CS257 Linear and Convex Optimization
Lecture 10
Bo Jiang

John Hopcroft Center for Computer Science
Shanghai Jiao Tong University

November 9, 2020



Recap

Strong convexity. f is m-strongly convex if
° f(x) — %x|* is convex
e first-order condition

) 2 f) + V)T = x) + Ty — x|
e second-order condition
V2 (x) = ml <= Apin(Vf(x)) > m

Convergence. For m-strongly convex and L-smooth f with minimum
x*, gradient descent with constant step size ¢ € (0, 1] satisfies

L(1 — met)*

fla) —f(x") < [f(x0) =/ (x")]

Condition number. For Q = 0O,
Amax (@)

r(Q) = Nin(Q)

Well-/lll-conditioned if x(Q) is small/large — fast/slow convergence.




Today

e exact line search
e backtracking line search
e Newton’s method



Step Size

Gradient descent

X1 =X, — 4V (xx)

e constant step size: 1, =t for all k
e exact line search: optimal 7, for each step

t = argmin f(xx — sVf(xx))
e backtracking line search (Armijo’s rule): ¢, satisfies

Foe) = fxx — 5VF(xx) > ate||[VF(xe) |13

for some given a € (0, 1).



Exact Line Search

1: initialization x + xo € R"
2: while ||Vf(x)|| > ¢ do
3 t < arg mgin flx —sVf(x))
4: x < x —1Vf(x)
5: end while

6: return x

2 >
level curves of f(x;,x,) = F +x3 | t s

Note. Often impractical; used only if the inner minimization is cheap.



Exact Line Search for Quadratic Functions

flx) = leQx +b'x, Q>0

gradient at x; is g, = Vf(xx) = Ox; + b
second-order Taylor expansion is exact for quadratic functions,

h(t) = f(xx —1g;)
Fxe) + V() (—1g) + 5(
= (;gl ng> * —gigt +f(x)

—1g,) V2 (x0) (—1gy)

® minimizing h(t) yields best step size

g;{gk
gl 0g,

trk =

update step
g]{gk g
[ AV

Xi+1 = Xp — 08 = Xk —



Example

1 1 .
floix) = 5x"Qx = Tt + 283, Q= diag{y. 1)

Well-conditioned. v = 0.5, xo = (2, 1)7

1.51

h
<

1.01

0.5 A

,_
1

0.0 1

H
i

—0.5 A

H
<
I8

error f(xg) — fix™)

-1.0 1

—
[S)
©

-154_,

-2 -1 0 1 2 0.0 2.5 5.0 7.5 10.0
x1 iteration (k)

Fast convergence.
Note. Successive gradient directions are always orthogonal, as

0 =H(t) = =Vf(xx — tVf ()" VF (xx) = =V (ear1) " Vf (i)



Example (cont'd)
flo ) = 3" 0x = 1k + 38, @ = diagiy, 1)

lll-conditioned. v = 0.01, convergence rate depends on initial point

0.25 1 0.1
% 0.001 % 00
—-0.25 4= T T T T —0.1+ T T T T
0.0 0.5 1.0 1.5 2.0 1.2 14 1.6 1.8 2.0
x1 x1
10724
.?“ ~ 10731
x x
107 =
= = 1077
= =
T 10 =
2 2
@ 5 10
1075 4
0 5 10 15 0 100 200 300 100
iteration (k) iteration (k)

xo = (2,0.3), fast convergence xo = (2,0.02), slow convergence



Convergence Analysis

Theorem. If f is m-strongly convex and L-smooth, and x* is a minimum
of f, then the sequence {x;} produced by gradient descent with exact
line search satisfies

m k
fle) =) < (1= 2 [fxo) — £x)]

Notes.
* 0<1-7F<1,80x; —x*and f(x;) — f(x*) exponentially fast

e The number of iterations to reach f(x;) — f(x*) < e is O(log ). For
e = 1077, k = O(p), linear in the number of significant digits.

® The convergence rate depends on the condition number L/m and
can be slow if L/m is large. When close to x*, we can estimate
L/mby rk(Vf*(x*)).



