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Recap: Equality Constrained Convex Problem
min

x
f (x)

s.t. Ax = b

where A ∈ Rk×n, b ∈ Rk, f is differentiable and convex.

Lagrangian.
L(x,λ) = f (x) + λT(Ax− b)

Lagrange condition. x∗ is optimal iff ∃ Lagrange multiplier λ∗ ∈ Rk s.t.{
∇xL(x∗,λ∗) = ∇f (x∗) + ATλ∗ = 0
∇λL(x∗,λ∗) = Ax∗ − b = 0

Convex QP. f (x) = 1
2 xTQx + gTx + c, where Q � O. KKT system{

Qx + g + ATλ = 0
Ax− b = 0

or
[

Q AT

A O

] [
x
λ

]
=

[
−g
b

]
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Recap: Newton’s Method
Solve an approximate quadratic problem in each iteration.

min
d

f (x + d) =
1
2

dT∇2f (x)d +∇f (x)Td + f (x)

s.t. Ad = 0

1: initialization x← x0 s.t. Ax0 = b
2: repeat
3: Compute Newton’s direction d by solving[

∇2f (x) AT

A O

] [
d
λ

]
=

[
−∇f (x)

0

]
4: find stepsize t by backtracking line search
5: x← x + td
6: until ‖d‖ ≤ δ
7: return x
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Optimization on 2D Circle
Let x = (x, y)T ∈ R2. Consider the following nonconvex (why?) problem

min
x

f (x)

s.t. h(x) = ‖x‖2 − 1 = 0

Parameterize the feasible set by x(t) = (cos t, sin t)T and reduce the
above constrained problem to the following unconstrained problem

min
t

g(t) , f (x(t)) = f (cos t, sin t)

If x∗ = x(t∗) is a local minimum of the constrained problem, then t∗ is a
local minimum of g, so

g′(t∗) =
∂f (x∗)
∂x

x′(t∗) +
∂f (x∗)
∂y

y′(t∗) = 0

On the other hand, h(x(t)) = 0. Differentiating w.r.t. t at t∗,

∂h(x∗)
∂x

x′(t∗) +
∂h(x∗)
∂y

y′(t∗) = 0
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Optimization on 2D Circle (cont’d)
Combining the previous two equations,[

∂f (x∗)
∂x

∂f (x∗)
∂y

∂h(x∗)
∂x

∂h(x∗)
∂y

] [
x′(t∗)
y′(t∗)

]
=

[
0
0

]
or

[
∇f (x∗)T

∇h(x∗)T

]
x′(t∗) = 0

• The linear system has a solution x′(t∗) = (− sin t∗, cos t∗)T 6= 0, so
∇f (x∗) and ∇h(x∗) must be linearly dependent.

• Note ∇h(x∗) = x∗ 6= 0 (why?), so there exists λ∗ s.t.

∇f (x∗) + λ∗∇h(x∗) = 0

Define the Lagrangian by

L(x, λ) = f (x) + λh(x)

Lagrange condition. x∗ is a local optimum only if there exists λ∗ s.t.{
∇xL(x∗, λ∗) = ∇f (x∗) + λ∗∇h(x∗)
∇λL(x∗, λ∗) = h(x∗) = 0

Note. This is only a necessary condition for nonconvex problems.
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Example
min

x
f (x) = x + 2y

s.t. h(x) = ‖x‖2 − 1 = 0

• Lagrange condition
∂f (x)
∂x + λ∂h(x)

∂x = 1 + 2λx = 0 =⇒ x = − 1
2λ

∂f (x)
∂y + λ∂h(x)

