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Recap: Line Search

Exact line search.

ty = arg mSin fxx —sVf(xx))

Backtracking line search (Armijo’s rule).
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QU O NI RN

Foe) = fxk — 5eVF () > at|[VF(x) |13

initialization x «+ xo € R”
while ||Vf(x)| > ¢ do
choose direction d >d = —Vf(x) for gradient descent
t< 1o
while f(x + td) > f(x) + atVf(x)'d do
t<+ (Ot
end while
x<—x+td
end while
return x



Recap: Convergence of Gradient Descent
For m-strongly convex and L-smooth f with minimum x*

e gradient descent with constant step size ¢ € (0, {} satisfies

L(1 — mt)k
m

fle) —f(x%) < [f(x0) —f(x")]

e gradient descent with exact line search satisfies

m\ k

fe) = 1) < (1= 7 ) o) — /()]
e gradient descent with backtracking line search satisfies

Fle) = f(x*) < FIf(xo) — f(x*)]

where
c¢=1—min {Zmato,

4m5a(Ll - a)}



Recap: Newton’s Method

Newton’s method for solving optimization problem min f(x)
X
X1 =X — [V (x0)] " VF (xi)

Newton’s method for solving g(x) = 0

Xer1 = xx — [Dg(xx)] ' g(x)

Connection. First-order optimality condition

Vf(x*) =0



Today

¢ Analysis of Newton’s method
e Damped Newton’s method
¢ Equality Constrained Optimization
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1. Analysis of Newton’s method



Convergence of Newton’s Method

Example. Consider the minimization of f(x) = v 1 + x2.
y o X 1 . 1
f(.X) - mv f ()C) - (1+x2)3/2
The Newton direction is
dy = —f' () /f" () = —x —

The Newton step is

3
Xkt1 = X + di = —x3,

Note x; — x* = 0iff |xo| < 1. When |xo| > 1, x diverges, and
J(Xies1) > f ()

In general, Newton’s method does not guarantee global convergence.
When it does converge, the convergence is usually very fast.



Convergence Analysis: 1D Case

Theorem. If f is m-strongly convex, /" is M-Lipschitz continuous, and
x* is a minimum of f, then the sequence {x;} produced by Newton’s
method satisfies

M
Pt = < o b —x'?

Notes. Let & = 2L|x; — x*|. The above inequality becomes &1 < &7.

e If & = 1077, then &1 < 10727, the number of significant digits
doubles in each iteration!

o If g < lie. |xg—x*| < %’" then & < 53" converges to 0 extremely
fast. The number of iterations to ensure & < e is k > log, log i %
Fore = 1077, k > log, p + log, log 1 10, only logarithmic in the
number of digits. Very few |terat|ons are required!

e This theorem is a local convergence result Fast convergence if x
is close enough to x*, i.e. |xo — x*| < 22, No guarantee if |xy — x*|
is large.



Proof: 1D Case

|xk+l —X*|
= o =t = [ ()]~ ()| Newton step
= 1" (o) |7 I ) = f ) = () (=) f(xF) =0
* 1
- ‘xk,,_x y "+ 1" — x)) — /" (x)]de|  Newton-Leibniz
If" (i) |
‘xk—x | / // // ’/ ‘ /
< +1(x* — )|dt
= ) " (e + (™ —xx)) — " ()| f If]
‘xk —X ‘ / * : : 1"
< . Mit|x, — x*|dt M-Lipschitz of f
o] Sy M
_ M | o *’2
2

M .
< o bu— X2 m-strong convexity
m



Matrix Norm
The set of m x n matrices R™*" is a mn-dimensional vector space
A matrix norm on R™*" js a function || - || : R"™*" — R s.t.

1. ||A]| > 0, VA € R™*"

2. |A]|=0iffA=0

3. ||cA|| = [c] - ||[A]], Ve € R,A € R™*" (positive homogeneity)

4. ||A + B < |A|| + ||B]|, VA, B € R™*" (triangle inequality)

Example. The Frobenius norm on R”*" is the 2-norm on R™".

m n
ZZafj forA = (a;) € R™"

i=1 j=1

1AllF =




Operator Norm
A matrix A ¢ R™*" defines a linear transformation from R” to R™”
A:R'— R"
X — Ax

Given two vector norms || - ||, and || - ||, on R” and R, respectively, the
operator norm or induced norm of A is defined by

A
oo = mee A ), = max (A,
xx£0 [[x]a xfxll=1 x:|x[la<1

4]

Exercise. Show the three definitions are equivalent.

