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Recap: Damped Newton’s Method
1: initialization x← x0 ∈ Rn

2: while ‖∇f (x)‖ > δ do
3: d← −[∇2f (x)]−1∇f (x)
4: find t with backtracking line search
5: x← x + td
6: end while
7: return x

Pure vs damped Newton’s method (under appropriate conditions).
• Pure Newton’s method has fast local convergence with no global

guarantee

‖xk+1 − x∗‖ ≤ M
2m
‖xk − x∗‖2

• Damped Newton’s method guarantees global convergence with a
slow damped phase and a fast pure phase.
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Recap: Equality Constrained Optimization Problem
min

x
f (x)

s.t. Ax = b

where AT = (a1, . . . , ak) ∈ Rn×k, b ∈ Rk, f is differentiable and convex.

Assume the feasible set X = {x ∈ Rn : Ax = b} 6= ∅, and the
constraints are independent, i.e. rank A = k.

First-order optimality condition. x∗ ∈ X is optimal iff

∇f (x∗) ⊥ Null(A)

or equivalently,
∇f (x∗) ∈ Range(AT)

i.e.

∇f (x∗) + ATλ∗ = ∇f (x∗) +

k∑
i=1

λ∗i ai = 0, for some λ∗ ∈ Rk

The constants λ∗1, . . . , λ
∗
k are called Lagrange multipliers.
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Appendix
Lemma. Null(A)⊥ = Range(AT), where Range(AT) = {ATv : v ∈ Rk}
and Null(A)⊥ is the orthogonal complement of Null(A), i.e.

x ∈ Null(A)⊥ ⇐⇒ x ⊥ y, ∀y ∈ Null(A)

O a1

a2

Null(A) = {y : y ⊥ a1, y ⊥ a2}

Range(AT) = span{a1, a2}

Proof. Show Range(AT) ⊂ Null(A)⊥ is a subspace with the same
dimension, so Range(AT) = Null(A)⊥.
• x ∈ Range(AT) =⇒ x = ATz for some z
• ∀y ∈ Null(A), xTy = zTAy = zT0 = 0, i.e. x ⊥ y, so x ∈ Null(A)⊥.
• dim Range(AT) = rank A = n− dim Null(A) = dim Null(A)⊥
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Lagrange Condition
Define Lagrangian (or Lagrange function) by

L(x,λ) = f (x) + λT(Ax− b) = f (x) +

k∑
i=1

λi(aT
i x− bi)

The optimality condition becomes the following KKT equations1{
∇xL(x∗,λ∗) = ∇f (x∗) + ATλ∗ = 0
∇λL(x∗,λ∗) = Ax∗ − b = 0

where ∇x and ∇λ are partial gradient2 w.r.t. x and λ. or

∇L(x∗,λ∗) = 0

i.e. (x∗,λ∗) is a stationary point of L.
1KKT stands for Karush-Kuhn-Tucker. We’ll see later why it is called such.
2We use a similar notation ∇d f (x) = ∇f (x)T d to denote the directional derivative

of f along the direction d. The context should make it clear which is which.
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Example
Consider

min
x1,x2

f (x1, x2) =
1
2

x2
1 +

1
2

x2
2

s.t. x1 + 2x2 = 1

Method 1. Reduction to an equivalent unconstrained problem.

g(x2) , f (1− 2x2, x2) =
1
2

(1− 2x2)2 +
1
2

x2
2

min
x2

g(x2) =⇒ g′(x∗2) = 0 =⇒ x∗2 =
2
5

=⇒ x∗1 = 1− 2x∗2 =
1
5

Method 2. Lagrangian multipliers method. The Lagrangian is

L(x1, x2, λ) =
1
2

x2
1 +

1
2

x2
2 + λ(x1 + 2x2 − 1)

By the Lagrange condition,
∂L
∂x1

= x1 + λ = 0
∂L
∂x2

= x2 + 2λ = 0
∂L
∂λ = x1 + 2x2 − 1 = 0

=⇒


x∗1 = 1

5

x∗2 = 2
5

λ∗ = −1
5
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Example (cont’d)

min
x1,x2

f (x1, x2) =
1
2

x2
1 +

1
2

x2
2

s.t. x1 + 2x2 = 1

• normal vector to the feasible set X

a = (1, 2)T

• gradient

∇f (x) = x

• at x∗,

∇f (x∗) = −λ∗a ⊥ X

x1

x2

X : aT x = 1

a

aT x = 0 ∇f (x∗)

x∗
∇f (x0)

x0
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Example

min
x

f (x) =
1
2
‖x‖2

s.t. Ax = b
, where A =

[
1 2 0
2 2 1

]
, b =

[
1
1

]