∂y = 2 + 2λy = 0 =⇒ y = − 1
λ

h(x∗) = x2 + y2 − 1 = 0

• solutions to the above equations

(1)


x = −

√
5

5

y = − 2
√

5
5

λ =
√

5
2

(2)


x =

√
5

5

y = 2
√

5
5

λ = −
√

5
2

• (1) global minimum, (2) global maximum
• at all extrema, ∇f ‖ ∇h ⊥ X

x

y√
5

1

−1

−
√

5

∇f

∇h

x∗max

∇f

∇h

x∗min
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Example
min

x
f (x) = x2 − y

s.t. h(x) = ‖x‖2 − 1 = 0
• Lagrange condition

∂f (x)
∂x + λ∂h(x)

∂x = 2x + 2λx = 0
∂f (x)
∂y + λ∂h(x)

∂y = −1 + 2λy = 0

h(x∗) = x2 + y2 − 1 = 0

• solutions to above equations

(1)


x = 0
y = 1
λ = 1

2

(2)


x = 0
y = −1
λ = − 1

2

(3)


x =

√
3

2

y = −1
2

λ = −1

(4)


x = −

√
3

2

y = − 1
2

λ = −1

• (1) global minimum, (2) local minimum, (3)(4) global maxima
• at all extrema, ∇f ‖ ∇h ⊥ X

Exercise. Solve equivalent problem g(y) = 1− y2 − y s.t. |y| ≤ 1.

x

y
−1

−0.5
0.5
1
1.25

∇h

∇f

∇h

∇f

∇h

∇f

∇h

∇f
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Implicit Function Theorem in 2D
The derivation on slides 4-5 works for general h of two variables, as
long as we can parameterize the feasible set in a neighborhood of x∗
by x(t), i.e. h(x(t)) = 0, s.t. x′(t∗) 6= 0 and ∇h(x∗) 6= 0. The Implicit
Function Theorem guarantees this is possible if ∇h(x∗) 6= 0.

Implicit Function Theorem. If F(x, y) is continuously differentiable in a
neighborhood of (x0, y0), and satisfies

F(x0, y0) = 0,
∂F(x0, y0)

∂y
6= 0

then there exists a continuously differentiable function y = φ(x) defined
in a neighborhood of x0 s.t.

F(x, φ(x)) = 0, φ′(x) = −
[
∂F(x, φ(x))

∂y

]−1 ∂F(x, φ(x))
∂x
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Implicit Function Theorem and Parameterization
If ∇h(x0, y0) 6= 0, then either ∂h(x0,y0)

∂x 6= 0 or ∂h(x0,y0)
∂y 6= 0.

• If ∂h(x0,y0)
∂y 6= 0, we can parameterize the feasible set by t = x,

x(t) = (t, φ(t))T with x′(t) = (1, φ′(t))T 6= 0

• If ∂h(x0,y0)
∂y 6= 0, we can parameterize the feasible set by t = y,

x(t) = (ψ(t), t)T with x′(t) = (ψ′(t), 1)T 6= 0

Example. For h(x) = ‖x‖2 − 1.
• at x0 = (1, 0)T , use x(t) = (

√
1− t2, t)T

• at x0 = (0, 1)T , use x(t) = (t,
√

1− t2)T

• at x0 in the 3rd quadrant, we can use
x(t) = (t,−

√
1− t2)T or

x(t) = (−
√

1− t2, t)T

x

y

∇h

∇h

∇h
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First-order Necessary Condition in 2D
A point x is called a regular point of a function h if ∇h(x) 6= 0;
otherwise it is called a critical point.

Theorem. If x∗ is a local extremum (maximum or minimum) of f s.t.
h(x) = 0, and x∗ is a regular point of h, then there exists λ∗ s.t.

∇f (x∗) + λ∗∇h(x∗) = 0

Note. x∗ satisfying the above Lagrange condition
may be neither a maximum nor a minimum. E.g.

f (x) = ‖x‖2

h(x) = y− x3 − 1

At x∗ = (0, 1)T ,

∇f (x∗) = (0, 2)T , ∇h(x∗) = (0, 1)T

x

y
y = x3 + 1∇f

∇h

Second-order conditions can help distinguish different cases ([CZ, LY])
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Critical Points
The Lagrange condition may fail at critical points.

