CS257 Linear and Convex Optimization Lecture 13

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

November 30, 2020

Recap: Equality Constrained Convex Problem $\min_{x} f(x)$ s.t. Ax = b

where $A \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^k$, f is differentiable and convex.

Lagrangian.

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T (\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b})$$

Lagrange condition. x^* is optimal iff \exists Lagrange multiplier $\lambda^* \in \mathbb{R}^k$ s.t.

$$\begin{cases} \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\boldsymbol{x}^*) + \boldsymbol{A}^T \boldsymbol{\lambda}^* = \boldsymbol{0} \\ \nabla_{\boldsymbol{\lambda}} \mathcal{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*) = \boldsymbol{A} \boldsymbol{x}^* - \boldsymbol{b} = \boldsymbol{0} \end{cases}$$

Convex QP. $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{Q}\mathbf{x} + \mathbf{g}^T \mathbf{x} + c$, where $\mathbf{Q} \succeq \mathbf{O}$. KKT system

$$\begin{cases} Qx + g + A^T \lambda = \mathbf{0} \\ Ax - b = \mathbf{0} \end{cases} \quad \text{or} \quad \begin{bmatrix} Q & A^T \\ A & O \end{bmatrix} \begin{bmatrix} x \\ \lambda \end{bmatrix} = \begin{bmatrix} -g \\ b \end{bmatrix}$$

Recap: Newton's Method

Solve an approximate quadratic problem in each iteration.

$$\min_{\boldsymbol{d}} f(\boldsymbol{x} + \boldsymbol{d}) = \frac{1}{2} \boldsymbol{d}^T \nabla^2 f(\boldsymbol{x}) \boldsymbol{d} + \nabla f(\boldsymbol{x})^T \boldsymbol{d} + f(\boldsymbol{x})$$

s.t. $\boldsymbol{A} \boldsymbol{d} = \boldsymbol{0}$

1: initialization
$$x \leftarrow x_0$$
 s.t. $Ax_0 = b$

2: repeat

3: Compute Newton's direction *d* by solving

$$\begin{bmatrix} \nabla^2 f(\boldsymbol{x}) & \boldsymbol{A}^T \\ \boldsymbol{A} & \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \boldsymbol{d} \\ \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} -\nabla f(\boldsymbol{x}) \\ \boldsymbol{0} \end{bmatrix}$$

- 4: find stepsize *t* by backtracking line search
- 5: $x \leftarrow x + td$
- 6: **until** $\|\boldsymbol{d}\| \leq \delta$
- 7: return x

Contents

1. General Equality Constrained Problems

2. Inequality Constrained Problem

Optimization on 2D Circle

Let $\mathbf{x} = (x, y)^T \in \mathbb{R}^2$. Consider the following nonconvex (why?) problem

$$\min_{\mathbf{x}} f(\mathbf{x})$$

s.t. $h(\mathbf{x}) = \|\mathbf{x}\|^2 - 1 = 0$

Parameterize the feasible set by $\mathbf{x}(t) = (\cos t, \sin t)^T$ and reduce the above constrained problem to the following unconstrained problem

$$\min_{t} g(t) \triangleq f(\boldsymbol{x}(t)) = f(\cos t, \sin t)$$

If $x^* = x(t^*)$ is a local minimum of the constrained problem, then t^* is a local minimum of g, so

$$g'(t^*) = \frac{\partial f(\boldsymbol{x}^*)}{\partial x} x'(t^*) + \frac{\partial f(\boldsymbol{x}^*)}{\partial y} y'(t^*) = 0$$

On the other hand, $h(\mathbf{x}(t)) = 0$. Differentiating w.r.t. *t* at t^* ,

$$\frac{\partial h(\boldsymbol{x}^*)}{\partial x} x'(t^*) + \frac{\partial h(\boldsymbol{x}^*)}{\partial y} y'(t^*) = 0$$

Optimization on 2D Circle (cont'd)

