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Recap: Equality Constrained Convex Problem
min  f(x)
st. Ax=0b
where A € R¥*" b € R, f is differentiable and convex.
Lagrangian.
L(x, ) =f(x) + A (Ax — b)
Lagrange condition. x* is optimal iff 3 Lagrange multiplier A* € Rf s.t.

VoL, A%) = Vi(x*) +ATA* = 0
VAL A*) =Ax* —b =0

Convex QP f(x) = 3x"Qx + g"x + ¢, where Q = 0. KKT system

Ox+g+A"TA=0 Q0 A" [x] [-g¢
Ax—b=0 or [A 0} N_ b



Recap: Newton’s Method

Solve an approximate quadratic problem in each iteration.

min f(x+d) = 2d"Vf(x)d + Vf(x)d 4+ (x)
st. Ad=0

: initialization x < xo s.t. Axo = b

2: repeat

Noe a R

Compute Newton’s direction d by solving

I

find stepsize ¢ by backtracking line search
x+—x+1twd

until ||d|| < ¢

return x
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1. General Equality Constrained Problems



Optimization on 2D Circle

Letx = (x,y)” € R%. Consider the following nonconvex (why?) problem
min  f(x)
st h(x)=|x|*-1=0

Parameterize the feasible set by x(¢) = (cost,sin#)” and reduce the
above constrained problem to the following unconstrained problem

mtin g(t) 2 f(x(1)) = f(cost,sint)

If x* = x(r*) is a local minimum of the constrained problem, then 7* is a
local minimum of g, so

¢0) = Ly + Ly —o
On the other hand, h(x(7)) = 0. Differentiating w.r.t.  at r*,
OnX™) yowy  ORXT) oy
g Y1)+ 5 () =0



Optimization on 2D Circle (cont'd)

Combining the previous two equations,

of (x* of (x*
Lt B FEEN [0 o [T iy — o
8hé§*) Bh{g);*) yl(t*) 0 Vh(x*)T

* The linear system has a solution x’(t*) = (—sin#*, cost*)T # 0, so
Vf(x*) and Vh(x*) must be linearly dependent.

e Note Via(x*) = x* # 0 (why?), so there exists \* s.t.
Vf(x*) + AN*Vh(x*) =0
Define the Lagrangian by
L(x,\) =f(x) + Ma(x)
Lagrange condition. x* is a local optimum only if there exists A* s.t.
{Vxﬁ(x*, A*) = Vf(x*) + A*Vh(x*)
VALxX*, A*) =h(x*) =0
Note. This is only a necessary condition for nonconvex problems.



Example
min  f(x) =x+2y
h(x) =

s.t.

Lagrange condition

U L NIE) _ L oA =0 = x=—
f”f(")+A8(>_2+2Ay:0 — y=—
h(x*)=x>+y*—1=0

solutions to the above equations

xz—? x—i
(y=-25 (2)qy= 2‘[
A=Y A_—§

(1) global minimum, (2) global maximum
at all extrema, Vf || Vi L X

le|? —1=0

_L
2X
1

X




Example
min  f(x) =2 —y

st hx)=|x|>-1=0
Lagrange condition
8f(x)

F A2 — oy 4 2A =0
8f(x)+)\8()_—1+2>\y:0

hx*) =x>+y*—1=0

\%i R av) \%i
e solutions to above equations lw
x=0 x=0 X = ? X = —?
(Hqey=1 (2 y=—1 B)yy=—35 @{y=—3
A=1 A=-1 A=—1 A=—1

(1) global minimum, (2) local minimum, (3)(4) global maxima
at all extrema, Vf || VA L X

Exercise. Solve equivalent problem g(y) =1 —y*> —ys.t. |y < 1



Implicit Function Theorem in 2D

The derivation on slides 4-5 works for general i of two variables, as
long as we can parameterize the feasible set in a neighborhood of x*
by x(1), i.e. h(x(t)) = 0, s.t. x'(r*) # 0 and VAi(x*) # 0. The Implicit
Function Theorem guarantees this is possible if Vi(x*) # 0.