Example. min
x,y

f (x, y) = x + y

s. t. h(x, y) = x2 + y2 = 0

The feasible set is X = {0}, so x∗ = 0 is the global minimum. There is
no λ∗ ∈ R satisfying the Lagrange condition ∇f (x∗) + λ∗∇h(x∗) = 0,
as ∇f (x∗) = (1, 1)T and ∇h(x∗) = 0.

Example. min
x,y

f (x, y) = x

s. t. h(x, y) = y2 + x4 − x3 = 0

Note x3 − x4 = y2 ≥ 0 implies x ∈ [0, 1], so x∗ = 0 is the global
minimum. Lagrange condition fails as ∇f (x∗) = (1, 0)T ,∇h(x∗) = 0.

x

y

Note. To find the minimum, we need to check both regular points
satisfying the Lagrange condition and feasible critical points.
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First-order Necessary Condition
Let x ∈ Rn and n > k. Consider the equality constrained problem

min
x

f (x)

s.t. hi(x) = 0, i = 1, 2, . . . , k
(ECP)

A point x is a regular point of h = (h1, . . . , hk)
T if ∇h1(x), . . . ,∇hk(x) are

linearly independent; otherwise it is a critical point of h.

Theorem. If x∗ is a local extremum of f s.t. h(x) = 0, and x∗ is a regular
point of h, then there exist Lagrange multipliers λ∗1, . . . , λ

∗
k ∈ R s.t.

∇f (x∗) + (λ∗)Th(x∗) = ∇f (x∗) +
k∑

i=1

λ∗i∇hi(x∗) = 0

Define the Lagrangian of (ECP) by

L(x,λ) = f (x) + λTh(x) = f(x) +
k∑

i=1

λihi(x)

Then the Lagrange condition is ∇L(x∗,λ∗) = 0.
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Appendix: Implicit Function Theorem
Write F : Rn+k → Rk as F(x, y) with x ∈ Rn and y ∈ Rk. Let
F = (F1, . . . ,Fk)

T , and

∂F
∂x

=


∂F1
∂x1

. . . ∂F1
∂xn

...
. . .

...
∂Fk
∂x1

. . . ∂Fk
∂xn

 , ∂F
∂y

=


∂F1
∂y1

. . . ∂F1
∂yk

...
. . .

...
∂Fk
∂y1

. . . ∂Fk
∂yk


Implicit Function Theorem. If F : Rn+k → Rk is continuously
differentiable in a neighborhood (x0, y0), and satisfies

F(x0, y0) = 0, det
∂F(x0, y0)

∂y
6= 0,

then there exists continuously differentiable function y = φ(x) defined
in a neighborhood of x0 s.t.

F(x,φ(x)) = 0,
∂φ(x)
∂x

= −
[
∂F(x,φ(x))

∂y

]−1 ∂F(x,φ(x))
∂x
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Appendix: Proof of Lagrange Condition
Let h = (h1, . . . , hk)

T . Note that the Jacobian matrix of h is

∂h(x∗)
∂x

=


∂h1(x∗)
∂x1

. . . ∂h1(x∗)
∂xn

...
. . .

...
∂hk(x∗)
∂x1

. . . ∂hk(x∗)
∂xn

 =

∇h1(x∗)T

...
∇hk(x∗)T


Since x∗ is regular, rank ∂h(x∗)

∂x = k. By re-indexing x1, . . . xn if
necessary, we assume the last m columns are linearly independent.
Let y = (x1, . . . , xn−k)

T , z = (xn−k+1, . . . , xn)
T .

