
CS257 Linear and Convex Optimization
Lecture 10

Bo Jiang

John Hopcroft Center for Computer Science
Shanghai Jiao Tong University

November 9, 2020



1/24

Recap
Strong convexity. f is m-strongly convex if
• f (x)− m

2 ‖x‖2 is convex
• first-order condition

f (y) ≥ f (x) +∇f (x)T(y− x) +
m
2
‖y− x‖2

• second-order condition

∇2f (x) � mI ⇐⇒ λmin(∇2f (x)) ≥ m

Convergence. For m-strongly convex and L-smooth f with minimum
x∗, gradient descent with constant step size t ∈ (0, 1

L ] satisfies

f (xk)− f (x∗) ≤ L(1− mt)k

m
[f (x0)− f (x∗)]

Condition number. For Q � O,

κ(Q) =
λmax(Q)

λmin(Q)

Well-/Ill-conditioned if κ(Q) is small/large =⇒ fast/slow convergence.



2/24

Today
• exact line search
• backtracking line search
• Newton’s method



3/24

Step Size
Gradient descent

xk+1 = xk − tk∇f (xk)

• constant step size: tk = t for all k
• exact line search: optimal tk for each step

tk = argmin
s

f (xk − s∇f (xk))

• backtracking line search (Armijo’s rule): tk satisfies

f (xk)− f (xk − tk∇f (xk)) ≥ αtk‖∇f (xk)‖2
2

for some given α ∈ (0, 1).



4/24

Exact Line Search

1: initialization x← x0 ∈ Rn

2: while ‖∇f (x)‖ > δ do
3: t← argmin

s
f (x− s∇f (x))

4: x← x− t∇f (x)
5: end while
6: return x

? −∇f

level curves of f (x1, x2) =
x2

1
4 + x2

2 s

f (xk − s∇f (xk))

t

Note. Often impractical; used only if the inner minimization is cheap.



5/24

Exact Line Search for Quadratic Functions

f (x) =
1
2

xTQx + bTx, Q � O

• gradient at xk is gk = ∇f (xk) = Qxk + b
• second-order Taylor expansion is exact for quadratic functions,

h(t) = f (xk − tgk)

= f (xk) +∇f (xk)
T(−tgk) +

1
2
(−tgk)

T∇2f (xk)(−tgk)

=

(
1
2

gT
k Qgk

)
t2 − gT

k gkt + f (xk)

• minimizing h(t) yields best step size

tk =
gT

k gk

gT
k Qgk

• update step

xk+1 = xk − tkgk = xk −
gT

k gk

gT
k Qgk

gk



6/24

Example

f (x1, x2) =
1
2

xTQx =
γ

2
x2

1 +
1
2

x2
2, Q = diag{γ, 1}

Well-conditioned. γ = 0.5, x0 = (2, 1)T

2 1 0 1 2
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

0.0 2.5 5.0 7.5 10.0

iteration (k)

10−9

10−7

10−5

10−3

10−1

er
ro

r f
(x

k)
f(x

* )

Fast convergence.

Note. Successive gradient directions are always orthogonal, as

0 = h′(tk) = −∇f (xk − tk∇f (xk))
T∇f (xk) = −∇f (xk+1)

T∇f (xk)



7/24

Example (cont’d)

f (x1, x2) =
1
2

xTQx =
γ

2
x2

1 +
1
2

x2
2, Q = diag{γ, 1}

Ill-conditioned. γ = 0.01, convergence rate depends on initial point

0.0 0.5 1.0 1.5 2.0
x1

0.25

0.00

0.25

x2

0 5 10 15

iteration (k)

10−8

10−6

10−4

10−2

er
ro

r f
(x

k)
f(x

* )

x0 = (2, 0.3), fast convergence

1.2 1.4 1.6 1.8 2.0
x1

0.1

0.0

0.1

x2

0 100 200 300 400

iteration (k)