Proof

1. By the quadratic upper bound for L-smooth functions,
Lt A
S = 19 () < fex) — 1| Vf ()P + %IIVJ‘(xk)II2 =4(1)
2. Minimizing over ¢ in step 1,
1 1
k1) = minf (e — 1Vf (xi)) < ming(r) = q(7) = f () — 57 1V (0
3. By m-strong convexity,
Fx) > fx) + V()T (x —xi) + %le — x| £ F(x)
4. Minimizing over x in step 3,
A . 1 1
fOr") = minf(x) > minf(x) = /(e Vf(xe)) =f(xk)—%llvf(xk)!\2
5. By 4, |[Vf(xx)||? > 2m[f(xx) — f(x*)]. Plugging into 2,

Flrnn) = £x) < (1= ) 1) — )



Backtracking Line Search

Exact line search is often expensive and not worth it. Suffices to find a
good enough step size. One way to do so is to use backtracking line
search, aka Armijo’s rule.

Gradient descent with backtracking line search
1: initialization x < xo € R”
2: while || Vf(x)|| > 6 do
3: <1y
4: while f(x — 1Vf(x)) > f(x) — at]|V/f(x)|3 do
5: t <+ Bt
6 end while
7 x < x —tVf(x)
8: end while
9: return x

a € (0,1)and g € (0,1) are constants. Armijo used o = 5 = 0.5
Values suggested in [BV]: a € [0.01,0.3], 8 € [0.1,0.8]
Note. For general d, use condition f(x + td) > f(x) + atVf(x)'d



Backtracking Line Search (cont'd)

1 S ek + tdi)

‘e LT i— -~ f(xe) + arVf(x)"d;

) = B2 n = By Io t

e ) V() dy

® Vf(xi)'d; < 0 for descent direction d;
e start from some “large” step size r, ([BV] uses 1y = 1)
e reduce step size geometrically until decrease is “large enough”
f(xk) —f(xk + ldk) > a X t’Vf(xk)TdH
~—_———

actual decrease in function value decrease along tangent line




Example

1 7 Yo 1,
X1,X) = =x" 0x = —x7 + =x
f( ) ) 2 Q 2 1 2 29
Well-conditioned. v = 0.5, xo = (2,1)7
1.5
1.01 107" 4
0.5 ~ 1073
=
0.0 1 T 105
-0.5 1 S 1077
—-1.01 109
-1.51 .
-2 -1 0 1 2
x1

Fast convergence.

Q = dlag{77 1}

5

10
iteration (k)

15




Example (cont'd)

f(xl,)Q) = leQx =

2

lll-conditioned. v = 0.01

01 \l
% 00
.

-0.1 T T T
12 14 1.6 1.8 2.0
x1

10-1 4

10—3 4

-
)
&

f(xi) = fix™)

-
1)
4

0 200 400 600
iteration (k)

xo = (2,0.3), slow convergence

X
2

2
1

X+ %xi Q = diag{~, 1}

0.1
—0.1 T T T T
1.2 1.4 1.6 1.8 2.0
x1
10-3 4
| 107°
=
1077
0 200 100 600
iteration (k)

xo = (2,0.02), slow convergence



Convergence Analysis

Theorem. If f is m-strongly convex and L-smooth, and x* is a minimum
of f, then the sequence {x;} produced by gradient descent with
backtracking line search satisfies

flo) = f(x") < F[fxo) — ("))

where
¢ =1—min {Zmato,

4m5a<L1 - a)}

Notes.
® cec(0,1),as

so x; — x* and f(xx) — f(x*) exponentially fast

e Number of iterations to reach f(x;) — f(x*) < e is O(log 1). For
e = 1077, k = O(p), linear in the number of significant digits.



Proof

The inner loop terminates with a step size bounded from below.
1. By the quadratic upper bound for L-smooth functions,

F o= 197 () < f ) — (1 — >\|Vf<xk>|rz
2. The inner loop terminates for sure if

0= 0P < e ree P = o< 2

3. The step size in backtracking line search satisfies

26(1 —
t znémin{to, 7B( a)}
L
> 1 = to if Armijo’s condition is satisfied by 7,

> otherwise, ’é > 2(1 @) since the inner loop did not terminate at ’*




Proof (cont'd)

Now we look at the outer loop
4. By Armijo’s condition in the inner loop,

forr) = fCox — 5Vf (k) < f (o) — e[ Vf (o) |2
5. By3and4,
frnn) = (") < f) = fx*) — anl|Vf ()|
6. By step 4 of slide 9,
IV () 1> = 2mlf (ex) — f(x")]
7. By 5and 6,
JOog1) = f (%) < (1= 2mam)[f (xe) — f(x*)] = clf (xic) —f (x")]

SO

Fee) = f(x%) < H[f(xo) — f(x¥)]



Better Descent Direction

Gradient descent uses first-order information (i.e. gradient),
Xyl = X — 4 Vf(xg)

Locally —Vf(x¢) is the max-rate descending direction, but globally it
may not be the “right” direction.