Method 1. Reduction to an equivalent unconstrained problem.
• rank A = 2. Find two independent columns of A, e.g. the first and

third columns, and solve for the corresponding xi’s in terms of the

others. Let A1 =

[
1 0
2 1

]
, A2 =

[
2
2

]
. The constraints become

A1

[
x1
x3

]
+ A2x2 = b =⇒

[
x1
x3

]
= A−1

1 b− A−1
1 A2x2 =

[
1− 2x2
2x2 − 1

]
• Substitution into f yields

g(x2) = f (1− 2x2, x2, 2x2 − 1) = (2x2 − 1)2 +
1
2

x2
2 =⇒ x∗2 =

4
9

• x∗1 = 1− 2x∗2 = 1
9 , x∗3 = 2x∗2 − 1 = −1

9
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Example (cont’d)

min
x

f (x) =
1
2
‖x‖2

s.t. Ax = b
, where A =

[
1 2 0
2 2 1

]
, b =

[
1
1

]

Method 2. Lagrange multipliers method.
• The Lagrangian is

L(x,λ) =
1
2
‖x‖2 + λT(Ax− b)

• Lagrange condition{
∇xL(x,λ) = x + ATλ = 0
∇λL(x,λ) = Ax− b = 0

or
[

I AT

A O

] [
x
λ

]
=

[
0
b

]
• Solve for x,λ e.g. by block Gaussian elimination,{

x∗ = −ATλ∗ = AT(AAT)−1b
λ∗ = −(AAT)−1b

=⇒

{
x∗ = (1

9 ,
4
9 ,−

1
9)T

λ∗ = (−1
3 ,

1
9)T
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Example (cont’d)
Block Gaussian elimination.
• The augmented matrix is [

I AT 0
A O b

]
• Multiply the first “row” by −A and add to the second “row”,[

I AT 0
O −AAT b

]
• Multiply the second “row” by −(AAT)−1 (why invertible?),[

I AT 0
O I −(AAT)−1b

]
• Multiply the second “row” by −AT and add to the first “row”,[

I O AT(AAT)−1b
O I −(AAT)−1b

]
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Example (cont’d)

min
x

f (x) =
1
2
‖x‖2

s.t. Ax = b
, where A =

[
1 2 0
2 2 1

]
, b =

[
1
1

]

• vectors normal to the feasible set X

span{a1, a2}

with a1 = (1, 2, 0)T , a2 = (2, 2, 1)T .
• gradient

∇f (x) = x

• at x∗,

∇f (x∗) = −λ∗1a1 − λ∗2a2 ⊥ X
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Equality Constrained Convex QP

min
x

f (x) =
1
2

xTQx + gTx + c

s.t. Ax = b
(?)

where Q ∈ Rn, Q � O, A ∈ Rk×n, rank A = k.

Note. This is the basis for an extension of Newton’s method to equality
constrained problems.

• The Lagrangian is

L(x,λ) =
1
2

xTQx + gTx + c + λT(Ax− b)

• The Lagrange condition is{
∇xL(x,λ) = Qx + g + ATλ = 0
∇λL(x,λ) = Ax− b = 0

or
[

Q AT

A O

] [
x
λ

]
=

[
−g
b

]
This is the KKT system of the problem (?). The coefficient matrix

K =

[
Q AT

A O

]
is called the KKT matrix.
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Solving KKT System When Q � O{
Qx + g + ATλ = 0
Ax− b = 0

or
[

Q AT

A O

] [
x
λ

]
=

[
−g
b

]
1. Solving for x in term of λ from Qx + g + ATλ = 0,

x = −Q−1g− Q−1ATλ

2. Substituting into Ax− b = 0,

−AQ−1g− AQ−1ATλ = b

3. Since AQ−1AT � O (why?), solving for λ,

λ = −[AQ−1AT ]−1[AQ−1g + b]

4. Plugging into step 1,

x = −Q−1g + Q−1AT [AQ−1AT ]−1[AQ−1g + b]

Note. We can also use block Gaussian elimination (cf. slide 9).
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Unsolvable KKT System
Example.

min
x1,x2

f (x1, x2) =
1
2

x2
2 + x1

s.t. x2 = 0

This is a convex QP with

Q = diag{0, 1}, g = (1, 0)T , A = (0, 1), b = 0

The KKT system is 0 0 0
0 1 1
0 1 0

x1
x2
λ

 =

−1
0
0


which has no solution, since 0 · x1 + 0 · x2 + 0 · λ 6= −1.

