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1. Mathematical Optimization



Mathematical Optimization Problems

minimize  f(x)
x or min f(x)
subjectto x e X xeX

e f:R" — R: objective function
® x = (x1,x,...,x,)] € R": optimization/decision variables
e X C R": feasible set or constraint set

> x is called feasible if x € X and infeasible if x ¢ X.

Maximizing f is equivalent to minimizing —f; will focus on minimization.
The problem is unconstrained if X = R" and constrained if X # R".
X is often specified by constraint functions,
min f(x)
X
s.t. gi(x) <0, i=12,....m

General optimization problems are very difficult; we will focus on
convex optimization problems (to be defined later).



Example: Data Fitting

Recall Hooke’s law in physics,

F = —k(x —x0) = —kx+ b, where b = kxo

e [ : force
® k : spring constant

Given m measurements (x;, Fy), (x2, F2)
Fi=—kxi+b+e

® ¢, : measurement error
find &, b by fitting a line through data.

Least squares criterion,

m

m
. 2 2
2 = NT(Fi+ ke — b
k0550 : € Z( i+ ki = b)

i=1 i=1

® x:length
® xp : length at rest

9. .,(Xm,Fm),




Example: Linear Least Squares Regression
A linear model predicts a response/target by a linear combination of
predictors/features (plus an intercept/bias),

n
jfzf(x):b+Zwixi:wa+b
i=1

Given m data points (x1,y1), (x2,¥2), ..., (Xxm,ym), linear (least squares)
regression finds w and b by minimizing the sum of squared errors,
m
T,.. )2
B, U <3 = k)

In a more compact form,

min || Xw + b1 — y|?
weR" beR

° X:(xh,,,,xm)TERmX",y:(yl,...,ym)TE]Rm
1= (1,1,.... ) eRr”

o llzll = VaTz = /37 2 forz = (z1,...,z0)" €R"



Example: Shipping Problem

* need to ship products from n warehouses to m customers
e inventory at warehouse iisa;, i =1,2,...,n

e quantity ordered by customer jis b, j=1,2,...,m

* unit shipping cost from warehouse i to customer j is c;;

Let x;; be quantity shipped from warehouse i to customer j
Minimize total cost by solving the following linear program

n m
min E E cijx,'j
()

i=1 j=1

n
st Y xy=b for j=1,2,...
i=1

m
ZX,‘]SLI,‘ for i=1,2,...
j=1

x; >0 for i=1,2,...



Example: Binary Classification

Vs

Represent an image by a vector x € R”, label y € {+1,—1}
Given a set of images with labels (x1,y1), (x2,y2), -, (X, ym), want
function f : R* — R, called classifier, such that

— yf(x;)) >0

Fx) >0, iffy—+1
flxi) <0, iffy;=—1

Once we find f, we can use y = sign[f(x)] to classify new images.

How to find f? Let's consider linear classifiers, i.e. f(x) = wlx + b



Example: Binary Classification (cont'd)

Assume data is linearly separable, i.e.
exists hyperplane w’x + b = 0 s.t.

yi(wlx; +b) >0, Vi

May exist many such hyperplanes.

Want to maximize the minimum
distance to the hyperplane

® more robust against noise



Example: Binary Classification (cont'd)

Assume data is linearly separable, i.e.
exists hyperplane w’x + b = 0 s.t.

yi(wlx; +b) >0, Vi

May exist many such hyperplanes.

Want to maximize the minimum
distance to the hyperplane

® more robust against noise

Support vector machine: linear classifier with maximum margin

. wix; +b]
max  min
wh 1<i<m  ||w||
s.t. yiwlxi+b) >0, i=12,....m

Can be reformulated as equivalent convex optimization problem
yielding the same optimal hyperplane.



Example: Binary Classification (cont'd)

Assume data is linearly separable, i.e.
exists hyperplane w’x + b = 0 s.t.

yi(wlx; +b) >0, Vi

May exist many such hyperplanes.

Want to maximize the minimum
distance to the hyperplane

® more robust against noise

Support vector machine: linear classifier with maximum margin
N S
min —||W
in 5wl

s.t. yiwlx;+b)>1, i=12,...,n

We will see this is a convex optimization problem.



SVM

Problem reformulation
* Note [w'x; + b| = y;(w'x; + b), as y; = sgn(w’x; + b).
e Fora >0, w = aw and b = ab determine the same hyperplane P,

xEP — wx+b=0 <= wix+b=0

e Choosing o properly, we can assume min yiwTx; +b) = 1,
<i<m

b
s.t. yiwlx;+b)>1, i=12,...,m



Appendix: Distance to Hyperplane

w L hyperplane P : wix +b =0
e x! is orthogonal projection of x; onto

P, ie. N

x;—x; LP
wa§ +b=0
® x; —x, =~w for some ; € R, 0
wlx; +b
wl(xi—yw)+b =0 = ;= 7w}w
¢ distance from x; to P is
i -y = x| = ]| = X2
yep [w]



Soft Margin SVM

Hard margin SVM requires linear
separability

R TR
T 3l

s.t. yiwlix;+b)>1, Vi

When not linear separable,
e relax constraints
® penalize deviation

Soft margin SVM: introduce slack variables & = (¢1,...,&,)7
1 n

min 5HwH% +C> & (C>0is hyperparameter)
i=1

sct. yiwlx +b)>1-¢, i=1,2,...,n
£>0, (ie. &>0 i=12,...,n)
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2. Global and Local Optima



Global Optima
x* € X is a global minimum? of £ if
fx*) <f(x), wxeX

It is also called an optimal solution of the minimization problem

min f(x) (P)

xeX

and f(x*) is the optimal value of (P).

