EHR data that are described
by continues values including vital signs and lab measure-
ments, while [5] conducts white-box and gray-box adversarial
attacks on the ICD-based EHR data. Additionally, [6] tests
an orthogonal matching pursuit-guided method for white-box
evasion attack on the discrete EHR data. Nonetheless, the early
work neglects the black-box adversarial attack setting, which is
more realistic and challenging. Among the usually seen data,
text data is the most relative one to the EHR data because
the search space of EHR and text data are both discrete.
Thus, black-box text adversarial attack methods can be used
as baselines in our experiments, including DeepWordBug [7],
TextBugger [8], PWWS [9] and a reinforcement learning
method [10], which can be categorized into score-based meth-
ods and RL ones. As for our work, MedAttacker aggregates
the temporal context into the reinforcement learning to make
it fits for EHR data, and it can be regarded as a hybrid method
of the score-based and the RL ones.

Abstract—Researchers have conduct adversarial attacks 
against deep neural networks (DNNs) for health risk prediction in 
the white/gray-box setting to evaluate their robustness. However, 
since most real-world solutions are trained by private data and 
released as black-box services on the cloud, we should investigate 
their robustness in the black-box setting. Unfortunately, existing 
work ignores to consider the uniqueness of electronic health 
records (EHRs). To fill this gap, we propose the first black-
box adversarial attack method against health risk prediction 
models named MedAttacker to investigate their vulnerability. 
It addresses the challenges brought by EHRs via two steps: 
hierarchical position selection which selects the attacked positions 
in a reinforcement learning (RL) framework and substitute 
selection which identifies substitutes with a score-based principle. 
Particularly, by considering the temporal context inside EHRs, 
MedAttacker initializes its RL position selection policy by using 
the contribution score of each visit and the saliency score of each 
code, which can be well integrated with the deterministic substi-
tute selection process decided by the score changes. We evaluate 
MedAttacker by attacking three advanced risk prediction models 
in the black-box setting across multiple real-world datasets, and 
MedAttacker consistently achieves the highest average success 
rate and even outperforms a recent white-box EHR adversarial 
attack technique in certain cases.

I. INTRODUCTION

The increasingly accumulated electronic health record
(EHR) data have advanced the field of health analytics, es-
pecially the health risk prediction [1]–[3] task, which aims
to predict future health status of patients according to their
historical EHR data and nowadays is commonly conducted
by DNNs. Existing studies mainly explore the robustness of
deep health risk prediction models by white/gray-box adver-
sarial attacks [4]–[6], which assume attackers can access the
parameters of health risk prediction models. However, in the
real world health analytics companies train their models with
their private data and release them as black-box services on the
cloud. Therefore, the assumptions of white/gray-box settings
are often invalid in real-world practice because the parameters
of proprietary models of companies are inaccessible. Thus, it
is desirable to have a black-box adversarial attack method for
understanding their robustness.

However, this task is challenging due to the unique structure
of EHR data. Compared to text data which is also discrete,
EHR is different in its unordered diagnosis codes within each
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Fig. 1: Overview of MedAttacker.

III. METHODOLOGY

A. Problem Definition

In our work, the EHRs of all patients are encoded by
a high dimensional dictionary called ICD-9, (International
Classification of Diseases, Ninth Revision) and each symptom
or abnormal finding is encoded into a unique code. Mathemat-
ically, for a specific patient whose EHRs are denoted as V,
V is in the form of [v1,v2, · · · ,vT ], where vt (1 ≤ t ≤ T )
represents the result of visit t, and T is the total number of
visits. Each individual visit vt = [c1, c2, · · · , cnt ] includes nt
diagnosis codes encoded by the ICD-9 system.

Problem 1 (EHR Adversarial Attack). Let F denote the
health risk prediction DNN model. Given the input V of the
patient and the corresponding ground truth label y ∈ Y =
{0, 1}, where y = 1 represents that patient will suffer from the
target disease as a positive case and a negative one otherwise,
in the training phase F is trained to generate a prediction score
ŷ that is as close as to y. Suppose that we have a test sample
Vtest whose ground truth label is ytest. If prediction ŷ =
ytest, the target of adversarial attack is adding a perturbation
∆Vtest to construct the adversarial example V′test = Vtest +
∆Vtest such that V′test can fool the victim model. That is,
the perturbation makes the predicted label change to,

ŷ′ = F (V′test) 6= ytest, (1)

where the perturbation ∆Vtest should be as small as possible
and is restricted by ||∆Vtest|| < ε. We denote ||∆Vtest|| as
the number of diagnosis code changes because EHR data is
in a discrete space and ε as the maximum allowed attacks.