Combining the previous two equations,

$$\begin{bmatrix} \frac{\partial f(\mathbf{x}^*)}{\partial x} & \frac{\partial f(\mathbf{x}^*)}{\partial y} \\ \frac{\partial h(\mathbf{x}^*)}{\partial x} & \frac{\partial h(\mathbf{x}^*)}{\partial y} \end{bmatrix} \begin{bmatrix} \mathbf{x}'(t^*) \\ \mathbf{y}'(t^*) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \nabla f(\mathbf{x}^*)^T \\ \nabla h(\mathbf{x}^*)^T \end{bmatrix} \mathbf{x}'(t^*) = \mathbf{0}$$

- The linear system has a solution $\mathbf{x}'(t^*) = (-\sin t^*, \cos t^*)^T \neq \mathbf{0}$, so $\nabla f(\mathbf{x}^*)$ and $\nabla h(\mathbf{x}^*)$ must be linearly dependent.
- Note $\nabla h(\mathbf{x}^*) = \mathbf{x}^* \neq \mathbf{0}$ (why?), so there exists λ^* s.t.

$$\nabla f(\boldsymbol{x}^*) + \lambda^* \nabla h(\boldsymbol{x}^*) = \boldsymbol{0}$$

Define the Lagrangian by

$$\mathcal{L}(\boldsymbol{x},\lambda) = f(\boldsymbol{x}) + \lambda h(\boldsymbol{x})$$

Lagrange condition. x^* is a local optimum only if there exists λ^* s.t.

$$\begin{cases} \nabla_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}^*, \lambda^*) = \nabla f(\boldsymbol{x}^*) + \lambda^* \nabla h(\boldsymbol{x}^*) \\ \nabla_{\lambda} \mathcal{L}(\boldsymbol{x}^*, \lambda^*) = h(\boldsymbol{x}^*) = 0 \end{cases}$$

Note. This is only a necessary condition for nonconvex problems.

Example

$$\min_{\mathbf{x}} f(\mathbf{x}) = x + 2y$$
s.t. $h(\mathbf{x}) = \|\mathbf{x}\|^2 - 1 = 0$

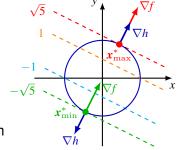
• Lagrange condition

$$\begin{cases} \frac{\partial f(\mathbf{x})}{\partial x} + \lambda \frac{\partial h(\mathbf{x})}{\partial x} = 1 + 2\lambda \mathbf{x} = 0 \implies \mathbf{x} = -\frac{1}{2\lambda} \\ \frac{\partial f(\mathbf{x})}{\partial y} + \lambda \frac{\partial h(\mathbf{x})}{\partial y} = 2 + 2\lambda y = 0 \implies y = -\frac{1}{\lambda} \\ h(\mathbf{x}^*) = x^2 + y^2 - 1 = 0 \end{cases}$$

solutions to the above equations

$$(1) \begin{cases} x = -\frac{\sqrt{5}}{5} \\ y = -\frac{2\sqrt{5}}{5} \\ \lambda = \frac{\sqrt{5}}{2} \end{cases} \quad (2) \begin{cases} x = \frac{\sqrt{5}}{5} \\ y = \frac{2\sqrt{5}}{5} \\ \lambda = -\frac{\sqrt{5}}{2} \end{cases}$$

- (1) global minimum, (2) global maximum
- at all extrema, $\nabla f \parallel \nabla h \perp X$



Example

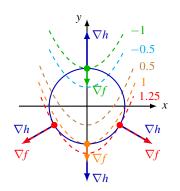
$$\min_{\mathbf{x}} f(\mathbf{x}) = x^2 - y$$

s.t. $h(\mathbf{x}) = \|\mathbf{x}\|^2 - 1 = 0$

Lagrange condition

$$\begin{cases} \frac{\partial f(\mathbf{x})}{\partial x} + \lambda \frac{\partial h(\mathbf{x})}{\partial x} = 2x + 2\lambda x = 0\\ \frac{\partial f(\mathbf{x})}{\partial y} + \lambda \frac{\partial h(\mathbf{x})}{\partial y} = -1 + 2\lambda y = 0\\ h(\mathbf{x}^*) = x^2 + y^2 - 1 = 0 \end{cases}$$