By the Implicit Function Theorem, there is a continuously differentiable
function z = φ(y) s.t. h(y,φ(y)) = 0, i.e. we can parameterize the
feasible set X by1

x(y) = (y,φ(y))

(ECP) reduces to
min

y
g(y) = f (y, φ(y))

1we are sloppy about the shape here, but it should not cause any confusion.
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Proof (cont’d)
Since x∗ = x(y∗) = (y∗,φ(y∗)) is a local extremum of (ECP), y∗ is a
local extreme of g. Recalling y` = x` for ` = 1, . . . , n− k,

∂g(y∗)
∂y`

=
∂f (x∗)
∂x`

+

n∑
j=n−k+1

∂f (x∗)
∂xj

∂φj−(n−k)(y∗)
∂y`

= 0, ` = 1, . . . , n− k

Differentiating hi(x(y)) = hi(y,φ(y)) = 0 at y∗,

∂hi(x∗)
∂y`

=
∂hi(x∗)
∂y`

+
n∑

j=n−k+1

∂hj(x∗)
∂xj

∂φj−(n−k)(y∗)
∂y`

= 0, ` = 1, . . . , n− k

In matrix form,
1 . . . 0 ∂φ1(x∗)

∂y1
. . . ∂φk(x∗)

∂y1
...

. . .
...

...
. . .

...
0 . . . 1 ∂φ1(x∗)

∂yn−k
. . . ∂φk(x∗)

∂yn−k



∂f (x∗)
∂x1

∂h1(x∗)
∂x1

. . . ∂hk(x∗)
∂x1

...
...

. . .
...

∂f (x∗)
∂xn

∂h1(x∗)
∂xn

. . . ∂hk(x∗)
∂xn

 = O
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Proof (cont’d)
The matrix equation takes the form[

In−k
∂φ(x∗)
∂y

T
] [
∇f (x∗) ∇h1(x∗) . . . ∇hk(x∗)

]
= O(n−k)×(k+1)

meaning ∇f (x∗),∇h1(x∗), . . . ,∇hk(x∗) are all in Null(A), where

A =
[
In−k

∂φ(x∗)
∂y

T
]
∈ R(n−k)×n.

Note dimNull(A) = k, so ∇f (x∗),∇h1(x∗), . . . ,∇hk(x∗) are linearly
dependent. But ∇h1(x∗), . . . ,∇hk(x∗) are linearly independent, since
x∗ is a regular point. Thus there exist λ∗1, . . . , λ

∗
k ∈ R s.t.

∇f (x∗) +
k∑

i=1

λ∗i∇hi(x∗) = 0
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Example
min
x∈R3

f (x) = x1 + 2x2 + x3

s.t. h1(x) = x1 + x2 + 2x3 = 0

h2(x) = ‖x‖2 − 1 = 0

A critical point x satisfies ∇h2(x) ‖ ∇h1(x), so x ∝ (1, 1, 2)T , infeasible.

The Lagrangian is

L(x,λ) = x1 + 2x2 + x3 + λ1(x1 + x2 + 2x3) + λ2(x2
1 + x2

2 + x2
3 − 1)

The Lagrange condition is

∂x1L = 1 + λ1 + 2λ2x1 = 0

∂x2L = 2 + λ1 + 2λ2x2 = 0

∂x3L = 1 + 2λ1 + 2λ2x3 = 0

∂λ1L = x1 + x2 + 2x3 = 0

∂λ2L = x2
1 + x2

2 + x2
3 − 1 = 0

(1)
(2)
(3)
(4)

(5)
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Example (cont’d)
• (1)+(2)+(3)×2,

5 + 6λ1 + 2λ2(x1 + x2 + 2x3) = 0 (6)

• Plugging (4) into (6) yields λ1 = − 5
6 .