Implicit Function Theorem. If F(x,y) is continuously differentiable in a
neighborhood of (xy, yo), and satisfies

OF (xo, yo)

F =0
<x07YO) ) 8)7

£0

then there exists a continuously differentiable function y = ¢(x) defined
in a neighborhood of xj s.t.

8F(%¢(X))] ~OF(x, ¢(x))

F(x,6(x)) =0, ¢'(x)=— [ Dy Ox



Implicit Function Theorem and Parameterization
If Vh(x0,y0) # 0, then either 2020 -2 o o %Oyvyo) £0.

o [f %&”’0) # 0, we can parameterize the feasible set by 7 = x,
x(1) = (1,6(1)" with x'(1) = (1,¢/ (1)) #0

o |f %@’W # 0, we can parameterize the feasible set by r =y,
x(1) = (.07 with () = @' (1).1)T #0

— el — Y
Example. For a(x) = ||x|| — 1. o

e atxy = (1,0)7, use x(¢) = (V1 — 2,07
e atxy = (0,1)7, use x(r) = (t, V1 — )T
e atxq in the 3rd quadrant, we can use

x(t) = (t,—vV1—)T or

x(t) = (=V1-£2,0)7

Vh

Vh



First-order Necessary Condition in 2D

A point x is called a regular point of a function 4 if Vha(x) # 0;
otherwise it is called a critical point.

Theorem. If x* is a local extremum (maximum or minimum) of f s.t.
h(x) = 0, and x* is a regular point of &, then there exists \* s.t.

VI (x*) + A*Vh(x*) = 0

Note. x* satisfying the above Lagrange condition
may be neither a maximum nor a minimum. E.g.

fx) = [l
hix)=y—x—1

Atx* = (0,1)7,

Vix*) = (0,2)T, Vh@x*)=(0,1)T

Second-order conditions can help distinguish different cases ([CZ, LY])



Critical Points
The Lagrange condition may fail at critical points.

Example. min  f(x,y) =x+y
x7)7
s.t. h(x,y)=x*>+y*=0

The feasible set is X = {0}, so x* = 0 is the global minimum. There is
no A\* € R satisfying the Lagrange condition Vf(x*) + A\*Vh(x*) = 0,
as Vf(x*) = (1,1)T and Vh(x*) = 0.

Example. min  f(x,y) = x
Xy

st h(xy) =y +xt—x* =0

Note x* — x* = y> > 0 implies x € [0, 1], so x* = 0 is the global
minimum. Lagrange condition fails as Vf(x*) = (1,0)7, Vh(x*) = 0.

Note. To find the minimum, we need to check both regular points
satisfying the Lagrange condition and feasible critical points.



First-order Necessary Condition

Let x € R" and n > k. Consider the equality constrained problem
min  f(x)
st hi(x)=0,i=12...k

A point x is a regular point of b = (hy,..., )T if Vi (x),..., Vi(x) are
linearly independent; otherwise it is a critical point of .

(ECP)

Theorem. If x* is a local extremum of f s.t. k(x) = 0, and x* is a regular
point of &, then there exist Lagrange multipliers AT, A eRst

Vi(x*) + (M) h(x*) )+ Z AVhi(x
Define the Lagrangian of (ECP) by
L(x,A) =f(x) + ATh(x) +Z)\h

Then the Lagrange condition is VL(x*, A*) = 0.



Appendix: Implicit Function Theorem

Write F : R*** — Rk as F(x,y) withx € R” and y € R¥. Let
F = (F],...,Fk)T, and

oF, oF, oF, oF;

on .. & o .. 2
OF o ! OF " .
—_— : .. : 5 —_— . - :
o o oF, W o, oF,
ox; T Oxy dy; " Ow

Implicit Function Theorem. If F : R*** — R is continuously
differentiable in a neighborhood (xo,y,), and satisfies

F
F(x07y0) =0, det a((';;’yo) 7é 0,

then there exists continuously differentiable function y = ¢(x) defined
in a neighborhood of x; s.t.

dp(x) OF (x, (x))] ' OF (x, p(x))
F(x, $(x)) =0, ax [ Oy ] Ox




Appendix: Proof of Lagrange Condition

Leth = (hy,...,h)". Note that the Jacobian matrix of & is
6]11 (x*) 8/1] (x*)

Gl Vhy (x%)7
iy [ ) o
o S N ;

Bhg)(:lc ) o ahg)(: ) th(x*)T

Since x* is regular, rank 24) — . By re-indexing xi, . . . x, if

necessary, we assume the last m columns are linearly independent.
Lety = (xl, . ,x,,_k)T, z= (xn_k+1, e ,xn)T.