Global maximum is defined by reversing direction of inequality.

Maximum and minimum are called extremum.

Note. Global extrema may not exist.
® f(x) =x, X =R, inf,exf(x) = —oo unbounded from below
® f(x) =x,X=1(0,1), infyex f(x) = 0, but not achievable

'Global minimum often also refers to the minimum value f(x*).



Math Review

Euclidean inner product on R": (x,y) =xTy = > xy;

Euclidean norm (2-norm): ||x|» = VxTx = />0, #?
A norm on R" is a function || - || : R" — R satisfying
1. [Jx]] >0, Vx € R"
2. |x[[=0iffx=0
3. ||ax|| = |a|||x||, Va € R,x € R" (positive homogeneity)
4. |l +y| < x|l + |yll, Vx,y € R” (triangle inequality)

Example.
® 1-norm: x|}y = 37, |xil
. 1
o prnorm: |lxfl, = (S0, [ul?)'7, p > 1

® co-norm: ||x|lec = Imax |xi]

Property 4 is given by Minkowski’s inequality.

By default, ||x|| means ||x||>.



Math Review
Open ball of radius r centered at x

B(xo,r) = {x: ||x —xo| < r}
Closed ball of radius r centered at x,

B(xg,r) = {x: ||x —xo| <r}

A
<

1-norm 2-norm oco-norm

unit balls in R? with different norms



Math Review

Open ball of radius r centered at x
B(xg,r) ={x:|x —xo| < r}
Closed ball of radius r centered at x

B(xg,r) = {x: ||x —xo| <r}

< Z Z

<% y (@ s AT

1-norm 2-norm oco-norm

unit balls in R3 with different norms



Math Review
A set Sis open if for any x € S, there exists € > 0 s.t. B(x,¢) C S.
A set S is closed if its complement S is open.
Examples in R.
e (0,1)is open.
[0, 1] is closed.

¢ (0, 1] is neither open nor closed.
[1,00) is closed.

A sequence {x,} converges to x, denoted x, — x or lim x, = x if
n—oo
lim ||x —x,| =0
n—oo
Note. In R”, if x, — x in one norm, it converges in any norm.

Theorem. S is closed iff for any sequence {x,} C S,

X, >X — x€S8.



Math Review
A set S is bounded if there exists M < co s.t. ||x|| < M, Vx € S.

A set § € R" is compact if it is closed and bounded.

Examples in R.
® [0, 1] is compact
e (0,1), (0,1] and [1, c0) are not compact

A function f : X C R" — R is continuous at x if for any € > 0, there
exists 6 > 0 s.t.

yEXNB(x,6) = |[f(y) —fx)] <e
Equivalently, f is continuous at x € X if
v{xn} CX, x—x = f(xn) _>f<x)

f is continuous on X if it is continuous at every x € X.



Existence of Global Optima

Extreme Value Theorem. If f is continuous on a compact set X, then f
attains its maximum and minimum on X, i.e. there exist x1,x; € X (not
necessarily unique) s.t.

flx) <f(x) <f(x2), VxeX.
Example. f(x) = x* satisfies £(0) < f(x) <f(2) on [-1,2].

The Extreme Value Theorem gives sufficient conditions for the
existence of global optima, but they are not necessary.

Example. f(x)

o n%f] flx) = utf( ) > 0forall x € (0,1), no global min.
xe(

° r%%) f(x) =£(0), x* = 0is global min, but [0, 1) not closed.
xe

. mlﬂgf( x) =£(0), x* = 0 is global min, but R unbounded.
xe



Existence of Global Optima (cont'd)

Corollary. If f is continuous on R"” and f(x) — +oo as ||x|| — oo, then
minycpn f(x) €Xists, i.e. there exists x* s.t. f(x*) < f(x), Vx.
Proof.

e Since f(x) — +oo as ||x|| — oo, there exists M > 0 s.t. f(x) > f(0)
when ||x|| > M

® The closed ball B(0, M) is compact

¢ By the Extreme Value Theorem, there exists x* € X s.t.
f&x") <f(x), VxeB(0,M)

* Forx ¢ B(0,M), f(x*) < f(0) < f(x).

A function f is called coercive if f(x) — 400 as ||x|| — oc.
Example. f(x) = |x||*> coercive, x* = 0 is global minimum.
Example. f(x) = ¢~ ¥l not coercive, no global minimum.
Example. f(x) = sinx not coercive, x* = —7 is global minimum.



Local Minimum
x* € X is a local minimum of f if there exists e > 0 s.t.

f(x*) <f(x), VxeXnB(x"e)

x* is a strict local minimum if strict inequality holds for x # x*.

Local maximum is defined by reversing direction of inequality.

. & e III——
strict local global local minima X
minimum minimum

Global minimum is always local minimum, but not vice versa.
¢ We will see local min is global min for convex problems



Local Minimum
x* € X is a local minimum of f if there exists e > 0 s.t.

f(x*) <f(x), VxeXnB(x"e)

x* is a strict local minimum if strict inequality holds for x # x*.

Local maximum is defined by reversing direction of inequality.

f(x)

—_ = e
strict local  global local minima X
minimum  minimum

l< |
[« X >

Global minimum is always local minimum, but not vice versa.
¢ We will see local min is global min for convex problems
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