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Recap: Damped Newton’s Method

1: initialization x < xy € R”

2: while | Vf(x)|| > 6 do

3 d ~ V()] V()

4: find ¢ with backtracking line search
5 xX<x+1td

6: end while

7: return x

Pure vs damped Newton’s method (under appropriate conditions).

* Pure Newton’s method has fast local convergence with no global
guarantee
* M %112
P =27 < 5l — 7]
e Damped Newton’s method guarantees global convergence with a
slow damped phase and a fast pure phase.



Recap: Equality Constrained Optimization Problem
min  f(x)
st Ax=0b>b

where AT = (ay,...,a;) € R™, b c R, fis differentiable and convex.

Assume the feasible set X = {x € R" : Ax = b} # (), and the
constraints are independent, i.e. rankA = k.
First-order optimality condition. x* € X is optimal iff

Vf(x*) L Null(A)

or equivalently,
Vf(x*) € Range(AT)
i.e.

k
VF(x*) + ATA* = VF(x*) + ) M\a; =0, forsome A* € Rf
i=1

The constants A7, ..., \; are called Lagrange multipliers.



Appendix

Lemma. Null(A)* = Range(A”), where Range(A”) = {ATv : v € R}}
and Null(A)* is the orthogonal complement of Null(4), i.e.

x e Nulld)t < x Ly, VyeNull(Ad)
NullAd) ={y:y Lay La}

9 N
az/: l

Range(A”) = span{ai,a,}

Proof. Show Range(A”) c Null(4)" is a subspace with the same
dimension, so Range(A”) = Null(A)*.
® x € Range(A”) = x = Az for some z
* vy c Null(4), xTy =z7Ay =770 =0, i.e. x Ly, sox € Null(4)= .
e dim Range(A”) = rankA = n — dim Null(A) = dim Null(4)~+



Lagrange Condition

Define Lagrangian (or Lagrange function) by
LX) =f(x) +AT(Ax —b) =f(x) + > _ Ni(a]x — b))

The optimality condition becomes the following KKT equations’

Ve L(x*, A*) = Vf(x*) + ATA* =0
VAL A*) =Ax* —b =0
where V, and V, are partial gradient® w.r.t. x and \. or
VL(x*,A*) =0

i.e. (x*, \*) is a stationary point of L.

TKKT stands for Karush-Kuhn-Tucker. We'll see later why it is called such.
2We use a similar notation V,f(x) = Vf(x)"d to denote the directional derivative
of f along the direction d. The context should make it clear which is which.



Example

Consider 1, 1,
min  f(x1,x) = =x7 + =x3
X1,X2 2 2

st. xi+2xp =1

Method 1. Reduction to an equivalent unconstrained problem.
1
2

1
() £f(1—2x,x) = 5(1 —2x)% + =%

ming(n) = §(%) =0 = x =3

Method 2. Lagrangian multipliers method. The Lagrangian is

:>XT:1—2)C;:§

1 1
L(x1,x2,A) = Ex% + Ex% + A(xp 4+ 2x — 1)

By the Lagrange condition,

%ZX1+A:0

L —x+20=0

%:xl—i-Z)Q—l:O

= =
D% =%
1
QN L |—

>
*
I
|
=



Example (cont'd)

1 1
min  f(x1,x) = fx% + fx%
X1,X2 2 2

st. x1+2x0 =1

e normal vector to the feasible set X
a=(1,2)"
L] gradient a'x=0

Vf(x) =x '

L4 atx*, \




Example

. L 2
min flx) = inH . where A — B ; (1)] b= E]
st. Ax=b»b

Method 1. Reduction to an equivalent unconstrained problem.
e rankA = 2. Find two independent columns of A, e.g. the first and
third columns, and solve for the corresponding x;’s in terms of the

others. LetA;| = [1 0

5 1] , Ay = B] The constraints become

X3 2)(2 —1

Ay [ﬁl] +Ay =b = [xl} :Aflb —AflAzxz = [1 - 2x2}
3
e Substitution into f yields

1 4
g(x2) =f(1 —2x2,x2,2xp — 1) = (2xp — 1)2 + ix% = 1= 5

\O|—

OxT:1—2x§:$,x§:2x§—1:—



Example (cont'd)

i () = + [ 120 |
min = —

x 2 ; whereA—[ ],b—“
sit. Ax=0b>b

Method 2. Lagrange multipliers method.
* The Lagrangian is

1
L£(x,A) = S [lx[* + AT (Ax — b)
e Lagrange condition
{Vxﬁ(x,)\) =x+AA=0 [1 AT} H

Il
N
==

VaLx,A)=Ax—-b=10 A O] (X
e Solve for x, A e.g. by block Gaussian elimination,

P AN =ATAAT) e = (b
= -t 7 Yar o (Ll T
A" =—(A4A")""b A= (-1



Example (cont'd)