By the Implicit Function Theorem, there is a continuously differentiable
function z = ¢(y) s.t. h(y, ¢(y)) = 0, i.e. we can parameterize the

feasible set X by’
x(y) = (v, @)
(ECP) reduces to
min g(y) =f(y, 6())

'we are sloppy about the shape here, but it should not cause any confusion.




Proof (cont'd)

Since x* = x(y*) = (y*, ¢(y*)) is a local extremum of (ECP), y* is a
local extreme of g. Recallingy, =x,for/ =1,...,n—k,

060" _06) | 5 ) 9 )

N 0x; Oy

=0, (=1,...,n—k
ayé 8)6[ ’ ’ )1

j=n—k+1
Differentiating h;(x(y)) = hi(y, ¢(y)) = 0 at y*,

Ohi(x") _ Ohifx") Z Ohi(x*) 09— (n—iy ¥*)

Oye dye flarit Ox; Oye
In matrix form,
1 0 99067) Ok (x*)] [ ") O (x*) Ohy(x*)
T ) T o ox Ox o Tom
R : . : : : : =0
0o ... 1 0¢1(x*) O (x*) of(x*) Ol (x¥) Oy (x*)

8)/)171\' T aynfk Oxp Oxn T Oxp



Proof (cont'd)

The matrix equation takes the form
|:In—k qu(x } [Vf( ) Vhl(x*) th(x*)] :O(H,k)x(kJrl)
meaning Vf(x*), Vhi(x*),..., Vh(x*) are all in Null(A), where
T n— n
A= 1, 2] ero-b,
Note dim Null(A) = k, s0 Vf(x*), VA (x*),..., Vh(x*) are linearly

dependent. But Vi (x*), ..., Vi (x*) are linearly independent, since
x* is a regular point. Thus there exist A}, ..., \; € Rs.t.

k
(") + > A Vhi(x*) =
i=1



Example

min  f(x) = x; + 2x + x3
xeR3

s.t. h](x) =x1+x+2x3=0
hy(x) = |le]> =1 =0

A critical point x satisfies Vi, (x) || Vhi(x), so x « (1,1,2)7, infeasible.

The Lagrangian is
L6, N) =x1 4+ 200 +x3 4+ M (x) +2x2 +2x3) + Xa(x +25 +x3 - 1)
The Lagrange condition is

8x|£= 1+ A 4+2Xx =0
8XZ£:2+)\1 +2XMx =0
8x3£ =142X\ +2Xx3=0
8)\152)(1-}-)624-2)63 =0

(O L=x+5+x3—-1=0




Example (cont'd)
* (1)+(2)+(3)x2,
546A +2X(x +x2+2x3) =0 (6)
Plugging (4) into (6) yields \; = —%.
Plugging A into (1)(2)(3), and noting that A, # 0,
1 7 1

- - = 7
20 2T TN BT 3 (7)

X1 =

Plugging (8) into (5) yields A, = £4/33, so

1 1
V66 V66
_ 1 _ 1
2= " ke 2 = Vo6
4 4
(1) X3 = \/ﬁ or (2) X3 = —ﬁ
A =—2 A= -2
_ 33 _ 33
A =4/5 (A2 =—\/%

(1) global minimum, (2) global maximum
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2. Inequality Constrained Problem



Active and Inactive Constraints

Letx € R” and n > k. Consider

min f(x)

X
st hi(x)=0,i=1,2,...,k (ICP)
gj(x) <0,j=1,2,....m

We do not assume it is a convex problem. Assume the domain is R”.
The feasible set is

X={x:hi(x)=0,1<i<k; gix)<0,1<j<m}

Let xo € X. The j-th inequality constraint g;(x) < 0 is called active at xg
if gi(xo) = 0, and inactive at x, if gj(xo) < 0. Denote by J(x() the set of
indices of the active inequality constraints at x,

J(x0) = {j : gj(x0) = 0}

By convention, equality constraints are considered active at all x € X.



