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Recap: Line Search
Exact line search.

tk = arg min
s

f (xk − s∇f (xk))

Backtracking line search (Armijo’s rule).

f (xk)− f (xk − tk∇f (xk)) ≥ αtk‖∇f (xk)‖2
2

1: initialization x← x0 ∈ Rn

2: while ‖∇f (x)‖ > δ do
3: choose direction d . d = −∇f (x) for gradient descent
4: t← t0
5: while f (x + td) > f (x) + αt∇f (x)Td do
6: t← βt
7: end while
8: x← x + td
9: end while

10: return x
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Recap: Convergence of Gradient Descent
For m-strongly convex and L-smooth f with minimum x∗

• gradient descent with constant step size t ∈ (0, 1
L ] satisfies

f (xk)− f (x∗) ≤ L(1− mt)k

m
[f (x0)− f (x∗)]

• gradient descent with exact line search satisfies

f (xk)− f (x∗) ≤
(

1− m
L

)k
[f (x0)− f (x∗)]

• gradient descent with backtracking line search satisfies

f (xk)− f (x∗) ≤ ck[f (x0)− f (x∗)]

where

c = 1−min

{
2mαt0,

4mβα(1− α)

L

}
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Recap: Newton’s Method
Newton’s method for solving optimization problem min

x
f (x)

xk+1 = xk − [∇2f (xk)]
−1∇f (xk)

Newton’s method for solving g(x) = 0

xk+1 = xk − [Dg(xk)]
−1g(xk)

Connection. First-order optimality condition

∇f (x∗) = 0
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Today
• Analysis of Newton’s method
• Damped Newton’s method
• Equality Constrained Optimization
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Contents

1. Analysis of Newton’s method

2. Damped Newton’s Method

3. Equality Constrained Optimization
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Convergence of Newton’s Method
Example. Consider the minimization of f (x) =

√
1 + x2.

f ′(x) =
x√

1 + x2
, f ′′(x) =

1
(1 + x2)3/2

The Newton direction is

dk = −f ′(xk)/f ′′(xk) = −xk − x3
k

The Newton step is
xk+1 = xk + dk = −x3

k

Note xk → x∗ = 0 iff |x0| < 1. When |x0| > 1, xk diverges, and

f (xk+1) > f (xk)

In general, Newton’s method does not guarantee global convergence.
When it does converge, the convergence is usually very fast.
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Convergence Analysis: 1D Case
Theorem. If f is m-strongly convex, f ′′ is M-Lipschitz continuous, and
x∗ is a minimum of f , then the sequence {xk} produced by Newton’s
method satisfies

|xk+1 − x∗| ≤ M
2m
|xk − x∗|2

Notes. Let ξk = M
2m |xk − x∗|. The above inequality becomes ξk+1 ≤ ξ2

k .
• If ξk = 10−p, then ξk+1 ≤ 10−2p, the number of significant digits

doubles in each iteration!
• If ξ0 < 1 i.e. |x0 − x∗| < 2m

M , then ξk ≤ ξ2k

0 converges to 0 extremely
fast. The number of iterations to ensure ξk ≤ ε is k ≥ log2 log 1

ξ0

1
ε .

For ε = 10−p, k ≥ log2 p + log2 log 1
ξ0

10, only logarithmic in the

number of digits. Very few iterations are required!
• This theorem is a local convergence result. Fast convergence if x0

is close enough to x∗, i.e. |x0 − x∗| < 2m
M . No guarantee if |x0 − x∗|

is large.
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Proof: 1D Case

|xk+1 − x∗|
= |xk − x∗ − [f ′′(xk)]

−1f ′(xk)| Newton step

= |f ′′(xk)|−1 · |f ′(x∗)− f ′(xk)− f ′′(xk)(x∗ − xk)| f ′(x∗) = 0

=
|xk − x∗|
|f ′′(xk)|

·
∣∣∣∣∫ 1

0
[f ′′(xk + t(x∗ − xk))− f ′′(xk)]dt

∣∣∣∣ Newton-Leibniz

≤ |xk − x∗|
|f ′′(xk)|

·
∫ 1

0
|f ′′(xk + t(x∗ − xk))− f ′′(xk)|dt

∣∣∣∣∫ f
∣∣∣∣ ≤ ∫ |f |

≤ |xk − x∗|
|f ′′(xk)|

·
∫ 1

0
Mt|xk − x∗|dt M-Lipschitz of f ′′

=
M

2|f ′′(xk)|
|xk − x∗|2

≤ M
2m
|xk − x∗|2 m-strong convexity
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Matrix Norm
The set of m× n matrices Rm×n is a mn-dimensional vector space