10−7

10−5

10−3

er
ro

r f
(x

k)
f(x

* )

x0 = (2, 0.02), slow convergence



8/24

Convergence Analysis
Theorem. If f is m-strongly convex and L-smooth, and x∗ is a minimum
of f , then the sequence {xk} produced by gradient descent with exact
line search satisfies

f (xk)− f (x∗) ≤
(

1− m
L

)k
[f (x0)− f (x∗)]

Notes.
• 0 ≤ 1− m

L < 1, so xk → x∗ and f (xk)→ f (x∗) exponentially fast

• The number of iterations to reach f (xk)− f (x∗) ≤ ε is O(log 1
ε ). For

ε = 10−p, k = O(p), linear in the number of significant digits.

• The convergence rate depends on the condition number L/m and
can be slow if L/m is large. When close to x∗, we can estimate
L/m by κ(∇f 2(x∗)).



9/24

Proof
1. By the quadratic upper bound for L-smooth functions,

f (xk − t∇f (xk)) ≤ f (xk)− t‖∇f (xk)‖2 +
Lt2

2
‖∇f (xk)‖2 , q(t)

2. Minimizing over t in step 1,

f (xk+1) = min
t

f (xk − t∇f (xk)) ≤ min
t

q(t) = q(
1
L
) = f (xk)−

1
2L
‖∇f (xk)‖2

3. By m-strong convexity,

f (x) ≥ f (xk) +∇f (xk)
T(x− xk) +

m
2
‖x− xk‖2 , f̂ (x)

4. Minimizing over x in step 3,

f (x∗) = min
x

f (x) ≥ min
x

f̂ (x) = f̂ (xk−
1
m
∇f (xk)) = f (xk)−

1
2m
‖∇f (xk)‖2

5. By 4, ‖∇f (xk)‖2 ≥ 2m[f (xk)− f (x∗)]. Plugging into 2,

f (xk+1)− f (x∗) ≤
(

1− m
L

)
[f (xk)− f (x∗)]



10/24

Backtracking Line Search
Exact line search is often expensive and not worth it. Suffices to find a
good enough step size. One way to do so is to use backtracking line
search, aka Armijo’s rule.

Gradient descent with backtracking line search
1: initialization x← x0 ∈ Rn

2: while ‖∇f (x)‖ > δ do
3: t← t0
4: while f (x− t∇f (x)) > f (x)− αt‖∇f (x)‖2

2 do
5: t← βt
6: end while
7: x← x− t∇f (x)
8: end while
9: return x

α ∈ (0, 1) and β ∈ (0, 1) are constants. Armijo used α = β = 0.5

Values suggested in [BV]: α ∈ [0.01, 0.3], β ∈ [0.1, 0.8]

Note. For general d, use condition f (x + td) > f (x) + αt∇f (x)Td



11/24

Backtracking Line Search (cont’d)

t

f (xk)

f (xk + tdk)

f (xk) + t∇f (xk)
T dk

f (xk) + αt∇f (xk)
T dk

t0t1 = βt0t2 = β2t0

• ∇f (xk)
Tdk < 0 for descent direction dk

• start from some “large” step size t0 ([BV] uses t0 = 1)
• reduce step size geometrically until decrease is “large enough”

f (xk)− f (xk + tdk)︸ ︷︷ ︸
actual decrease in function value

≥ α× t|∇f (xk)
Tdk|︸ ︷︷ ︸

decrease along tangent line



12/24

Example

f (x1, x2) =
1
2

xTQx =
γ

2
x2

1 +
1
2

x2
2, Q = diag{γ, 1}

Well-conditioned. γ = 0.5, x0 = (2, 1)T

2 1 0 1 2
x1

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x2

0 5 10 15
iteration (k)

10 9

10 7

10 5

10 3

10 1

f(x
k)

f(x
* )

Fast convergence.



