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Mathematical Optimization Problems
minimize

x
f (x)

subject to x ∈ X
or min

x∈X
f (x)

• f : Rn → R: objective function
• x = (x1, x2, . . . , xn)T ∈ Rn: optimization/decision variables
• X ⊂ Rn: feasible set or constraint set

I x is called feasible if x ∈ X and infeasible if x /∈ X.

Maximizing f is equivalent to minimizing −f ; will focus on minimization.

The problem is unconstrained if X = Rn and constrained if X 6= Rn.

X is often specified by constraint functions,

min
x

f (x)

s. t. gi(x) ≤ 0, i = 1, 2, . . . ,m

General optimization problems are very difficult; we will focus on
convex optimization problems (to be defined later).
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Example: Data Fitting
Recall Hooke’s law in physics,

F = −k(x− x0) = −kx + b, where b = kx0

• F : force
• k : spring constant

• x : length
• x0 : length at rest

Given m measurements (x1,F1), (x2,F2), . . . , (xm,Fm),

Fi = −kxi + b + εi

• εi : measurement error
find k, b by fitting a line through data.

Least squares criterion,

min
k>0,b>0

m∑
i=1

ε2
i =

m∑
i=1

(Fi + kxi − b)2

x

F
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Example: Linear Least Squares Regression
A linear model predicts a response/target by a linear combination of
predictors/features (plus an intercept/bias),

ŷ = f (x) = b +

n∑
i=1

wixi = wTx + b

Given m data points (x1, y1), (x2, y2), . . . , (xm, ym), linear (least squares)
regression finds w and b by minimizing the sum of squared errors,

min
w∈Rn,b∈R

m∑
i=1

(f (xi)− yi)
2 =

m∑
i=1

(wTxi + b− yi)
2

In a more compact form,

min
w∈Rn,b∈R

‖Xw + b1− y‖2

• X = (x1, . . . , xm)T ∈ Rm×n, y = (y1, . . . , ym)T ∈ Rm

• 1 = (1, 1, . . . , 1)T ∈ Rm

• ‖z‖ =
√

zTz =
√∑n

i=1 z2
i for z = (z1, . . . , zn)T ∈ Rn
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Example: Shipping Problem
• need to ship products from n warehouses to m customers
• inventory at warehouse i is ai, i = 1, 2, . . . , n
• quantity ordered by customer j is bj, j = 1, 2, . . . ,m
• unit shipping cost from warehouse i to customer j is cij

Let xij be quantity shipped from warehouse i to customer j

Minimize total cost by solving the following linear program

min
(xij)

n∑
i=1

m∑
j=1

cijxij

s. t.

n∑
i=1

xij = bj for j = 1, 2, . . . ,m

m∑
j=1

xij ≤ ai for i = 1, 2, . . . , n

xij ≥ 0 for i = 1, 2, . . . , n; j = 1, 2, . . . ,m
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Example: Binary Classification

vs

Represent an image by a vector x ∈ Rn, label y ∈ {+1,−1}

Given a set of images with labels (x1, y1), (x2, y2), . . . , (xm, ym), want
function f : Rn → R, called classifier, such that{

f (xi) > 0, iff yi = +1
f (xi) < 0, iff yi = −1

⇐⇒ yif (xi) > 0

Once we find f , we can use ŷ = sign[f (x)] to classify new images.

How to find f ? Let’s consider linear classifiers, i.e. f (x) = wTx + b
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Example: Binary Classification (cont’d)
Assume data is linearly separable, i.e.
exists hyperplane wTx + b = 0 s.t.

yi(wTxi + b) > 0, ∀i

May exist many such hyperplanes.

Want to maximize the minimum
distance to the hyperplane
• more robust against noise

Support vector machine: linear classifier with maximum margin
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Example: Binary Classification (cont’d)
Assume data is linearly separable, i.e.
exists hyperplane wTx + b = 0 s.t.

yi(wTxi + b) > 0, ∀i

May exist many such hyperplanes.

Want to maximize the minimum
distance to the hyperplane
• more robust against noise

Support vector machine: linear classifier with maximum margin

max
w,b

min
1≤i≤m

|wTxi + b|
‖w‖

s. t. yi(wTxi + b) > 0, i = 1, 2, . . . ,m

Can be reformulated as equivalent convex optimization problem
yielding the same optimal hyperplane.
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Example: Binary Classification (cont’d)
Assume data is linearly separable, i.e.
exists hyperplane wTx + b = 0 s.t.

yi(wTxi + b) > 0, ∀i

May exist many such hyperplanes.