• Plugging λ1 into (1)(2)(3), and noting that λ2 6= 0,

x1 = − 1
12λ2

, x2 = − 7
12λ2

, x3 =
1

3λ2
(7)

• Plugging (8) into (5) yields λ2 = ±
√

33
72 , so

(1)



x1 = − 1√
66

x2 = − 7√
66

x3 = 4√
66

λ1 = −5
6

λ2 =
√

33
72

or (2)



x1 = 1√
66

x2 = 7√
66

x3 = − 4√
66

λ1 = − 5
6

λ2 = −
√

33
72

• (1) global minimum, (2) global maximum
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Active and Inactive Constraints
Let x ∈ Rn and n > k. Consider

min
x

f (x)

s.t. hi(x) = 0, i = 1, 2, . . . , k

gj(x) ≤ 0, j = 1, 2, . . . ,m

(ICP)

We do not assume it is a convex problem. Assume the domain is Rn.
The feasible set is

X = {x : hi(x) = 0, 1 ≤ i ≤ k; gj(x) ≤ 0, 1 ≤ j ≤ m}

Let x0 ∈ X. The j-th inequality constraint gj(x) ≤ 0 is called active at x0
if gj(x0) = 0, and inactive at x0 if gj(x0) < 0. Denote by J(x0) the set of
indices of the active inequality constraints at x0,

J(x0) = {j : gj(x0) = 0}

By convention, equality constraints are considered active at all x ∈ X.
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Reduction to Equality Constrained Problem

g1(x) = 0
g2(x) = 0

g3(x) = 0

x∗
B(x∗, δ)

Suppose x∗ is a local minimum of (ICP). It
is the solution to

min
x

f (x)

s.t. hi(x) = 0, i = 1, 2, . . . , k

gj(x) ≤ 0, j = 1, 2, . . . ,m

x ∈ B(x∗, δ)

for some small enough δ. It is equivalent to

min
x

f (x)

s.t. hi(x) = 0, i = 1, 2, . . . , k

gj(x) = 0, j ∈ J(x∗)
x ∈ B(x∗, δ)

g1(x) = 0

x∗
B(x∗, δ)

If it is known a priori which constraints are active at x∗, we can find x∗
by solving the above equality constrained problem.
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Reduction to Equality Constrained Problem (cont’d)
A local minimum x∗ of (ICP) is also a local minimum of the following

min
x

f (x)

s.t. hi(x) = 0, i = 1, 2, . . . , k

gj(x) = 0, j ∈ J(x∗)

x∗ ∈ X is a regular point if ∇hi(x∗), 1 ≤ i ≤ k and ∇gj(x∗), j ∈ J(x∗) are
linearly independent.

At a regular local minimum, Lagrange condition yields

∇f (x∗) +
k∑

i=1

λ∗i∇hi(x∗) +
∑

j∈J(x∗)

µ∗j∇gj(x∗) = 0

Setting µ∗j = 0 for inactive constraints, i.e. j /∈ J(x∗),

∇f (x∗) +
k∑

i=1

λ∗i∇hi(x∗) +
m∑

j=1

µ∗j∇gj(x∗) = 0
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Karush-Kuhn-Tucker (KKT) Conditions
Theorem. If x∗ is a local minimum of (ICP) and also a regular point,
then there exist Lagrange multipliers2 λ∗1, . . . , λ

∗
k , µ
∗
1, . . . , µ

∗
m ∈ R s.t.

the following KKT conditions hold,
1. µ∗j ≥ 0, j = 1, 2, . . . ,m

2. ∇f (x∗) +
k∑

i=1
λ∗i∇hi(x∗) +

m∑
j=1

µ∗j∇gj(x∗) = 0

3. µ∗j gj(x∗) = 0, j = 1, 2, . . . ,m

Note. Condition 2 says ∇xL(x∗,λ∗,µ∗) = 0 for the Lagrangian

L(x,λ,µ) = f (x) + λTh(x) + µTg(x) = f (x) +
k∑

i=1

λihi(x) +
m∑

j=1

µjgj(x)

Note. Condition 3 is called complementary slackness condition, as it,
together with 1 and gj(x) ≤ 0, implies either µ∗j = 0 or gj(x∗) = 0.