A matrix norm on Rm×n is a function ‖ · ‖ : Rm×n → R s.t.
1. ‖A‖ ≥ 0, ∀A ∈ Rm×n

2. ‖A‖ = 0 iff A = O
3. ‖cA‖ = |c| · ‖A‖, ∀c ∈ R,A ∈ Rm×n (positive homogeneity)
4. ‖A + B‖ ≤ ‖A‖+ ‖B‖, ∀A,B ∈ Rm×n (triangle inequality)

Example. The Frobenius norm on Rm×n is the 2-norm on Rmn.

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij for A = (aij) ∈ Rm×n
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Operator Norm
A matrix A ∈ Rm×n defines a linear transformation from Rn to Rm

A : Rn→ Rm

x 7→ Ax

Given two vector norms ‖ · ‖a and ‖ · ‖b on Rn and Rm, respectively, the
operator norm or induced norm of A is defined by

‖A‖a,b = max
x:x6=0

‖Ax‖b

‖x‖a
= max

x:‖x‖a=1
‖Ax‖b = max

x:‖x‖a≤1
‖Ax‖b

Exercise. Show the three definitions are equivalent.

The induced norm has the following important property.

Proposition (compatibility of norms).

‖Ax‖b ≤ ‖A‖a,b‖x‖a
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Spectral Norm
When the norms on Rn and Rm are both 2-norms, the induced norm on
Rn×m is simply called the 2-norm or spectral norm, denoted by ‖ · ‖2.

Proposition.

‖A‖2 =

√
λmax(ATA),

where λmax(ATA) is the maximum eigenvalue of ATA.

Proof. Let ‖x‖2 = 1. By slide 15 of Lecture 8,

‖Ax‖2
2 = xTATAx ≤ λmax(ATA)‖x‖2

2 = λmax(ATA), ∀x ∈ Rn

with equality iff x is an eigenvector of ATA associated with λmax(ATA).

Corollary. If A is symmetric,

‖A‖2 = max{|λmax(A)|, |λmin(A)|}

If A � O, then ‖A‖2 = λmax(A).
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Examples
Example.

A =

(
1 2
3 4

)
To find the 2-norm,

ATA =

(
1 3
2 4

)(
1 2
3 4

)
=

(
10 14
14 20

)

‖A‖2 =

√
λmax(ATA) =

√
15 +

√
221 ≈ 5.465

Example.

A =

(
1 2
2 4

)
� O

‖A‖2 =

√
λmax(ATA) =

√
λmax(A2) =

√
λ2
max(A) = λmax(A) = 5
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Convergence Analysis
∇2f is M-Lipschitz continuous if

‖∇2f (x)−∇2f (y)‖2 ≤ M‖x− y‖2, ∀x, y

Theorem. If f is m-strongly convex, ∇2f is M-Lipschitz continuous, and
x∗ is a minimum of f , then the sequence {xk} produced by Newton’s
method satisfies

‖xk+1 − x∗‖ ≤ M
2m
‖xk − x∗‖2

Note. The same remarks on slide 7 apply here with |xk − x∗| replaced
by ‖xk − x∗‖. In particular, if ‖x0 − x∗‖ < 2m

M , then

‖xk − x∗‖ ≤ 2m
M

(
M
2m
‖x0 − x∗‖

)2k

The proof is also very similar with only minor modifications.
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Proof

‖xk+1 − x∗‖
= ‖xk − x∗ − [∇2f (xk)]

−1[∇f (xk)−∇f (x∗)]‖ (1)

≤ ‖[∇2f (xk)]
−1‖ · ‖∇f (x∗)−∇f (xk)−∇2f (xk)(x∗ − xk)‖ (2)