Note f ∗ = −∞ for this problem.
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Unsolvable KKT System (cont’d)
If the KKT system has no solution, then the problem (?) is either
infeasible or unbounded below.
• KKT system has no solution iff[

−g
b

]
/∈ Range(K) = Range(KT) = Null(K)⊥

• There exists
[

v
w

]
∈ Null(K) s.t.

[
−g
b

]T [v
w

]
6= 0, i.e.

Qv + ATw = 0, Av = 0, −gTv + bTw 6= 0

• If x0 is feasible, then x0 + tv is feasible for any t ∈ R,

f (x0 + tv) = f (x0) + t(xT
0 Qv + gTv) +

1
2

t2vTQv

= f (x0) + t(−xT
0 ATw + gTv)− 1

2
t2wTAv (use Qv = −ATw)

= f (x0)− t(bTw− gTv) (use Av = 0 and Ax0 = b)

which goes to −∞, as t→ sign(bTw− gTv) · ∞.



15/23

Nonsingularity of KKT Matrix
If the KKT matrix K is nonsingular, then the KKT system has a unique
solution, which is optimal.

Recall Q � O and rank A = k. The following conditions are equivalent
1. K is nonsingular

2. Null(Q) ∩Null(A) = {0}, i.e. Q and A have no nontrivial common
nullspace, i.e. Ax = 0, Qx = 0 only have the trivial solution x = 0.

3. Ax = 0, x 6= 0 =⇒ xTQx > 0, i.e. Q is positive definite on the
nullspace of A.

4. FTQF � O for any F ∈ Rn×(n−k) s.t. Range(F) = Null(A), i.e. the
columns of F are linearly independent solutions of Ax = 0.

In particular, if Q � O, then K is nonsingular (by 3).
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Proof
We show 1⇒ 2⇒ 3⇒ 4⇒ 1.
• (1⇒ 2). If 0 6= x ∈ Null(Q) ∩Null(A), then[

Q AT

A O

] [
x
0

]
= 0

contradicting the nonsingularity of K.
• (2⇒ 3.) Assume Ax = 0 and xTQx = 0. We show x = 0. Since

Q � O, xTQx = 0 iff Qx = 0 3. By 2, Ax = 0 and Qx = 0 implies
x = 0.

3Proof of necessity: Let x1, . . . , xn be an orthonormal eigenbasis of Q and

Qxi = νixi. Then Q =
n∑

i=1
νixixT

i . Note νi ≥ 0, since Q � O. Then

0 = xT Qx = xT

(
n∑

i=1

νixixT
i

)
x =

n∑
i=1

νi‖xT
i x‖2 =⇒ xT

i x = 0 if νi > 0

i.e. either νi = 0 or xT
i x = 0. Thus Qx =

∑n
i=1 νixixT

i x = 0.



17/23

Proof (cont’d)
• (3⇒ 4.) rank F = dim Null(A) = n− rank A = n− k, so F has full

column rank. If z 6= 0, then x = Fz 6= 0 and
x ∈ Range(F) = Null(A). By 3, zT(FTQF)z = xTQx > 0.
• (4⇒ 1.) To show K is nonsingular, we assume[

Q AT

A O

] [
v
w

]
= 0

and show v = 0 and w = 0. Note v ∈ Null(A) and

Qv = −ATw =⇒ vTQv = −vTATw = −(Av)Tw = 0

Let F ∈ Rn×(n−k) be a matrix whose columns consist of a basis of
Null(A). Then Range(F) = Null(A) and v = Fz for some z. Now

0 = vTQv = zTFTQFz

By 4, z = 0, so v = Fz = 0. Then ATw = −Qv = 0. Since AT has
full column rank, w = 0.
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Example

x1

x2

f
(x

)

1

min
x1,x2

f (x1, x2) =
1
2

x2
2

s.t. x1 + 2x2 = b

Trivial with solution x∗1 = b, x∗2 = 0.

But let’s check the condition on slide 15.

Q = diag{0, 1}, A = (1, 2)

Let F = (2,−1)T . Then Range(F) = Null(A), and

FTQF = [1] � O

By 4 of slide 15, the KKT matrix in nonsingular, so ∃ a unique solution.