2Sometimes also called KKT multipliers. Sometimes λi are called Lagrange
multipliers while µj are called KKT multipliers.
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Geometric Interpretation
Let x ∈ R2. Consider

min
x

f (x)

s.t. gj(x) ≤ 0, j = 1, 2, 3

Suppose x∗ is a local minimum and only g1 and g2 are active at x∗.
The KKT condition says µ∗1 ≥ 0, µ∗2 ≥ 0, µ∗3 = 0 and

∇f (x∗) = −µ∗1∇g1(x∗)− µ∗2∇g2(x∗)

g1(x) = 0 g2(x) = 0

g3(x) = 0

−∇g1(x∗)−∇g2(x∗)
∇f (x∗)

x∗
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Geometric Interpretation (cont’d)
Why µ∗j ≥ 0? Assume µ∗2 < 0 and we show a contradiction.
• Let d be a tangent vector of g1(x) = 0 at x∗, so d ⊥ ∇g1(x∗).
• dT∇g2(x∗) 6= 0; otherwise, d ⊥ g2(x∗), so ∇g1(x∗) ‖ ∇g2(x∗),

contradicting the regularity of x∗.
• Replacing d by −d if necessary, we can assume dT∇g2(x∗) < 0.
• Move along the curve g1(x) = 0 in the direction of d from x∗ to x1.

dT∇f (x∗) = dT [−µ1∇g1(x∗)− µ2∇g2(x∗)] = −µ∗2dT∇g2(x∗) < 0.

For a small move, f (x1) < f (x∗), contradicting minimality of f (x∗).

g1(x) = 0 g2(x) = 0

g3(x) = 0

d

−∇g1(x∗)−∇g2(x∗)

∇f (x∗)
x∗

B(x0, δ)

x1
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Appendix: Proof for µ ≥ 0
Suppose µ∗j0 < 0 for some j0. Let J′(x∗) = J(x∗) \ {j0}, and S the set
determined by all active constraints other than gj0 ,

S = {x : hi(x) = 0, i = 1, 2, . . . , k; gj(x) = 0, j ∈ J′(x∗)}

We will show we can move away from x∗ on S so that feasibility is
maintained but f decreases, contradicting the minimality of x∗.

1. There exists a direction d0 tangent to S s.t. ∇gj0(x∗)Td0 < 0
2. KKT then implies ∇f (x∗)Td0 < 0
3. By Implicit Function Theorem, there exists a curve x(t) ⊂ S s.t.

x(0) = x∗, x′(0) = d0. Thus gj(x(t)) = 0 for j ∈ J′(x∗).
4. By continuity, gj(x(t)) < 0 for small t and j /∈ J(x∗)
5. By the chain rule,

d
dt

gj0(x(t))

∣∣∣∣∣
t=0

= ∇gj0(x
∗)Tx′(0) = ∇gj0(x

∗)Td0 < 0

For small t > 0, gj0(x(t)) < gj0(x∗) = 0. Similarly, f (x(t)) < f (x∗).
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Proof for µ ≥ 0 (cont’d)
1. There exists a direction d0 tangent to S s.t. ∇gj0(x∗)Td0 < 0

Proof.
• Let A be a matrix whose columns are ∇hi(x∗) and ∇gj(x∗), i.e.

A = [∇hi(x∗), i = 1, . . . , k; ∇gj(x∗), j ∈ J′(x∗)]

• The tangent “plane” (or more precisely, tangent space) of S at x∗ is

T(x∗) = Null(AT) = {d : ∇hi(x∗)Td = 0,∀i; ∇gj(x∗)Td = 0, j ∈ J′(x∗)}

• By regularity of x∗,

∇gj0(x
∗) /∈ span{∇hi(x∗), ∀i;∇gj(x∗), j ∈ J′(x∗)} = Range(A) = Null(AT)⊥

so there exists d0 ∈ T(x∗) s.t. ∇gj0(x∗)Td0 6= 0.
• Replacing d0 by −d0 ∈ T(x∗) if necessary, we have

∇gj0(x
∗)Td0 < 0
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Proof for µ ≥ 0 (cont’d)
2. For d0 given by step 1, ∇f (x∗)Td0 < 0