B. Proposed Method

As shown in Figure 1, the proposed method for adversarial
EHR example generation in the black-box setting includes
two steps, i.e., hierarchical position selection and substitute
selection. In the first step, it frames the position selection
as a policy learned through reinforcement learning (RL). In
this formulation, the agent is MedAttacker, the environment
consists of the EHR sample V and victim model F , and
the state s is represented by the EHR sample. Suppose there
are M learning episodes to update the policy parameters, in
each episode it will take several steps of actions. Due to the
hierarchical characteristics of EHR data, i.e., code → visit →

EHR, MedAttacker will select the attacked visit firstly and the
attacked diagnosis code within the visit later. They are then
grouped as the action a taken by the agent, and the policy is
parameterized as Θ.
Hierarchical Position Selection. The first step for MedAt-
tacker to generate an adversarial example is to select the
position of the attacked diagnosis code in a hierarchical
way: selecting the attacked visit firstly and then deciding
the attacked position within the selected visit. Besides, we
adopt a RL framework to select the attacked position for it
enables the adversarial example generation to be a stochastic
process instead of a deterministic one, which allows us to
better approximate the globally optimized adversarial example.
Thus, in our RL framework, the action is represented by two
sets of parameters, and it is updated by the policy gradient [11]
framework. Without the loss of generality, suppose we have
a positive test sample V as shown in Figure 1, which can
be correctly predicted by the trained model F , and V =
[v1,v2, · · · ,vT ] has information of T visits. For the i-th visit
vt, it has nt codes. Thus, the parameters to be learned include
pv = [p

(v)
1 , ..., p

(v)
T ], which is the probability distribution

of selecting the visit position, and a group of parameters
pc = {p(c)

1 , ...,p
(c)
T }, which is the probability distribution

of selecting the code position when the visit position is
determined. For each p

(c)
t ∈ pc, p

(c)
t = [p

(t)
1 , ..., p

(t)
nt ], where

nt is the number of codes in the t-th visit. Thus, the policy
parameters to be learned in the policy gradient framework are
Θ = {pv,pc}. In a learning episode, MedAttacker selects the
attacked visit vt by sampling from pv, and it then decides the
attacked position by sampling from p

(c)
t .

Substitute Selection. After we sample from the policy pa-
rameters Θ and get the position that we are going to attack,
the next step is to select a substitute to replace the attacked
diagnosis code and generate the adversarial example. Suppose
that the code to be attacked is ci from visit vt, and we denote
S as the set of substitute codes.1 We then use the score changes
brought by the substitutes to determine the substitute c′i for ci.
That is, for each substitute code c ∈ S, we can calculate the
replacement score change by Eq. (2),

∆µ
(i)
t = F ((V − ci) ∪ c)− F (V), (2)

where ((V − ci) ∪ c) represents the EHR sample where ci is
replaced by c in the attacked position. After obtaining all ∆µ

(i)
t

scores for every c in set S, we determine the best substitute
code as c′i = arg max

c∈S
∆µ

(i)
t , where c′i is the code that we

will finally employ to replace the attacked diagnosis code ci.
In this step, we determine the substitute code by the score
change instead of sampling by RL for it will be difficult to only
use the max ∆µ

(i)
t to update position selection and substitute

selection policy parameters simultaneously.
Policy Update. Now the final design problem is how to update
the policy parameters. For parameter initialization, we find

1We define set S as the set of codes in the same ICD-9 category of ci as
the semantic constraints.
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that using the contribution scores and saliency scores is a
better way to initialize the policy pv and code saliency scores
rather than using the uniform distribution [10] for it takes
temporal context into consideration. Thus, we first calculate
the output score given by the trained model F when input
is [v1, ...,vt] and then calculate the output score when the
input is [v1, ...,vt−1]. Next, the contribution score ξt is given
by their difference, ξt = F ([v1, ...,vt]) − F ([v1, ...,vt−1]),
where ξt indicates how much information that the whole visit
of vt can contribute to improving the predicted score given the
context [v1, ...,vt−1]. By using the normalized [ξ1, ..., ξT ] to
initialize pv, the temporal context is utilized for determining
the attacked position. As for the saliency score, for the i-th
code ci in visit vt, we define the saliency score as ξ(i)t =
F (V) − F (V − ci), where (V − ci) denotes the incomplete
EHR data where code ci is removed. If score ξ