solutions to above equations



(1)
$$\begin{cases} x = 0 \\ y = 1 \\ \lambda = \frac{1}{2} \end{cases}$$
 (2)
$$\begin{cases} x = 0 \\ y = -1 \\ \lambda = -\frac{1}{2} \end{cases}$$
 (3)
$$\begin{cases} x = \frac{\sqrt{3}}{2} \\ y = -\frac{1}{2} \\ \lambda = -1 \end{cases}$$
 (4)
$$\begin{cases} x = -\frac{\sqrt{3}}{2} \\ y = -\frac{1}{2} \\ \lambda = -1 \end{cases}$$

- (1) global minimum, (2) local minimum, (3)(4) global maxima
- at all extrema, $\nabla f \parallel \nabla h \perp X$

Exercise. Solve equivalent problem $g(y) = 1 - y^2 - y$ s.t. $|y| \le 1$.

Implicit Function Theorem in 2D

The derivation on slides 4-5 works for general *h* of two variables, as long as we can parameterize the feasible set in a neighborhood of x^* by x(t), i.e. h(x(t)) = 0, s.t. $x'(t^*) \neq 0$ and $\nabla h(x^*) \neq 0$. The Implicit Function Theorem guarantees this is possible if $\nabla h(x^*) \neq 0$.

Implicit Function Theorem. If F(x, y) is continuously differentiable in a neighborhood of (x_0, y_0) , and satisfies

$$F(x_0, y_0) = 0, \quad \frac{\partial F(x_0, y_0)}{\partial y} \neq 0$$

then there exists a continuously differentiable function $y = \phi(x)$ defined in a neighborhood of x_0 s.t.

$$F(x,\phi(x)) = 0, \quad \phi'(x) = -\left[\frac{\partial F(x,\phi(x))}{\partial y}\right]^{-1} \frac{\partial F(x,\phi(x))}{\partial x}$$

Implicit Function Theorem and Parameterization If $\nabla h(x_0, y_0) \neq \mathbf{0}$, then either $\frac{\partial h(x_0, y_0)}{\partial x} \neq 0$ or $\frac{\partial h(x_0, y_0)}{\partial y} \neq 0$. • If $\frac{\partial h(x_0, y_0)}{\partial y} \neq 0$, we can parameterize the feasible set by t = x, $\mathbf{x}(t) = (t, \phi(t))^T$ with $\mathbf{x}'(t) = (1, \phi'(t))^T \neq \mathbf{0}$

• If $\frac{\partial h(x_0,y_0)}{\partial y} \neq 0$, we can parameterize the feasible set by t = y,

 $\mathbf{x}(t) = (\psi(t), t)^T$ with $\mathbf{x}'(t) = (\psi'(t), 1)^T \neq \mathbf{0}$

Example. For $h(x) = ||x||^2 - 1$.

• at
$$x_0 = (1,0)^T$$
, use $x(t) = (\sqrt{1-t^2},t)^T$

- at $x_0 = (0, 1)^T$, use $x(t) = (t, \sqrt{1 t^2})^T$
- at \mathbf{x}_0 in the 3rd quadrant, we can use $\mathbf{x}(t) = (t, -\sqrt{1-t^2})^T$ or $\mathbf{x}(t) = (-\sqrt{1-t^2}, t)^T$



First-order Necessary Condition in 2D

A point *x* is called a regular point of a function *h* if $\nabla h(x) \neq 0$; otherwise it is called a critical point.

Theorem. If x^* is a local extremum (maximum or minimum) of f s.t. h(x) = 0, and x^* is a regular point of h, then there exists λ^* s.t.