Note. The unconstrained problem minx f (x) has infinitely many
solutions. But this does not prevent the constrained problem from
having a unique solution, as Q � O on Null(A) (see 3 on slide 15).
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Newton Direction for Equality Constrained Problem
Consider the second-order Taylor approximation for f at a feasible xk,

min
d

h(d) , f̂ (xk + d) = f (xk) +∇f (xk)
Td +

1
2

dT∇2f (xk)d

s.t. A(xk + d) = b

Using Axk = b,

min
d

h(d) = f (xk) +∇f (xk)
Td +

1
2

dT∇2f (xk)d

s.t. Ad = 0

KKT system for this quadratic problem is[
∇2f (xk) AT

A O

] [
d
λ

]
=

[
−∇f (xk)

0

]
The Newton direction dk is given by the solution to the KKT system.
We will assume the KKT matrix is nonsingular (cf. slide 15)
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Newton’s Method for Equality Constrained Problem
1: initialization x← x0 ∈ X . x0 is feasible, i.e. Ax0 = b
2: repeat
3: Compute Newton’s direction d by solving[

∇2f (x) AT

A O

] [
d
λ

]
=

[
−∇f (x)

0

]
4: t← 1 . backtracking line search on lines 4-7
5: while f (x + td) > f (x) + αt∇f (x)Td do
6: t← βt
7: end while
8: x← x + td
9: until ‖d‖ ≤ δ

10: return x

Note. We cannot use ‖∇f (x)‖ ≤ δ as stopping criterion now, as

∇f (x∗) = 0 no longer holds in general. [BV] uses
√

dT∇2f (x)d ≤ δ.
Note. This is called a feasible descent method, since all xk are feasible
and f (xk+1) < f (xk) unless xk is optimal.
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Newton’s Method and Constraint Elimination
Let F ∈ Rn×(n−k) be a matrix whose columns are linearly independent
solutions to Ax = 0. For a fixed feasible x̃ ∈ X,

X = {x : Ax = b} = {x̃ + Fz : z ∈ Rn−k}

Constrained problem reduces to unconstrained problem by x = Fz + x̃,{
min

x
f (x)

s.t. Ax = b
⇐⇒ min

z
g(z) = f (Fz + x̃)

Note (slides 8 and 17 of Lecture 2),

∇g(z) = FT∇f (Fz + x̃), ∇2g(z) = FT∇2f (Fz + x̃)F (†)

Apply Newton’s method to both problems with initial points x0 and z0.
If x0 = Fz0 + x̃, we show by induction that xk = Fzk + x̃, so Newton’s
method converges for the constrained problem if it does for the
unconstrained problem.
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Proof
The Newton direction ∆xk for the constrained problem satisfies[

∇2f (xk) AT

A O

] [
∆xk
λk

]
=

[
−∇f (xk)

0

]
1. By the induction hypothesis xk = Fzk + x̃ and (†) on the previous

slide
FT∇2f (xk)F = ∇2g(zk), FT∇f (xk) = ∇g(zk)

2. By 1 above and 3 on slide 15, the KKT matrix in 1 in nonsingular
iff ∇2g(zk) � O, so ∆xk is well-defined iff the Newton direction
∆zk = −[∇2g(zk)]

−1∇g(zk) is well-defined.
3. Since Null(A) = Range(F), A∆xk = 0 ⇐⇒ ∆xk = Fu for some u.
4. Plugging ∆xk = Fu into the first KKT equation,

∇2f (xk)Fu + ATλk = −∇f (xk)

5. Pre-multiplying by FT ,

FT∇2(xk)Fu + (AF)Tλk = −FT∇f (xk)
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Proof (cont’d)

6. Since the columns of F are solutions to Ax = 0, AF = O
7. By 1, 5 and 6,

∇2g(zk)u = −∇g(zk) =⇒ u = −[∇2g(zk)]
−1∇g(zk) = ∆zk

so
∆xk = Fu = F∆zk

8. By 7, backtracking line search gives the same step size tk, since

f (xk + t∆xk) = f (F(zk + t∆zk) + x̃) = g(zk + t∆zk)

9. By 7, 8, and the induction hypothesis xk = Fzk + x̃,

xk+1 = xk + tk∆xk = Fzk + x̃+ tkF∆zk = F(zk + tk∆zk)+ x̃ = Fzk+1 + x̃

completing the induction.