Want to maximize the minimum
distance to the hyperplane
• more robust against noise

Support vector machine: linear classifier with maximum margin

min
w,b

1
2
‖w‖2

s. t. yi(wTxi + b) ≥ 1, i = 1, 2, . . . , n

We will see this is a convex optimization problem.
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SVM
Problem reformulation
• Note |wTxi + b| = yi(wTxi + b), as yi = sgn(wTxi + b).
• For α > 0, w̃ = αw and b̃ = αb determine the same hyperplane P,

x ∈ P ⇐⇒ wTx + b = 0 ⇐⇒ w̃Tx + b̃ = 0

• Choosing α properly, we can assume min
1≤i≤m

yi(w̃Txi + b̃) = 1,

max
w̃,b̃

1
‖w̃‖

s. t. yi(w̃Txi + b̃) ≥ 1, i = 1, 2, . . . ,m

• Maximizing 1/z is equivalent to minimizing 1
2 z2,

min
w̃,b̃

1
2
‖w̃‖2

s. t. yi(w̃Txi + b̃) ≥ 1, i = 1, 2, . . . ,m
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Appendix: Distance to Hyperplane

wTx + b = 0

O

w

x′i

xi
• w ⊥ hyperplane P : wTx + b = 0
• x′i is orthogonal projection of xi onto

P, i.e.
xi − x′i ⊥ P

wTx′i + b = 0

• xi − x′i = γiw for some γi ∈ R,

wT(xi−γiw)+b = 0 =⇒ γi =
wTxi + b

wTw

• distance from xi to P is

min
y∈P
‖xi−y‖ = ‖xi−x′i‖ = ‖γiw‖ =

|wTxi + b|
‖w‖
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Soft Margin SVM
Hard margin SVM requires linear
separability

min
w,b

1
2
‖w‖2

s. t. yi(wTxi + b) ≥ 1, ∀i

When not linear separable,
• relax constraints
• penalize deviation

Soft margin SVM: introduce slack variables ξ = (ξ1, . . . , ξn)T

min
w,b,ξ

1
2
‖w‖2

2 + C
n∑

i=1

ξi (C > 0 is hyperparameter)

s. t. yi(wTxi + b) ≥ 1−ξi, i = 1, 2, . . . , n

ξ ≥ 0, (i.e. ξi ≥ 0, i = 1, 2, . . . , n)
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Global Optima
x∗ ∈ X is a global minimum1 of f if

f (x∗) ≤ f (x), ∀x ∈ X

It is also called an optimal solution of the minimization problem

min
x∈X

f (x) (P)

and f (x∗) is the optimal value of (P).

Global maximum is defined by reversing direction of inequality.

Maximum and minimum are called extremum.

Note. Global extrema may not exist.
• f (x) = x, X = R, infx∈X f (x) = −∞ unbounded from below
• f (x) = x, X = (0, 1), infx∈X f (x) = 0, but not achievable

1Global minimum often also refers to the minimum value f (x∗).
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Math Review
Euclidean inner product on Rn: 〈x, y〉 = xTy =

∑n
i=1 xiyi

Euclidean norm (2-norm): ‖x‖2 =
√

xTx =
√∑n

i=1 x2
i

A norm on Rn is a function ‖ · ‖ : Rn → R satisfying
1. ‖x‖ ≥ 0, ∀x ∈ Rn

2. ‖x‖ = 0 iff x = 0
3. ‖ax‖ = |a|‖x‖, ∀a ∈ R, x ∈ Rn (positive homogeneity)
4. ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ Rn (triangle inequality)

Example.
• 1-norm: ‖x‖1 =

∑n
i=1 |xi|

• p-norm: ‖x‖p = (
∑n

i=1 |xi|p)1/p, p ≥ 1
• ∞-norm: ‖x‖∞ = max

1≤i≤n
|xi|

Property 4 is given by Minkowski’s inequality.

By default, ‖x‖ means ‖x‖2.
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Math Review
Open ball of radius r centered at x0

B(x0, r) = {x : ‖x− x0‖ < r}

Closed ball of radius r centered at x0

B̄(x0, r) = {x : ‖x− x0‖ ≤ r}

1-norm 2-norm ∞-norm

unit balls in R2 with different norms
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Math Review
Open ball of radius r centered at x0

B(x0, r) = {x : ‖x− x0‖ < r}

Closed ball of radius r centered at x0

B̄(x0, r) = {x : ‖x− x0‖ ≤ r}

x

y

z

1-norm

x

y

z

2-norm

x

y

z

∞-norm

unit balls in R3 with different norms
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Math Review
A set S is open if for any x ∈ S, there exists ε > 0 s.t. B(x, ε) ⊂ S.