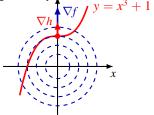
$$\nabla f(\boldsymbol{x}^*) + \lambda^* \nabla h(\boldsymbol{x}^*) = \boldsymbol{0}$$

Note. x^* satisfying the above Lagrange condition may be neither a maximum nor a minimum. E.g.

$$f(\mathbf{x}) = \|\mathbf{x}\|^2$$
$$h(\mathbf{x}) = y - x^3 - 1$$

At $\mathbf{x}^* = (0, 1)^T$,

$$\nabla f(\mathbf{x}^*) = (0, 2)^T, \quad \nabla h(\mathbf{x}^*) = (0, 1)^T$$



Second-order conditions can help distinguish different cases ([CZ, LY])

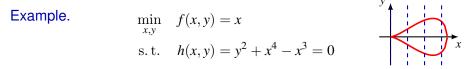
Critical Points

The Lagrange condition may fail at critical points.

Example.
$$\min_{x,y} f(x,y) = x + y$$

s. t. $h(x,y) = x^2 + y^2 = 0$

The feasible set is $X = \{0\}$, so $x^* = 0$ is the global minimum. There is no $\lambda^* \in \mathbb{R}$ satisfying the Lagrange condition $\nabla f(x^*) + \lambda^* \nabla h(x^*) = 0$, as $\nabla f(x^*) = (1, 1)^T$ and $\nabla h(x^*) = 0$.



Note $x^3 - x^4 = y^2 \ge 0$ implies $x \in [0, 1]$, so $x^* = \mathbf{0}$ is the global minimum. Lagrange condition fails as $\nabla f(x^*) = (1, 0)^T$, $\nabla h(x^*) = \mathbf{0}$.

Note. To find the minimum, we need to check both regular points satisfying the Lagrange condition and feasible critical points.

First-order Necessary Condition

Let $x \in \mathbb{R}^n$ and n > k. Consider the equality constrained problem

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{s.t.} & h_i(\boldsymbol{x}) = 0, \; i = 1, 2, \dots, k \end{array}$$
 (ECP)

A point *x* is a regular point of $h = (h_1, ..., h_k)^T$ if $\nabla h_1(x), ..., \nabla h_k(x)$ are linearly independent; otherwise it is a critical point of *h*.

Theorem. If x^* is a local extremum of f s.t. h(x) = 0, and x^* is a regular point of h, then there exist Lagrange multipliers $\lambda_1^*, \ldots, \lambda_k^* \in \mathbb{R}$ s.t.

$$\nabla f(\boldsymbol{x}^*) + (\boldsymbol{\lambda}^*)^T \boldsymbol{h}(\boldsymbol{x}^*) = \nabla f(\boldsymbol{x}^*) + \sum_{i=1}^k \lambda_i^* \nabla h_i(\boldsymbol{x}^*) = \boldsymbol{0}$$

Define the Lagrangian of (ECP) by

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{f}(\boldsymbol{x}) + \sum_{i=1}^k \lambda_i h_i(\boldsymbol{x})$$

Then the Lagrange condition is $\nabla \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \mathbf{0}$.

Appendix: Implicit Function Theorem

Write $F : \mathbb{R}^{n+k} \to \mathbb{R}^k$ as F(x, y) with $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^k$. Let $F = (F_1, \dots, F_k)^T$, and

$$\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_k}{\partial x_1} & \cdots & \frac{\partial F_k}{\partial x_n} \end{bmatrix}, \quad \frac{\partial \boldsymbol{F}}{\partial \boldsymbol{y}} = \begin{bmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_k}{\partial y_1} & \cdots & \frac{\partial F_k}{\partial y_k} \end{bmatrix}$$

Implicit Function Theorem. If $F : \mathbb{R}^{n+k} \to \mathbb{R}^k$ is continuously differentiable in a neighborhood (x_0, y_0), and satisfies

$$F(\mathbf{x}_0, \mathbf{y}_0) = \mathbf{0}, \quad \det \frac{\partial F(\mathbf{x}_0, \mathbf{y}_0)}{\partial \mathbf{y}} \neq 0,$$

then there exists continuously differentiable function $y = \phi(x)$ defined in a neighborhood of x_0 s.t.