(i)
t is high,

it indicates that attacking ci can bring more salient influence.
Thus, we initialize each p

(c)
t as the normalized [ξ

(1)
t , ..., ξ

(nt)
t ],

which fits with the unordered property of EHRs.
Reward Calculation. Our solution utilizes max ∆µ

(i)
t as

the reward r to update the policy parameters Θ, which
enables us to integrate the position selection and substitute
selection together and help MedAttacker effectively find out
the positions useful for adversarial example generation. Thus,
in each learning episode, the total rewards of the adversarial
example generation process is J(Θ) = E(

∑ε−1
`=0 γ

`r`|Θ),
where r` is the reward attained in the step `, and γ ∈ [0, 1]
is the discount factor set to be 0.95. We can update Θ by the
policy gradient method, in which the gradient of J(Θ) can be
approximated by the REINFORCE algorithm [11].

IV. EXPERIMENTS

A. Experimental Setup
1) Datasets and Victim Models: In our experiments, we

use three real-world medical claim datasets, including heart
failure, kidney disease and dementia, which are collected
by a health information technology company. Since we are
conducting adversarial attacks on EHR data, we select three
representative DNNs designed for risk prediction task as the
victim models in the adversarial attacks, which are Retain [2],
SAnD [3] and HiTANet [12]. Code is available at https:
//github.com/machinelearning4health/MedAttacker.

2) Baselines: Since we are the first to work on black-
box adversarial attack on EHRs, most baselines that are
used in the experiments are originally designed for the text
adversarial attack. In our experiments, we use six baselines,
including a naive approach and five black-box adversarial
attack methods as follows:(1) Random, a naive method which
randomly selects the attacked positions and substitutes; (2)
DeepWordBug [7]; (3) TextBugger [8]; (4) PWWS [9] and
its varient (5) PWWS-Saliency which only uses the saliency
score to determine which word to be attacked; and (6) RL-
Attack [10]. In addition, we also use the state-of-the-art white-
box EHR adversarial attack method LAVA [5] as a baseline
to compare the attack effect between black-box adversarial
attack frameworks and white-box ones.

3) Implementation: The reinforcement learning environ-
ment in our MedAttacker is implemented in the OpenAI Gym
package, and the learning rate of the policy parameters is
1 × 10−3. When implementing the algorithm, we set the
hyperparameter l = 500. The set of S for each code is made
up of the codes in the same ICD category by the Clinical
Classification Software-DIAGNOSES. We set size of S no
more than 10 for efficiency reason.

4) Evaluation Metrics: The first metric is the number of
successful attacks that each method make, and dividing it by
the size of test set can get the success rate [8].

B. Performance Evaluation

Since there is always physical restriction on the access of
EHR data in real-life attacks, we validate the performance
of models under the following restriction: (1) The maximum
number of visits per patient in the test set is 20, and (2)
the maximum allowed attacks ε = 5. The comparison of
adversarial attack results between the proposed MedAttacker
and baseline methods are shown in Table I. We can see
that MedAttacker achieves the best performance over three
datasets against three different victim models in 6 out of
9 cases, which demonstrates that MedAttacker has the best
generalization ability compared to existing black-box adver-
sarial attack techniques. Besides, MedAttacker always has the
highest success rate in the heart failure case against different
victim models and constantly achieves the best attack success
rate when the victim model is HiTANet. The results above
show that the integral design of reinforcement learning and
score-based principles can empower MedAttacker to have
good ability of generalization.

C. Comparison with White-box Attack

To find the performance gap between black-box adversarial
attacks and white-box ones, we also employ LAVA as a
baseline of white-box adversarial attack. The experimental
results are listed in Table II. We compare them in the case
of Retain owning to the availability of official implementation
codes of LAVA. Because white-box ones have the knowledge
of gradients, it is not surprising to see that LAVA has better
performance on the datasets of heart failure and kidney disease
from Table II. But compared to LAVA, MedAttacker can still
have 72.77% and 81.47% adversarial attack effects on heart
failure and kidney disease datasets, respectively. Moreover,
MedAttacker can have better attack results on the dementia
dataset. This indicates that for certain cases, black-box adver-
sarial attack techniques have the potential to achieve better
results against white-box ones.