Proof.
• By KKT Conditions 2 and 3

∇f (x∗) = −
k∑

i=1

λ∗i∇hi(x∗)−
∑

j∈J(x∗)

µ∗j∇gj(x∗)−
∑

j/∈J(x∗)

µ∗j∇gj(x∗)︸ ︷︷ ︸
=0

• Since d0 ∈ Null(AT), µ∗j0 < 0,

∇f (x∗)Td0 = −
k∑

i=1

λ∗i ∇hi(x∗)Td0︸ ︷︷ ︸
=0

−
∑

j∈J′(x∗)

µ∗j ∇gj(x∗)Td0︸ ︷︷ ︸
=0

−µ∗j0 ∇gj0(x
∗)Td0︸ ︷︷ ︸

<0

< 0
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Proof for µ ≥ 0 (cont’d)
3. There exists a curve x(t) ⊂ S s.t. x(0) = x∗, x′(0) = d0

Proof. For notational simplicity, denote gj, j ∈ J′(x∗) by hk+1, . . . , hK .
• Define x̃(t,α) = x∗ + td0 +

∑K
i=1 αi∇hi(x∗) and

h̃p(t,α) = hp(x̃(t,α)), 1 ≤ p ≤ K

• Note h̃p(0, 0) = hp(x∗) = 0, and

∂h̃p(0, 0)
∂αq

=

n∑
`=1

∂hp(x∗)
∂x`

∂x̃`(0, 0)
∂αq

= ∇hp(x∗)T∇hq(x∗)

• By regularity of x∗, A = [∇h1(x∗), . . . ,∇h̃K(x∗)] has rank K, so

∂h̃(0, 0)
∂α

= ATA � O

and hence nonsingular.
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Proof for µ ≥ 0 (cont’d)
Proof (cont’d).
• By Implicit Function Theorem, there exists α(t) for small |t| s.t.
α(0) = 0 and h̃(t,α(t)) = h(x̃(t, α(t))) = 0. Furthermore,

α′(0) =

[
∂h̃(0, 0)
∂α

]−1
∂h̃(0, 0)
∂t

=

[
∂h̃(0, 0)
∂α

]−1
∇h1(x∗)Td0

...
∇hK(x∗)Td0

 = 0

since d0 ∈ T(x∗) = Null(AT).
• Let x(t) = x̃(t,α(t)). Then h(x(t)) = 0, so x(t) ⊂ S.

x′(0) = d0 +

K∑
i=1

α′i(0)∇hi(x∗) = d0
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Sufficiency of KKT Conditions for Convex Problems
Theorem. For convex (ICP), i.e. f and gj are convex, and hi are affine,
if there exist λ∗1, . . . , λ

∗
k and µ∗1, . . . , µ

∗
m s.t. the KKT conditions are

satisfied at a feasible x∗ ∈ X, then x∗ is a global minimum of (ICP).

Note. The previous necessary conditions assume x∗ is regular point.
The sufficient conditions here assume convexity but not regularity.

Proof. We show ∇f (x∗)T(x− x∗) ≥ 0, ∀x ∈ X.
1. By the KKT conditions,

∇f (x∗)T(x−x∗) = −
∑

i

λ∗∇hi(x∗)T(x−x∗)−
∑

j∈J(x∗)

µ∗j∇gj(x∗)T(x−x∗)

It suffices to show ∇hi(x∗)T(x− x∗) = 0 and ∇gj(x∗)T(x− x∗) ≤ 0.
2. Since hi(x) = aT

i x− bi is affine, and hi(x) = h(x∗) = 0 by feasibility,

∇hi(x∗)T(x− x∗) = aT
i (x− x∗) = hi(x)− h(x∗) = 0

3. For j ∈ J(x∗), gj(x∗) = 0 and gj(x) ≤ 0. By the convexity of gj,

∇gj(x∗)T(x− x∗) ≤ gj(x)− gj(x∗) ≤ 0
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