Reduction to Equality Constrained Problem

Suppose x* is a local minimum of (ICP). It
is the solution to

min f(x)
st h(x)=0,i=1,2,....k

gi(x)<0,j=12,...,m
X € B(x™,0)

for some small enough §. It is equivalent to

.-~ B(x",0)
min f(x)

o —0 % !
st h(x)=0,i=1,2,...,k §1() //‘t’/

8(x) =0,j€J(x")
X € B(x™,0)

If it is known a priori which constraints are active at x*, we can find x*
by solving the above equality constrained problem.



Reduction to Equality Constrained Problem (cont’d)
A local minimum x* of (ICP) is also a local minimum of the following
min f(x)
st m(x)=0,i=12,...k
gj(x) =0, jeJx)
x* € X is aregular point if Vi;(x*),1 <i < kand Vg;(x*),j € J(x*) are
linearly independent.
At a regular local minimum, Lagrange condition yields
k
V) 4+ N Vhi(x) + Y piVgxT) =
i=1 JEJ(x*)

Setting ©; = 0 for inactive constraints, i.e. j ¢ J(x*),
J

+Z/\*Vh —i—Zung] =0

j=1



Karush-Kuhn-Tucker (KKT) Conditions

Theorem. If x* is a local minimum of (ICP) and also a regular point,
then there exist Lagrange multipliers? A:, ..., Nl s iy € RS
the following KKT conditions hold,

1. uj’.‘ZO,jzl,Z,... m

2. VIG) + N + S0 Vg =0

3. Mj*gj(x*) = 05.]: 1>2>"'7

Note. Condition 2 says V,L(x*, \*, u*) = 0 for the Lagrangian
L, ) = f(x) + NTh(x) + p"g(x +Z>\h )+ wigi(x)

Note. Condition 3 is called complementary slackness condition, as it,
together with 1 and g;(x) < 0, implies either x; = 0 or g;(x*) = 0.

2Sometimes also called KKT multipliers. Sometimes \; are called Lagrange
multipliers while y; are called KKT multipliers.



Geometric Interpretation
Let x € R%. Consider
min  f(x)
st g(x)<0,j=1,23

Suppose x* is a local minimum and only g; and g, are active at x*.
The KKT condition says p; > 0, 45 > 0, 5 = 0 and

Vf(x*) = —puiVeg1(x™) — 13 Vga (x™)




Geometric Interpretation (cont’d)

Why pf > 0? Assume p5 < 0 and we show a contradiction.
¢ Letd be a tangent vector of g;(x) =0 atx*, sod L Vg;(x*).
e d"Vg,(x*) # 0; otherwise, d L g(x*), s0 Vg (x*) || Vea(x*),
contradicting the regularity of x*.
* Replacing d by —d if necessary, we can assume d’ Vg,(x*) < 0.
e Move along the curve g;(x) = 0 in the direction of d from x* to x;.

d'Vf(x) = d' [ Vg1 (¥") — p2Va(x")] = —3d" Vgalx") < 0.




Appendix: Proof for p > 0

Suppose i < 0 for some jo. Let J'(x*) = J(x*) \ {jo}, and S the set
determined by all active constraints other than g;,,

S={x:hix)=0,i=1,2,....k g(x)=0,jeJ(x*}

We will show we can move away from x* on S so that feasibility is
maintained but f decreases, contradicting the minimality of x*.

1. There exists a direction d tangent to S s.t. Vg;,(x*)7dy < 0

2. KKT then implies V£ (x*)Tdy < 0

3. By Implicit Function Theorem, there exists a curve x(r) C S s.t.
x(0) = x*, x'(0) =dy. Thus gj(x(r)) =0 forj € J'(x*).