D. Case Study

We also include a case study to further illustrate the ad-
versarial attack process conducted by MedAttacker. Given a
positive EHR sample in Figure 2 in the heart failure dataset
whose predicted score of being a positive case by HiTANet
is 0.70, MedAttacker selects code “305.00” (alcohol abuse)
from visit 2, code “724.2” (lumbago) and code “496” (chronic
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TABLE I: Comparison on the number of successful attacks and success rate against different victim models. The first row in
each block is the number of successful attacks, and the second row is the success rate.

Dataset Heart Failure Kidney Disease Dementia
Method HiTANet Retain SAnD Average HiTANet Retain SAnD Average HiTANet Retain SAnD Average

Random 30 18 7 18.3 21 10 32 21.0 24 18 10 17.3
(1.62%) (0.97%) (0.38%) (0.99%) (1.25%) (0.59%) (1.90%) (1.25%) (1.68%) (1.26%) (0.70%) (1.21%)

TextBugger 216 119 4 113.0 182 138 104 141.3 117 109 6 77.3
(11.69%) (6.44%) (0.22%) (6.11%) (10.79%) (8.19%) (6.17%) (8.38%) (8.18%) (7.62%) (0.42%) (5.40%)

DeepWordBug 231 113 12 118.7 248 96 92 145.3 147 87 15 83.0
(12.50%) (6.11%) (0.65%) (6.42%) (14.71%) (5.69%) (5.46%) (8.62%) (10.27%) (6.08%) (1.05%) (5.80%)

PWWS-Saliency 277 129 48 151.3 264 98 229 197.0 277 166 66 169.7
(14.99%) (6.98%) (2.60%) (8.19%) (15.66%) (5.81%) (13.58%) (11.68%) (19.36%) (11.60%) (4.61%) (11.86%)

PWWS 369 162 52 194.3 332 154 239 241.7 359 204 77 213.3
(19.97%) (8.77%) (2.81%) (10.52%) (19.69%) (9.13%) (14.18%) (14.33%) (25.09%) (14.26%) (5.38%) (14.91%)

RL-Attack 347 146 25 172.7 301 132 142 191.7 272 160 30 154.0
(18.78%) (7.90%) (1.35%) (9.34%) (17.85%) (7.83%) (8.42%) (11.37%) (19.01%) (11.18%) (2.10%) (10.76%)

MedAttacker 426 166 64 218.7 369 149 218 245.3 384 210 63 219.0
(23.05%) (8.98%) (3.46%) (11.83%) (21.89%) (8.84%) (12.93%) (14.55%) (26.83%) (14.68%) (4.40%) (15.30%)

TABLE II: Comparison with LAVA on success rate.

Victim Model Retain
Method Heart Failure Kidney Dementia
LAVA 12.34% 10.85% 11.39%
MedAttacker 8.98% 8.84% 14.68%

Visit 1
ICD-9 Codes:

304.01
486

724.2

ICD-9 Codes:
305.00
305.1
490

728.88
786.50
V14.6

ICD-9 Codes:
305.00
305.1
728.88
786.50

ICD-9 Codes:
305.00
305.1
401.9
486

728.88
786.50

ICD-9 Codes:
724.2
496

Visit 2 Visit 3 Visit 4 Visit 5
ICD-9 Codes:

719.40
729.5

Visit 6

305.00 → 303.93 724.2 → 723.8
496 → 491.8

Hierarchical 
Position Selection

Substitute 
Selection

Fig. 2: Illustration of case study.

airway obstruction) from visit 5 to construct the adversarial
example. Furthermore, since the substitute set of each code
is restricted within the same category in the ICD-9 coding
system, the semantic in the adversarial example is similar
to the original one. For instance, substitute “723.8” (cervical
syndrome) and the original code “724.2” are both in the
category of “Spondylosis” in the ICD-9 coding system, which
can ensure the adversarial example still looks reasonable
by humans and victim models. After the attack, HiTANet
downgrades the predicted score to 0.33 and predicts it as a
negative case, which shows the effectiveness of MedAttacker.

V. CONCLUSION

Although researchers have investigated their vulnerability
by the white/gray-box adversarial attacks, a more realistic
black-box setting has not been explored yet for the robustness
of risk prediction models. To increase the momentum in this
field, in this paper, we introduce a black-box adversarial attack
framework named MedAttacker to explore the robustness
of health risk prediction models, which is inspired by the
score-based and reinforcement learning methods in black-box
adversarial attacks. It is more suitable for EHR data because it
takes the temporal context of EHR into consideration, and the
stochastic position selection and deterministic substitute selec-
tion processes can help it better approximate the generation of
globally optimized adversarial examples.
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