= ‖[∇2f (xk)]
−1‖ ·

∥∥∥∥∫ 1

0
[∇2f (xk + t(x∗ − xk))−∇2f (xk)](x∗ − xk)dt

∥∥∥∥ (3)

≤ ‖[∇2f (xk)]
−1‖

∫ 1

0

∥∥[∇2f (xk + t(x∗ − xk))−∇2f (xk)](x∗ − xk)
∥∥ dt (4)

≤ ‖[∇2f (xk)]
−1‖

∫ 1

0

∥∥∇2f (xk + t(x∗ − xk))−∇2f (xk)
∥∥ · ‖x∗ − xk‖dt (5)

≤ ‖[∇2f (xk)]
−1‖

∫ 1

0
Mt‖x∗ − xk‖2dt (6)

= ‖[∇2f (xk)]
−1‖ · M

2
‖x∗ − xk‖2 (7)

≤ M
2m
‖xk − x∗‖2 (8)
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Proof (cont’d)

1. Step (1) uses the Newton updating rule

xk+1 = xk − [∇2f (xk)]
−1∇f (xk)

and the optimality condition ∇f (x∗) = 0.
2. Step (2) applies the compatibility of norms on slide 10 to

[∇2f (xk)]
−1[∇f (x∗)−∇f (xk)−∇2f (xk)(x∗ − xk)]

3. Step (3) applies the Newton-Leibniz formula to the function
h(t) = ∇f (xk + t(x∗ − xk)),

∇f (x∗)−∇f (xk) = h(1)− h(0) =

∫ 1

0
h′(t)dt

where h′(t) is given by the chain rule,

h′(t) = ∇2f (xk + t(x∗ − xk))(x∗ − xk)
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Proof (cont’d)
4. Step (4) uses the following inequality∥∥∥∥∫ f(t)dt

∥∥∥∥ ≤ ∫ ‖f(t)‖dt

Proof. Let z =
∫

f(t)dt.

‖z‖2 = zT
∫

f(t)dt
(a)
=

∫
zT f(t)dt

(b)
≤
∫
‖z‖·‖f(t)‖dt = ‖z‖

∫
‖f(t)‖dt,

where (a) uses linearity of integration and (b) Cauchy-Schwarz.
5. Step (5) again applies the compatibility of norms on slide 10
6. Step (6) uses the Lipschitz continuity of ∇2f
7. Step (7) performs the integration over t
8. Step (8) uses the m-strong convexity of f

‖[∇2f (xk)]
−1‖ = λmax([∇2f (xk)]

−1) =
1

λmin(∇2f (xk))
≤ 1

m
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Damped Newton’s Method
The Newton direction −[∇2f (x)]−1∇f (x) is a descent direction, but
with step size 1, Newton’s method does not guarantee f (xk+1) < f (xk).

To ensure f (xk+1) < f (xk), damped Newton’s method does
backtracking line search along the Newton direction.

Damped Newton’s method
1: initialization x← x0 ∈ Rn

2: while ‖∇f (x)‖ > δ do
3: d← −[∇2f (x)]−1∇f (x)
4: t← 1
5: while f (x + td) > f (x) + αt∇f (x)Td do
6: t← βt
7: end while
8: x← x + td
9: end while

10: return x
where α, β ∈ (0, 1)
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Example

f (x) =
√

1 + x2

Recall pure Newton’s method converges iff |x0| < 1.

Damped Newton’s method converges globally, e.g. for x0 = 1.5.

2 1 0 1 2
x

1.00

1.25

1.50

1.75

2.00

2.25

f(x
)

0 5 10

iteration (k)

10−4

10−3

10−2

10−1

100

0.25

0.50

0.75

1.00|xk − x∗|
stepsize tk
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Convergence Analysis
Theorem. Assume f is m-strongly convex and L-smooth, ∇2f is
M-Lipschitz, and x∗ is a minimum of f . Damped Newton’s method
satisfies the following error bounds

f (xk)− f (x∗) ≤
{

f (x0)− f (x∗)− γk, if k ≤ k0

2m3

M2

( 1
2

)2k−k0+1

, if k > k0

where γ = 2αᾱβη2m/L2, η = min{1, 3(1− 2α)}m2/M, and k0 is the
number of steps until ‖∇f (xk0+1)‖ ≤ η.