A set S is closed if its complement Sc is open.

Examples in R.
• (0, 1) is open.
• [0, 1] is closed.
• (0, 1] is neither open nor closed.
• [1,∞) is closed.

A sequence {xn} converges to x, denoted xn → x or lim
n→∞

xn = x if

lim
n→∞

‖x− xn‖ = 0

Note. In Rn, if xn → x in one norm, it converges in any norm.

Theorem. S is closed iff for any sequence {xn} ⊂ S,

xn → x =⇒ x ∈ S.
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Math Review
A set S is bounded if there exists M <∞ s.t. ‖x‖ ≤ M, ∀x ∈ S.

A set S ⊂ Rn is compact if it is closed and bounded.

Examples in R.
• [0, 1] is compact
• (0, 1), (0, 1] and [1,∞) are not compact

A function f : X ⊂ Rn → R is continuous at x if for any ε > 0, there
exists δ > 0 s.t.

y ∈ X ∩ B(x, δ) =⇒ |f (y)− f (x)| < ε

Equivalently, f is continuous at x ∈ X if

∀{xn} ⊂ X, xn → x =⇒ f (xn)→ f (x)

f is continuous on X if it is continuous at every x ∈ X.
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Existence of Global Optima
Extreme Value Theorem. If f is continuous on a compact set X, then f
attains its maximum and minimum on X, i.e. there exist x1, x2 ∈ X (not
necessarily unique) s.t.

f (x1) ≤ f (x) ≤ f (x2), ∀x ∈ X.

Example. f (x) = x2 satisfies f (0) ≤ f (x) ≤ f (2) on [−1, 2].

The Extreme Value Theorem gives sufficient conditions for the
existence of global optima, but they are not necessary.

Example. f (x) = x2.
• inf

x∈(0,1)
f (x) = 0, but f (x) > 0 for all x ∈ (0, 1), no global min.

• min
x∈[0,1)

f (x) = f (0), x∗ = 0 is global min, but [0, 1) not closed.

• min
x∈R

f (x) = f (0), x∗ = 0 is global min, but R unbounded.
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Existence of Global Optima (cont’d)
Corollary. If f is continuous on Rn and f (x)→ +∞ as ‖x‖ → ∞, then
minx∈Rn f (x) exists, i.e. there exists x∗ s.t. f (x∗) ≤ f (x), ∀x.

Proof.
• Since f (x)→ +∞ as ‖x‖ → ∞, there exists M > 0 s.t. f (x) > f (0)

when ‖x‖ > M
• The closed ball B̄(0,M) is compact
• By the Extreme Value Theorem, there exists x∗ ∈ X s.t.

f (x∗) ≤ f (x), ∀x ∈ B̄(0,M)

• For x /∈ B̄(0,M), f (x∗) ≤ f (0) < f (x).

A function f is called coercive if f (x)→ +∞ as ‖x‖ → ∞.

Example. f (x) = ‖x‖2 coercive, x∗ = 0 is global minimum.
Example. f (x) = e−‖x‖ not coercive, no global minimum.
Example. f (x) = sin x not coercive, x∗ = −π

2 is global minimum.
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Local Minimum
x∗ ∈ X is a local minimum of f if there exists ε > 0 s.t.

f (x∗) ≤ f (x), ∀x ∈ X ∩ B(x∗, ε)

x∗ is a strict local minimum if strict inequality holds for x 6= x∗.

Local maximum is defined by reversing direction of inequality.

Global minimum is always local minimum, but not vice versa.
• We will see local min is global min for convex problems

x

f (x)

global
minimum

strict local
minimum

local minima
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Local Minimum
x∗ ∈ X is a local minimum of f if there exists ε > 0 s.t.

f (x∗) ≤ f (x), ∀x ∈ X ∩ B(x∗, ε)

x∗ is a strict local minimum if strict inequality holds for x 6= x∗.

Local maximum is defined by reversing direction of inequality.

Global minimum is always local minimum, but not vice versa.
• We will see local min is global min for convex problems

x

f (x)

global
minimum

strict local
minimum

local minima
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