13/24

Example (cont’d)

f (x1, x2) =
1
2

xTQx =
γ

2
x2

1 +
1
2

x2
2, Q = diag{γ, 1}

Ill-conditioned. γ = 0.01

1.2 1.4 1.6 1.8 2.0
x1

0.1

0.0

0.1

x2

0 200 400 600
iteration (k)

10 7

10 5

10 3

10 1

f(x
k)

f(x
* )

x0 = (2, 0.3), slow convergence

1.2 1.4 1.6 1.8 2.0

x1

−0.1

0.0

0.1

x
2

0 200 400 600

iteration (k)

10−7

10−5

10−3

f
(x
k
)
−
f

(x
∗ )

x0 = (2, 0.02), slow convergence



14/24

Convergence Analysis
Theorem. If f is m-strongly convex and L-smooth, and x∗ is a minimum
of f , then the sequence {xk} produced by gradient descent with
backtracking line search satisfies

f (xk)− f (x∗) ≤ ck[f (x0)− f (x∗)]

where

c = 1−min

{
2mαt0,

4mβα(1− α)
L

}
Notes.
• c ∈ (0, 1), as

4mβα(1− α)
L

≤ βm
L
≤ β < 1

so xk → x∗ and f (xk)→ f (x∗) exponentially fast

• Number of iterations to reach f (xk)− f (x∗) ≤ ε is O(log 1
ε ). For

ε = 10−p, k = O(p), linear in the number of significant digits.



15/24

Proof
The inner loop terminates with a step size bounded from below.

1. By the quadratic upper bound for L-smooth functions,

f (xk − t∇f (xk)) ≤ f (xk)− t(1− Lt
2
)‖∇f (xk)‖2

2. The inner loop terminates for sure if

−t(1− Lt
2
)‖∇f (xk)‖2 ≤ −αt‖∇f (xk)‖2 =⇒ t ≤ 2(1− α)

L

3. The step size in backtracking line search satisfies

tk ≥ η , min

{
t0,

2β(1− α)
L

}
I tk = t0 if Armijo’s condition is satisfied by t0
I otherwise, tk

β >
2(1−α)

L , since the inner loop did not terminate at tk
β



16/24

Proof (cont’d)
Now we look at the outer loop

4. By Armijo’s condition in the inner loop,

f (xk+1) = f (xk − tk∇f (xk)) ≤ f (xk)− αtk‖∇f (xk)‖2

5. By 3 and 4,

f (xk+1)− f (x∗) ≤ f (xk)− f (x∗)− αη‖∇f (xk)‖2

6. By step 4 of slide 9,

‖∇f (xk)‖2 ≥ 2m[f (xk)− f (x∗)]

7. By 5 and 6,

f (xk+1)− f (x∗) ≤ (1− 2mαη)[f (xk)− f (x∗)] = c[f (xk)− f (x∗)]

so
f (xk)− f (x∗) ≤ ck[f (x0)− f (x∗)]



17/24

Better Descent Direction
Gradient descent uses first-order information (i.e. gradient),

xk+1 = xk − tk∇f (xk)

Locally −∇f (xk) is the max-rate descending direction, but globally it
may not be the “right” direction.

Example. For f (x) = 1
2 xTQx with Q = diag{0.01, 1}, optimum is x∗ = 0.

?

The negative gradient is

−∇f (x) = −Qx = −(0.01x1, x2)
T

quite different from the “right” descent direction d = −x. Note

d = −Q−1∇f (x) = −[∇2f (x)]−1∇f (x)

With second-order information (i.e. Hessian), we hope to do better.



18/24

Newton’s Method
By second-order Taylor expansion,

f (x) ≈ f̂ (x) , f (xk) +∇f (xk)
T(x− xk) +

1
2
(x− xk)

T∇2f (xk)(x− xk)

xx∗xk xk+1

f (x)

f̂ (x)

Minimizing quadratic approximation f̂ ,

∇f̂ (x) = ∇2f (xk)(x− xk) +∇f (xk) = 0

=⇒ x = xk − [∇2f (xk)]
−1∇f (xk)

provided ∇2f (xk) � O.