Notes.
• Damped Newton’s method guarantees global convergence.
• To get f (xk)− f (x∗) ≤ ε, we need at most

f (x0)− f (x∗)
γ

+ log2 log2
ε0

ε

where ε0 = 2m3

M2 . It can be slow if γ is small.
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Convergence Analysis (cont’d)
Detailed analysis shows that the convergence follows two stages
• Damped Newton phase. When ‖∇f (xk)‖ > η, backtracking

selects a step size tk ≤ 1, and

f (xk+1)− f (xk) ≤ −γ

Summing over k from 0 to k0 − 1,

f (x∗)− f (x0) ≤ f (xk0)− f (x0) ≤ −k0γ =⇒ k0 ≤
f (x0)− f (x∗)

γ

• Pure Newton phase. When ‖∇f (xk)‖ ≤ η, backtracking always
selects step size tk = 1, and

‖∇f (xk+1)‖ ≤ M
2m2 ‖∇f (xk)‖2 ≤ 1

2
‖∇f (xk)‖

Once we are in the pure Newton phase, we will remain so.
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Equality Constrained Optimization Problems
Consider the equality constrained convex optimization problem

min
x

f (x)

s.t. aT
i x = bi, i = 1, 2, . . . , k

where f is convex with dom f = Rn. In a more compact form,

min
x

f (x)

s.t. Ax = b
(EC)

where AT = (a1, . . . , ak) ∈ Rn×k, b = (b1, . . . , bk)
T ∈ Rk.

The feasible set is
X = {x ∈ Rn : Ax = b}

We assume X 6= ∅. We also assume the constraints are independent,
i.e. rank A = k (What if rank A < k?)
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Optimality Condition
Lemma. Assume f is differentiable. x∗ ∈ X is optimal iff

∇f (x∗) ⊥ Null(A)

where Null(A) = {x : Ax = 0} is the null space of A.

Proof. Recall (slide 20 of Lecture 6) x∗ ∈ X is optimal iff

∇f (x∗)T(x− x∗) ≥ 0, ∀x ∈ X

Note x ∈ X i.e. Ax = b iff x− x∗ ∈ Null(A). The above condition
becomes

∇f (x∗)Ty ≥ 0, ∀y ∈ Null(A)

Note y ∈ Null(A) ⇐⇒ −y ∈ Null(A). The condition then reduces to

∇f (x∗)Ty = 0, ∀y ∈ Null(A)

i.e. ∇f (x∗) ⊥ Null(A).
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Optimality Condition (cont’d)
Second Proof. Let y1, . . . , yn−k be a basis of Null(A). Then x ∈ X iff

x = x∗ +

n−k∑
i=1

ziyi = x∗ + Fz

where F = (y1, . . . , yn−k). Let g(z) = f (x∗ + Fz). Note x∗ is optimal for
the constrained problem (EC) iff 0 is an unconstrained minimum of g.
By the chain rule, the optimality condition is

∇g(0) = FT∇f (x∗) = 0

or
∂g(0)

∂zi
= yT

i ∇f (x∗) = 0, i = 1, . . . , n− k

Since y1, . . . , yn−k is a basis of Null(A),

yT∇f (x∗) = 0, ∀y ∈ Null(A)
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Optimality Condition (cont’d)
Theorem. Assume f is differentiable. x∗ ∈ X is optimal iff there exists
λ∗ = (λ∗1, . . . , λ

∗
k)T ∈ Rk s.t.

∇f (x∗) + ATλ∗ = 0,

or written out,

∇f (x∗) +

k∑
i=1

λ∗i ai = 0.

The constants λ∗1, . . . , λ
∗
k are called Lagrange multipliers.

Proof. By the previous lemma, x∗ ∈ X is optimal iff ∇f (x∗) ⊥ Null(A).
Since

Null(A)⊥ = Range(AT) , {ATv : v ∈ Rk},
x∗ is optimal iff

∇f (x∗) ∈ Range(AT)

i.e. there exists v∗ s.t. ∇f (x∗) = ATv∗ = −ATλ∗ with λ∗ = −v∗.


	Analysis of Newton's method
	Damped Newton's Method
	Equality Constrained Optimization