$$\boldsymbol{F}(\boldsymbol{x},\boldsymbol{\phi}(\boldsymbol{x})) = 0, \quad \frac{\partial \boldsymbol{\phi}(\boldsymbol{x})}{\partial \boldsymbol{x}} = -\left[\frac{\partial \boldsymbol{F}(\boldsymbol{x},\boldsymbol{\phi}(\boldsymbol{x}))}{\partial \boldsymbol{y}}\right]^{-1} \frac{\partial \boldsymbol{F}(\boldsymbol{x},\boldsymbol{\phi}(\boldsymbol{x}))}{\partial \boldsymbol{x}}$$

Appendix: Proof of Lagrange Condition

Let $\mathbf{h} = (h_1, \dots, h_k)^T$. Note that the Jacobian matrix of \mathbf{h} is

$$\frac{\partial \boldsymbol{h}(\boldsymbol{x}^*)}{\partial \boldsymbol{x}} = \begin{bmatrix} \frac{\partial h_1(\boldsymbol{x}^*)}{\partial x_1} & \dots & \frac{\partial h_1(\boldsymbol{x}^*)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_k(\boldsymbol{x}^*)}{\partial x_1} & \dots & \frac{\partial h_k(\boldsymbol{x}^*)}{\partial x_n} \end{bmatrix} = \begin{bmatrix} \nabla h_1(\boldsymbol{x}^*)^T \\ \vdots \\ \nabla h_k(\boldsymbol{x}^*)^T \end{bmatrix}$$

Since x^* is regular, rank $\frac{\partial h(x^*)}{\partial x} = k$. By re-indexing $x_1, \ldots x_n$ if necessary, we assume the last *m* columns are linearly independent. Let $y = (x_1, \ldots, x_{n-k})^T$, $z = (x_{n-k+1}, \ldots, x_n)^T$.

By the Implicit Function Theorem, there is a continuously differentiable function $z = \phi(y)$ s.t. $h(y, \phi(y)) = 0$, i.e. we can parameterize the feasible set *X* by¹

$$\mathbf{x}(\mathbf{y}) = (\mathbf{y}, \boldsymbol{\phi}(\mathbf{y}))$$

(ECP) reduces to

$$\min_{\mathbf{y}} g(\mathbf{y}) = f(\mathbf{y}, \phi(\mathbf{y}))$$

¹we are sloppy about the shape here, but it should not cause any confusion.

Proof (cont'd)

Since $x^* = x(y^*) = (y^*, \phi(y^*))$ is a local extremum of (ECP), y^* is a local extreme of g. Recalling $y_\ell = x_\ell$ for $\ell = 1, \ldots, n-k$,

$$\frac{\partial g(\mathbf{y}^*)}{\partial y_{\ell}} = \frac{\partial f(\mathbf{x}^*)}{\partial x_{\ell}} + \sum_{j=n-k+1}^n \frac{\partial f(\mathbf{x}^*)}{\partial x_j} \frac{\partial \phi_{j-(n-k)}(\mathbf{y}^*)}{\partial y_{\ell}} = 0, \quad \ell = 1, \dots, n-k$$

Differentiating $h_i(\mathbf{x}(\mathbf{y})) = h_i(\mathbf{y}, \boldsymbol{\phi}(\mathbf{y})) = 0$ at \mathbf{y}^* ,

$$\frac{\partial h_i(\boldsymbol{x}^*)}{\partial y_\ell} = \frac{\partial h_i(\boldsymbol{x}^*)}{\partial y_\ell} + \sum_{j=n-k+1}^n \frac{\partial h_j(\boldsymbol{x}^*)}{\partial x_j} \frac{\partial \phi_{j-(n-k)}(\boldsymbol{y}^*)}{\partial y_\ell} = 0, \quad \ell = 1, \dots, n-k$$