Block Gaussian elimination.
e The augmented matrix is

I AT 0
A O b
e Multiply the first “row” by —A and add to the second “row”,
I AT 0
0 —-AAT b
e Multiply the second “row” by —(AAT)~! (why invertible?),
1 AT 0 ]
0 I —(AA") 'p|
e Multiply the second “row” by —A” and add to the first “row”,

[1 0 AT(AAT)~'b]
0 I —(AAT) b




Example (cont'd)

. 1 o
e f(x)—2\|xH’ where A = {1 2 0],b=[
st. Ax=b»b

e vectors normal to the feasible set X

T1

span{a;,a,}

witha; = (1,2,0)7, ay = (2,2,1)7.

e gradient
Vf(x*)
Vfx) =x

® atx*,

Vf(x*) = —=Xa; — Nay L X




Equality Constrained Convex QP
ngcin flx) = %xTQx +glx+c
st. Ax=b

where Q € R", Q = 0, A € R¥" rankA = k.

Note. This is the basis for an extension of Newton’s method to equality
constrained problems.

(x)

* The Lagrangian is
Lx,A) = %xTQx +glx +c+ A (Ax — b)
* The Lagrange condition is

ViLx,A)=0x+g+A"A=0 [Q AT} {x} {—g]

or =
VALx,A)=Ax—-b=0 A O] |A b

This is the KKT system of the problem (x). The coefficient matrix

o AT]. ,
K = [A 0] is called the KKT matrix.



Solving KKT System When Q >~ O
{Qx+g+AT)\—0 or [Q AT} H _ [—g]
Ax—-b =0 A O] | b
1. Solving for x in term of A from Qx + g +ATA =0,
x=-0'g—07'A"x
2. Substituting into Ax — b = 0,
—AQ 'g —AQ'ATA =b
3. Since AQ~'AT - 0 (why?), solving for X,
A=—-[A07'AT]"1AQ g +b]
4. Plugging into step 1,
x=-0 'g+0 'ATAQ7'AT] ' AQ g + b]

Note. We can also use block Gaussian elimination (cf. slide 9).



Unsolvable KKT System

Example.

1
min  f(x,x) = fx% + x1
X1,X2 2

st. x=0

This is a convex QP with

0 =diag{0,1}, g=(1,07, A=(0,1), b=0

sl

which has no solution, since 0-x; +0-x, +0- X # —1.

The KKT system is

Note f* = —oo for this problem.



Unsolvable KKT System (cont’d)

If the KKT system has no solution, then the problem (x) is either
infeasible or unbounded below.
e KKT system has no solution iff

[_bg] ¢ Range(K) = Range(K”) = Null(K)*

T
. v —g 14 .
® There exists [W] € Null(K) s.t. [b ] [W] #0,i.e.
Ov+ATw=0, Av=0, —glv+bTw+#0
e If x( is feasible, then xy + v is feasible for any r € R,
1
flxo + 1) = f(xo) + t(xh Qv +g"v) + §t2vTQv

1
=f(xo) + t(—x)ATw + gTv) — itszAv (use Qv = —ATw)
= f(xo) — t(b"w —g"v) (use Av = 0 and Ax, = b)

which goes to —oo, as t — sign(b’w — g’v) - cc.



Nonsingularity of KKT Matrix

If the KKT matrix K is nonsingular, then the KKT system has a unique
solution, which is optimal.

Recall @ > 0 and rankA = k. The following conditions are equivalent
1. K is nonsingular

2. Null(Q) N Null(4) = {0}, i.e. @ and A have no nontrivial common
nullspace, i.e. Ax = 0, @x = 0 only have the trivial solution x = 0.

3. Ax=0,x #0 — x'Qx > 0, i.e. Q is positive definite on the
nullspace of A.

4. FTQF = 0O for any F € R"™ ("% s t. Range(F) = Null(A), i.e. the
columns of F are linearly independent solutions of Ax = 0.

In particular, if Q@ >~ 0, then K is nonsingular (by 3).



Proof

Weshow 1 =2 =3=4=1.
e (1 =2).1f0#x c Null(@) N Null(4), then

5ol

contradicting the nonsingularity of K.

® (2= 3.) Assume Ax = 0 and x”Qx = 0. We show x = 0. Since
0>0,x"0x =0iff Qx = 03. By 2, Ax = 0 and Qx = 0 implies
x=0.

3Proof of necessity: Letxi,...,x, be an orthonormal eigenbasis of Q and
Ox; = vix;. Then Q = " vxx!. Note v; > 0, since Q = 0. Then
i=1

i

n

n
0=x"Qx=x" <Z z/ixixiT) x = Z vilxlx|? = x/x=0ifv; >0
i=1

i=1

i.e. either v; = 0 or xTx = 0. Thus Qx = Yo vixixlx = 0.