4. By continuity, g;(x(¢)) < 0 for small rand j ¢ J(x*)

5. By the chain rule,

Lane(0)| = Vi (e')(0) = Vi () dy <0

1=0
For small r > 0, g;, (x(7)) < gj,(x*) = 0. Similarly, f(x(z)) < f(x*).



Proof for . > 0 (cont’d)
1. There exists a direction d, tangent to S s.t. Vg, (x*)"dy < 0

Proof.
* Let A be a matrix whose columns are Vh;(x*) and Vg;(x*), i.e.

A= [Vh(x*),i=1,....k Vgix*), j€J (x*)]
e The tangent “plane” (or more precisely, tangent space) of S at x* is
T(x*) = Null(A”) = {d : Vh(x*)d = 0,Vi; Vgi(x*)'d =0, j€J(x*)}
e By regularity of x*,
Vg, (x*) ¢ span{Vh;(x*),Vi; Vg;(x*),j € J'(x*)} = Range(A) = Null(A”)*

so there exists dy € T(x*) s.t. Vg;,(x*)dy # 0.
* Replacing dy by —d, € T(x*) if necessary, we have

ngo (x*)Td() <0



Proof for . > 0 (cont’d)
2. For d, given by step 1, Vf(x*)Tdy < 0

Proof.
¢ By KKT Conditions 2 and 3

k
_*ZATV}Z"( Z 1 Vg(x* Z 1 Vgi(x*
i=1

JeI (") JEI(x7) —’—’:

* Sincedy € Null(A"), i <0,
k
Vi) do =~ N Vihi(x*)dy— Y i V() do—pi;, Vg (x") do

=1 =0 JeJ! (x¥) -0 <0

<0




Proof for . > 0 (cont’d)
3. There exists a curve x(7) C S s.t. x(0) = x*, x'(0) = d,

Proof. For notational simplicity, denote g;,j € J'(x*) by hxt1, .. ., hk.
e Define (1, &) = x* +tdy + K | a;Vh;(x*) and

hp(tva) = hp(i(tva))u l<p<K

* Note fzp(o, 0) = hy(x*) = 0, and

Z axg = Vh,(x*) Vhy(x*)

aaq 8aq

e By regularity of x*, A = [Vh;(x*), ..., Vhg(x*)] has rank K, so

Oh0.0) _ 474 -0
(oJe"

and hence nonsingular.



Proof for . > 0 (cont’d)

Proof (cont'd).

* By Implicit Function Theorem, there exists () for small [¢| s.t.
a(0) =0and h(t,a(r)) = h(x(t,a(r))) = 0. Furthermore,

Vh](x*)Tdo
: =0

—1

oy | OR(0,0) ' 0h(0,0)  [0h(0,0)
o (0) =175 o | o

Vh[( (x*)Td()

since dy € T(x*) = Null(AT).
e Letx(r) =x(t,a(r)). Then h(x(r)) =0, so x(r) C S.

X(0) =do+ Y _ 0(0)Vhi(x*) = do
i=1



Sufficiency of KKT Conditions for Convex Problems

Theorem. For convex (ICP), i.e. f and g; are convex, and k; are affine,
if there exist A7,..., A\f and pj, ..., u;, s.t. the KKT conditions are
satisfied at a feasible x* € X, then x* is a global minimum of (ICP).

Note. The previous necessary conditions assume x* is regular point.
The sufficient conditions here assume convexity but not regularity.

Proof. We show Vf(x*)"(x —x*) > 0,Vx € X.
1. By the KKT conditions,

Vr (' ZA Vhi(x - D Vg
J€J(x*)

It suffices to show Vi;(x*)T(x —x*) = 0 and Vg;(x*)’(x —x*) < 0.
2. Since h;(x) = alx — b; is affine, and h;(x) = h(x*) = 0 by feasibility,

Vhi(x*) (x —x*) = al (x — x*) = hi(x) —h(x*) =0
3. ForjeJ(x*), gi(x*) = 0 and gj(x) < 0. By the convexity of g;,
V(") (x —x*) < gj(x) — g;(x") <0
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