Newton step

xk+1 = xk − [∇2f (xk)]
−1∇f (xk)

Note. If f is quadratic, then f = f̂ , and Newton’s method gets to the
optimum in a single step starting from any x0.



19/24

Newton’s Method (cont’d)
1: initialization x← x0 ∈ Rn

2: while ‖∇f (x)‖ > δ do
3: x← x− [∇2f (x)]−1∇f (x)
4: end while
5: return x

Note. As in the case of gradient descent, other stopping criteria can
be used. [BV] uses ∇f (x)[∇2f (x)]−1∇f (x) > δ.

The Newton step is a special case of xk+1 = xk + tkdk with
• Newton direction dk = −[∇2f (xk)]

−1∇f (xk)

• constant step size tk = 1

For ∇2f (xk) � O, the Newton direction is a descent direction

∇f (xk)
Tdk = −∇f (xk)

T [∇2f (xk)]
−1∇f (xk) < 0 if ∇f (xk) 6= 0



20/24

Newton’s Method (cont’d)

The magenta curves are the
level curves of the quadratic
approximation of f at x0

x0

x1

The brown curves are the
level curves of the quadratic
approximation of f at x1.

x0

x1

x2



21/24

Example

f (x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

Newton step at x0 = (−2, 1)T .
• gradient

∇f (x0) = e−0.1
(

ex1+3x2 + ex1−3x2 − e−x1

3ex1+3x2 − 3ex1−3x2

) ∣∣∣
x=x0

=

(
−4.22019458
7.36051909

)
• Hessian

∇2f (x0) = e−0.1
(

ex1+3x2 + ex1−3x2 + e−x1 3ex1+3x2 − 3ex1−3x2

3ex1+3x2 − 3ex1−3x2 9ex1+3x2 + 9ex1−3x2

) ∣∣∣
x=x0

=

(
9.1515943 7.36051909
7.36051909 22.19129872

)
• Newton step

x1 = x0 − [∇2f (x0)]
−1∇f (x0) =

(
−1.00725064
0.33903509

)



22/24

Example (cont’d)

f (x1, x2) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

Solution using Newton’s method and gradient descent with constant
step size 0.1. Initial point x0 = (−2, 1)T .

2.0 1.5 1.0 0.5
x1

0.25

0.00

0.25

0.50

0.75

1.00

x2

Netwon
gradient (t=0.1)

0 10 20 30 40

iteration (k)

10−13

10−10

10−7

10−4

10−1

f(x
k)

f(x
* )

Netwon

gradient (t=0.1)

• Newton’s method takes a more “direct” path
• Newton’s method requires much fewer iterations, but each

iteration is more expensive



23/24

Connection to Root Finding
Newton’s method is originally an algorithm for solving g(x) = 0.

xxkxk+1

r

g(x)

ĝ(x)
By the first-order Taylor expansion,

g(x) ≈ ĝ(x) , g(xk) + g′(xk)(x− xk)

Use the root of ĝ(x) as the next approximation

xk+1 = xk −
g(xk)

g′(xk)

Example (computing
√

C).
√

C is a root of g(x) = x2 − C. Newton’s
method yields

xk+1 = xk −
x2

k − C
2xk

=
1
2

(
xk +

C
xk

)
For x0 > 0, xk converges to

√
C.



24/24

Connection to Root Finding (cont’d)
Back to the optimization problem,

min
x

f (x)

The optimal solution x∗ satisfies

f ′(x∗) = 0

Letting g = f ′ in Newton’s root finding algorithm,

xk+1 = xk −
f ′(xk)

f ′′(xk)
= xk − [f ′′(xk)]

−1f ′(xk)

In n-dimension, f ′ → ∇f , f ′′ → ∇2f . We want to solve

∇f (x∗) = 0

Newton’s algorithm becomes

xk+1 = xk − [∇2f (xk)]
−1∇f (xk)