Proof (cont'd)

® (3= 4.) rankF = dim Null(A) = n — rankA = n — k, so F has full
column rank. If z # 0, then x = Fz # 0 and
x € Range(F) = Null(A4). By 3,z (FTQF)z = x"Qx > 0.

® (4 = 1.) To show K is nonsingular, we assume

0 A" [v] _ 0
A O] |w|
and show v = 0 and w = 0. Note v € Null(A) and

Qv=-ATw = vigv="ATw = —(Av)"w =0

Let F € R™("—%) pe a matrix whose columns consist of a basis of
Null(A). Then Range(F) = Null(A) and v = Fz for some z. Now

0=vIQv=7"FT'QFz

By4,z=0,s0v=Fz=0. ThenA”w = —Qv = 0. Since A has
full column rank, w = 0.



Example
min  f(x,x) = %x%

st. xq1+2x,=0b

Trivial with solution xj = b, x5 = 0.

f(=)

But let’s check the condition on slide 15.

0 =diag{0,1}, A =(1,2)
Let F = (2, —1)7. Then Range(F) = Null(A), and
F'QF =[1] - O
By 4 of slide 15, the KKT matrix in nonsingular, so 3 a unique solution.

Note. The unconstrained problem min, f(x) has infinitely many
solutions. But this does not prevent the constrained problem from
having a unique solution, as @ > 0 on Null(A) (see 3 on slide 15).



Newton Direction for Equality Constrained Problem
Consider the second-order Taylor approximation for f at a feasible xy,
. 1
min h(d) £ f(x +d) = f(x) + Vf(x) d + idTVZf(xk)d
st. Alxy+d)=0>b
Using Ax;, = b,
min - h(d) = f(xi) + Vf (o) 'd + %dTVZf(xk)d
st. Ad=0

KKT system for this quadratic problem is

e 4[5

The Newton direction d; is given by the solution to the KKT system.
We will assume the KKT matrix is nonsingular (cf. slide 15)



Newton’s Method for Equality Constrained Problem

1: initialization x + xg € X > x IS feasible, i.e. Axo = b
2: repeat
3: Compute Newton’s direction d by solving
V) AT][d] _ [~V(x)

A o| |\ 0
4 1 > backtracking line search on lines 4-7
5:  while f(x + td) > f(x) + atVf(x)"d do
6: t+ Bt
7 end while

8: X—x+1td

9: until ||d]| <o
10: return x
Note. We cannot use || Vf(x)|| < ¢ as stopping criterion now, as
Vf(x*) = 0 no longer holds in general. [BV] uses y/d’ V2f(x)d < 6.

Note. This is called a feasible descent method, since all x; are feasible
and f(xg41) < f(xx) unless x; is optimal.



Newton’s Method and Constraint Elimination

Let F € R"™*("=%) be a matrix whose columns are linearly independent
solutions to Ax = 0. For a fixed feasible x € X,

X={x:Ax=b}={¥+Fz:zcR"*}
Constrained problem reduces to unconstrained problem by x = Fz + x,
{Him F& L i e) = f(Fz 4 2)
st. Ax=b z
Note (slides 8 and 17 of Lecture 2),

Vg(z) = FIVf(Fz + %), V’g(z) = FTV*f(Fz + %)F )

Apply Newton’s method to both problems with initial points xy and zy.
If xg = Fzo + X, we show by induction that x;, = Fz; + x, so Newton’s
method converges for the constrained problem if it does for the
unconstrained problem.



Proof

The Newton direction Ax; for the constrained problem satisfies

w

i 4] 3] [

. By the induction hypothesis x;, = Fz; + x and (f) on the previous

slide
F'N?f(x)F = Vg(zk), F'Vf(x) = Vgl(zx)

. By 1 above and 3 on slide 15, the KKT matrix in 1 in nonsingular

iff V2g(zi) = 0, so Ax; is well-defined iff the Newton direction
Az = —[V%g(z)] "' Ve(zi) is well-defined.

. Since Null(A) = Range(F), AAx; = 0 <= Ax; = Fu for some u.
. Plugging Ax; = Fu into the first KKT equation,

V2 (xx)Fu + AT A = =V (xy)

. Pre-multiplying by F7,

FTV?(x;)Fu + (AF)" X\, = —FTVf(x;)



Proof (cont'd)

6. Since the columns of F are solutionsto Ax = 0, AF = O
7. By 1,5 and 6,

Ve u = —Vgz) = u=—[V’g(z)] "' Ve(zi) = Az

SO
Axk = Fu :FAzk

8. By 7, backtracking line search gives the same step size 1, since
flxx +tAxy) = f(F(zx + tAzg) + %) = gz + tAzg)
9. By 7, 8, and the induction hypothesis x;, = Fz; + X,
Xiy1 = X+ 15 Ax, = F+ X+ 6 F Az = F(2r + 1, Az) +X = Fzp +X

completing the induction.



