
CS257 Linear and Convex Optimization
Homework 3

Due: October 12, 2020

September 29, 2020

1. Prove that x0,x1, . . . ,xm ∈ Rn are affinely independent if and only if

m∑
i=0

cixi = 0 and
m∑
i=0

ci = 0 =⇒ ci = 0 for i = 0, 1, . . . ,m. (⋆)

2. Given two probability distributions x,y ∈ ∆n−1, where ∆n−1 is the probability simplex, the Kullback-
Leibler (KL) divergence between them is defined by

KL(x∥y) =
n∑

i=1

xi log
xi

yi

Use the concavity of log to show that KL(x∥y) ≥ 0. You can assume x > 0,y > 0.

3. Prove that the set of global minima of a convex function over a convex set is convex, i.e. if f is convex
and S ⊂ dom f is convex, then the set M defined below is also convex

M = {x∗ ∈ S : f(x∗) ≤ f(x),∀x ∈ S}

4. Let f be convex. If f(θx + θ̄y) = θf(x) + θ̄f(y) for some x,y and θ = θ0 ∈ (0, 1), then it holds for
the same x,y and any θ ∈ [0, 1].

Hint: Assume f(θ1x+ θ̄1y) < θ1f(x) + θ̄1f(y) for some θ1. Without loss of generality, you may assume
θ1 ∈ (0, θ0); the case θ1 ∈ (θ0, 1) is similar. Express θ0x+ θ̄0y as a convex combination of θ1x+ θ̄1y and x.
Then deduce a contradiction.

5. Suppose f : S ⊂ R → R is convex. Let a, b ∈ S and a < b.

(a). Show
f(x) ≤ b− x

b− a
f(a) +

x− a

b− a
f(b), ∀x ∈ [a, b]

(b). Show
f(x)− f(a)

x− a
≤ f(b)− f(a)

b− a
≤ f(b)− f(x)

b− x
, ∀x ∈ (a, b)

What’s the geometric interpretation of these inequalities? Draw a sketch to illustrate them.
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(c). Suppose f is differentiable. Use (b) to show

f ′(a) ≤ f(b)− f(a)

b− a
≤ f ′(b)

What can you say about the monotonicity of the derivative f ′?

(d). Suppose f is twice differentiable. Note a < b are arbitrary points in S. Use (c) to show that f ′′(x) ≥ 0.

6. Let f : (a, b) → R be convex, where −∞ ≤ a < b ≤ +∞. Let X be random variable taking values
in (a, b). Suppose the expectations EX and Ef(X) exist. Prove Jensen’s inequality f(EX) ≤ Ef(X) by
completing the following steps.

(a). Let µ = EX. Show that there exists β ∈ R such that

f(x) ≥ f(µ) + β(x− µ), ∀x ∈ (a, b) (⋆)

Hint: You can take
β = sup

a<s<µ

f(µ)− f(s)

µ− s
.

Obviously β > −∞. Use part (b) of Problem 5 to show that β < +∞ and satisfies (⋆) (consider
a < x < µ and µ < x < b separately).

(b). Show that
f(X) ≥ f(µ) + β(X − µ).

and conclude Ef(X) ≥ f(EX) by taking expectation.

Remark. If f is differentiable, we can take β = f ′(µ) by the first-order condition. Part (a) shows that (⋆)
holds without assuming differentiability. The number β used in the proof generalizes the concept of gradient
(derivative) f ′(µ). Any β satisfying (⋆) is called a subgradient of f at µ. For example, any β ∈ [−1, 1] is
a subgradient of f(x) = |x| at 0.

7. In this problem, we show that the so-called midpoint convexity and continuity implies convexity.
Assume f : R → R is midpoint convex, i.e.

f

(
x1 + x2

2

)
≤ 1

2
[f(x1) + f(x2)] , ∀x1, x2 ∈ R.

(a). Show that for k ∈ N,

f

(
x1 + x2 + · · ·+ x2k

2k

)
≤ 1

2k
[f(x1) + f(x2) + · · ·+ f(x2k)] , ∀x1, x2, . . . , x2k ∈ R.

Hint: Use induction on k.

(b). Show that for n ∈ N,

f

(
x1 + x2 + · · ·+ xn

n

)
≤ 1

n
[f(x1) + f(x2) + · · ·+ f(xn)] , ∀x1, x2, . . . , xn ∈ R.

Hint: Assume 2k−1 < n ≤ 2k. Let xi = x̄ = x1+···+xn

n for i = n+ 1, . . . 2k in part (a).
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(c). Use (b) to show that for p, q ∈ N,

f

(
p

p+ q
x1 +

q

p+ q
x2

)
≤ p

p+ q
f(x1) +

q

p+ q
f(x2), ∀x1, x2 ∈ R.

Conclude that for rational θ ∈ Q ∩ (0, 1),

f(θx1 + θ̄x2) ≤ θf(x1) + θ̄f(x2), ∀x1, x2 ∈ R.

(d). Assume f is also continuous. Show that for θ ∈ [0, 1],

f(θx1 + θ̄x2) ≤ θf(x1) + θ̄f(x2), ∀x1, x2 ∈ R.

Hint: Let {θn} be a sequence of rational numbers in Q ∩ (0, 1) such that θn → θ as n → ∞.
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