The induced norm has the following important property.

Proposition (compatibility of norms).

1Ax][p < [[Allap|

x||a



Spectral Norm

When the norms on R” and R™ are both 2-norms, the induced norm on
R™™ is simply called the 2-norm or spectral norm, denoted by || - ||».

HAHZ =YV /\maX(ATA)y

where A\, (ATA) is the maximum eigenvalue of ATA.

Proposition.

Proof. Let ||x|| = 1. By slide 15 of Lecture 8,
|Ax|)3 = xTATAx < Apax(ATA) |x[3 = Amax(ATA), Vx € R”
with equality iff x is an eigenvector of A7A associated with \,..(A7A).
Corollary. If A is symmetric,
14|z = max{[Amax(A)], [Amin(A)|}

If A = 0, then [|A]|> = Amax(A).



Examples

Example.

To find the 2-norm,
7o (1 3\ (1 2\ _ [10 14
AA_(z 4)\3 4) = \14 20
A2 = \/ Amax(ATA) = \/15 + V221 ~ 5.465

Example.

4112 = Amax(A74) =\ Aa(82) = 1/X2100(4) = Aae(4) = 5



Convergence Analysis

V?2f is M-Lipschitz continuous if

IV2f () = V2 )2 < Mlx —yll2,  Var,y

Theorem. If f is m-strongly convex, V2f is M-Lipschitz continuous, and
x* is a minimum of f, then the sequence {x;} produced by Newton’s
method satisfies

M
Peir = x| < 5 flee — 27|

Note. The same remarks on slide 7 apply here with |x; — x*| replaced
by [lxx —x*|. In particular, if |lxo —x*|| < 22, then

2m ([ M 2
[[ex —x*[| < —{ 5—[lx0 — x|
M \2m

The proof is also very similar with only minor modifications.



Proof

i1 — x|
e — 2™ — [V2F ()]~ [V (i) = V()]
V2]~ - IV () = Vf (i) — V2 (i) (¥ — ) |

= [V (ew)]

<

1
(V2 (e + 1(x* — xz)) — V2 ()] (2" — xp)dt

1

< V%) /O 192 x4+ 16 — x0) — V)] — x| e
1

< H[sz(xk)]lH/o | V2 ek + t(x™ —x0)) — V2 (x0)]|| - [l — x|t
1

< V0™ / Mille* — x|

= V2 ()" - Hx — x|

M
<2 ¥ (12
< e )



Proof (cont'd)

1. Step (1) uses the Newton updating rule

X1 = xx — [V ()] 'V (x)

and the optimality condition Vf(x*) = 0.
2. Step (2) applies the compatibility of norms on slide 10 to

[V ()]~ [V (x*) — Vf (i) = V2F (o) (2" — )]

3. Step (3) applies the Newton-Leibniz formula to the function
h(t) = Vf(xy + t(x* —xy)),

1
Vi(x*) — Vf(xp) = k(1) — h(0) = /0 W (t)dt
where h'(1) is given by the chain rule,

h' (1) = V2f (e + 1(x* —xi)) (x* — xp)



Proof (cont'd)

4.

© N o o

Step (4) uses the following inequality

\VWWS/WWW

Proof. Letz = [ f(r)dt

nw—z/fm /7‘m<ﬂWW|w w/wn%

where (a) uses linearity of integration and (») Cauchy-Schwarz.

Step (5) again applies the compatibility of norms on slide 10

Step (6) uses the Lipschitz continuity of V£
(
(

Step (7) performs the integration over ¢
Step (8) uses the m-strong convexity of f

~— ~— ~— ~—

IV )] = Aanae (V0] 7) = 5
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2. Damped Newton’s Method



Damped Newton’s Method

The Newton direction —[V2f(x)]~!Vf(x) is a descent direction, but
with step size 1, Newton’s method does not guarantee f(xx1) < f(xx).

To ensure f(xx4+1) < f(xx), damped Newton’s method does
backtracking line search along the Newton direction.