Example. For f(x) = 3x”Qx with @ = diag{0.01, 1}, optimum is x* = 0.

The negative gradient is

~Vf(x) = —Qx = —(0.01x1,x)"

quite different from the “right” descent direction d = —x. Note
d=—Q7'Vf(x) = —[V*(x)]"'Vf(x)

With second-order information (i.e. Hessian), we hope to do better.



Newton’s Method

By second-order Taylor expansion,
N 1

F) m fx) 2 £ (o) + V()" (= x0) + 5 (e = )TV () (¢ — )

Minimizing quadratic approximation f,

Vi(x) = V2 (x) (x —x1) + Vi) =0
= x =x; — [V (x0)] 'V (%)

provided V2f(x;) = O.

Newton step

Xi41 _x"k X

Xir1 =X — [V ()] 7'V ()

Note. If f is quadratic, then 7 = f, and Newton’s method gets to the
optimum in a single step starting from any x.



Newton’s Method (cont'd)

1: initialization x < xy € R”

2: while | Vf(x)|| > 6 do

3: x <+ x — [V2f(x)] 7' Vf(x)
4: end while

5. return x

Note. As in the case of gradient descent, other stopping criteria can
be used. [BV] uses V£ (x)[V?f(x)]~'Vf(x) > 4.

The Newton step is a special case of x;, 1 = x; + rdy with
e Newton direction d;, = —[V2f(xi)] "' V£ (x1)
e constant step size ¢, = 1

For V2f(x;) = 0, the Newton direction is a descent direction

V(i) di = =V ()T [V ()] ' VF(xe) < 0 if V(i) # 0



Newton’s Method (cont'd)

The magenta curves are the
level curves of the quadratic
approximation of 1 at x

The brown curves are the
level curves of the quadratic
approximation of f at x;.




Example

f(xl,xz) — ,X1+3x—0.1 +ex1—3x2—0.1 —|—€_x1_0'1
Newton step atxo = (—2,1)".
e gradient

B et =30 o
Vf(x()) =e 01 < 3exl+3x2 o 3ex173x2

 [—4.22019458
o \ 7.36051909

e Hessian

ex1+3x2 + ex173x2 + efxl 3€Xl+3x2 _ 36)(173)62
2 —0.1
\Y% f(x()) =e < 3ex1+3x2 o 3ex1—3x2 9ex1+3x2 + 9ex1—3x2

9.1515943  7.36051909
7.36051909 22.19129872

X=X

e Newton step

_ —1.00725064
x1 = %o = [V (x0)] ' VF(x0) = ( 0.33903509 )



Example (cont'd)

f(xl,XZ) _ ex1+3x2—0.1 + ex1—3x2—0.1 + e—xl—O.l

Solution using Newton’s method and gradient descent with constant
step size 0.1. Initial point xo = (—2,1).

—8— Netwon 3 — Netwon
1.00 4 . B 10-1 4 )
—8— gradient (t=0.1) J —— gradient (t=0.1)
0.75 A ~ 104
x
- =
§ 030 | 1077
=
0.25 S 1010
0.00 1 10-13 4
_0'25 L T T T T T T T T T
-2.0 -1.5 -1.0 -0.5 0 10 20 30 40
x1 iteration (k)

¢ Newton’s method takes a more “direct” path

¢ Newton’s method requires much fewer iterations, but each
iteration is more expensive



Connection to Root Finding

Newton’s method is originally an algorithm for solving g(x) = 0.

A

By the first-order Taylor expansion,
g(x) = g(x) = g(x) + g (u) (x — xx)
Use the root of g(x) as the next approximation
g(xx)

g (xk) —
1

Xk+1 = Xk —

Example (computing v/C). v/C is a root of g(x) = x> — C. Newton’s

method yields
a—C 1 C
Xpr1 = Xk — e 2 xk“‘;}(

For xo > 0, x; converges to v/C.



Connection to Root Finding (cont’d)

Back to the optimization problem,
min f(x)

The optimal solution x* satisfies

fx)=0
Letting g = f/ in Newton'’s root finding algorithm,
I () -
Xk+1 = Xk —m =Xk — [f//(xk)] 1f,(xk)

In n-dimension, f' — V£, f — V*f. We want to solve
Vi(x*) =0
Newton’s algorithm becomes

X1 =X — [V2F(x0)] ' VF (xk)