Damped Newton’s method

1: initialization x < xo € R”
2: while || Vf(x)|| > 6 do
3 d+ —[Vf(x)]'Vf(x)
4: r+1

5: while 7 (x + td) > f(x) + atVf(x)'d do
6: t < [t
7: end while
8: X< x—+1td
9: end while

10: return x

where «, 5 € (0, 1)



Example

f) = VIt

Recall pure Newton’s method converges iff |xo| < 1.

Damped Newton’s method converges globally, e.g. for xo = 1.5.

f(x)

2.25

2.00 A

1.75 A

1.50 4

1.25 1

1.00 4

10° 4

107!

10724

1074 4

—— |z — ¥
—@— stepsize tj,

I 1.00

F0.75

I 0.25

5 10
iteration (k)



Convergence Analysis

Theorem. Assume f is m-strongly convex and L-smooth, V?f is
M-Lipschitz, and x* is a minimum of f. Damped Newton’s method
satisfies the following error bounds

. fxo) =f(x*) =k, ifk <k
f(x ) _f(x ) < {2m3 1y 2¢FoHt .
where v = 2aafn*m/L*, n = min{l,3(1 — 2a)}m?/M, and k is the
number of steps until || Vf (xx,+1)]| < .

Notes.
e Damped Newton’s method guarantees global convergence.
e Toget f(xx) —f(x*) < ¢, we need at most

10) ) 1o,
0% €

3 . .
where ¢) = %VILZ It can be slow if v is small.



Convergence Analysis (cont’d)

Detailed analysis shows that the convergence follows two stages

e Damped Newton phase. When ||Vf(x,)|| > n, backtracking
selects a step size f, < 1, and

frg1) —flxr) < —v
Summing over k from 0 to kg — 1,

f(xo) —f(x*)

f(x*) = f(xo0) < flxxy) —f(x0) < —koy = ko < S

e Pure Newton phase. When || Vf(x¢)|| < n, backtracking always
selects step size ¢, = 1, and

M 1
IV ()| < ﬁ!\vf(xk)llz < S IV

Once we are in the pure Newton phase, we will remain so.
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3. Equality Constrained Optimization



Equality Constrained Optimization Problems
Consider the equality constrained convex optimization problem
min  f(x)
st. alx=b, i=12,...k
where f is convex with domf = R”". In a more compact form,
min f(x)
st. Ax=0»b
where AT = (al, R ,ak) S RnXk, b= (b], - ,bk)T € R,

The feasible set is
X={xecR":Ax =b}

We assume X # (). We also assume the constraints are independent,
i.e. rankA = k (What if rankA < k?)



Optimality Condition

Lemma. Assume f is differentiable. x* € X is optimal iff
Vf(x*) L Null(4)
where Null(A) = {x : Ax = 0} is the null space of A.
Proof. Recall (slide 20 of Lecture 6) x* € X is optimal iff
Vi) (x—x*) >0 VxeX

Note x € X i.e. Ax = b iff x —x* € Null(A). The above condition
becomes
Vix*)y >0, Vye Null(A)

Note y € Null(A) <= —y € Null(4). The condition then reduces to
Vix* )Ty =0, Vye Null(A)

i.e. VF(x*) L Null(4).



Optimality Condition (cont'd)
Second Proof. Lety,,...,y,_, be a basis of Null(4). Then x € X iff

n—k
x=x" +Zziy,~ =x"+Fz
i=1

where F = (y,...,y,_)- Let g(z) = f(x* + Fz). Note x* is optimal for
the constrained problem (EC) iff 0 is an unconstrained minimum of g.
By the chain rule, the optimality condition is

Vg(0) = FTVf(x*) =0

o 0
85 T
aZ _yl

)

Sincey,,...,y,_ is a basis of Null(4),

Vfx*)=0, i=1,....n—k

yIVF(x*) =0, Vye Null(4)



Optimality Condition (cont'd)

Theorem. Assume f is differentiable. x* € X is optimal iff there exists
A* = (L. AT e REsit.

Vi(x*) +ATA* =0,
or written out,
k
Vi) + ) Nai=0.
i=1
The constants A7, ..., \; are called Lagrange multipliers.

Proof. By the previous lemma, x* € X is optimal iff Vf(x*) L Null(A).
Since
Null(4)* = Range(AT) £ {ATv : v € RF},
x* is optimal iff
Vf(x*) € Range(AT)

i.e. there exists v* s.t. Vf(x*) = ATv* = —ATX* with \* = —v*.
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