In matrix form,

$$\begin{bmatrix} 1 & \dots & 0 & \frac{\partial \phi_1(\mathbf{x}^*)}{\partial y_1} & \dots & \frac{\partial \phi_k(\mathbf{x}^*)}{\partial y_1} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \frac{\partial \phi_1(\mathbf{x}^*)}{\partial y_{n-k}} & \dots & \frac{\partial \phi_k(\mathbf{x}^*)}{\partial y_{n-k}} \end{bmatrix} \begin{bmatrix} \frac{\partial f(\mathbf{x}^*)}{\partial x_1} & \frac{\partial h_1(\mathbf{x}^*)}{\partial x_1} & \dots & \frac{\partial h_k(\mathbf{x}^*)}{\partial x_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(\mathbf{x}^*)}{\partial x_n} & \frac{\partial h_1(\mathbf{x}^*)}{\partial x_n} & \dots & \frac{\partial h_k(\mathbf{x}^*)}{\partial x_n} \end{bmatrix} = \boldsymbol{O}$$

Proof (cont'd)

The matrix equation takes the form

$$\begin{bmatrix} \boldsymbol{I}_{n-k} & \frac{\partial \boldsymbol{\phi}(\boldsymbol{x}^*)}{\partial \boldsymbol{y}}^T \end{bmatrix} \begin{bmatrix} \nabla f(\boldsymbol{x}^*) & \nabla h_1(\boldsymbol{x}^*) & \dots & \nabla h_k(\boldsymbol{x}^*) \end{bmatrix} = \boldsymbol{O}_{(n-k) \times (k+1)}$$

meaning $\nabla f(\mathbf{x}^*), \nabla h_1(\mathbf{x}^*), \dots, \nabla h_k(\mathbf{x}^*)$ are all in Null(A), where

$$\boldsymbol{A} = \begin{bmatrix} \boldsymbol{I}_{n-k} & \frac{\partial \boldsymbol{\phi}(\boldsymbol{x}^*)^T}{\partial \boldsymbol{y}} \end{bmatrix} \in \mathbb{R}^{(n-k) \times n}$$

Note dim Null(A) = k, so $\nabla f(\mathbf{x}^*)$, $\nabla h_1(\mathbf{x}^*)$, ..., $\nabla h_k(\mathbf{x}^*)$ are linearly dependent. But $\nabla h_1(\mathbf{x}^*)$, ..., $\nabla h_k(\mathbf{x}^*)$ are linearly independent, since \mathbf{x}^* is a regular point. Thus there exist λ_1^* , ..., $\lambda_k^* \in \mathbb{R}$ s.t.

$$abla f(\mathbf{x}^*) + \sum_{i=1}^k \lambda_i^* \nabla h_i(\mathbf{x}^*) = \mathbf{0}$$

Example

$$\min_{\mathbf{x} \in \mathbb{R}^3} f(\mathbf{x}) = x_1 + 2x_2 + x_3$$

s.t. $h_1(\mathbf{x}) = x_1 + x_2 + 2x_3 = 0$
 $h_2(\mathbf{x}) = \|\mathbf{x}\|^2 - 1 = 0$

A critical point *x* satisfies $\nabla h_2(x) \parallel \nabla h_1(x)$, so $x \propto (1, 1, 2)^T$, infeasible. The Lagrangian is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) = x_1 + 2x_2 + x_3 + \lambda_1(x_1 + x_2 + 2x_3) + \lambda_2(x_1^2 + x_2^2 + x_3^2 - 1)$$

The Lagrange condition is

$$\mathcal{L} \partial_{x_1} \mathcal{L} = 1 + \lambda_1 + 2\lambda_2 x_1 = 0 \tag{1}$$

$$\partial_{x_2} \mathcal{L} = 2 + \lambda_1 + 2\lambda_2 x_2 = 0 \tag{2}$$

$$\partial_{x_3} \mathcal{L} = 1 + 2\lambda_1 + 2\lambda_2 x_3 = 0 \tag{3}$$

$$\partial_{\lambda_1} \mathcal{L} = x_1 + x_2 + 2x_3 = 0 \tag{4}$$

$$\left(\partial_{\lambda_2} \mathcal{L} = x_1^2 + x_2^2 + x_3^2 - 1 = 0\right)$$
(5)

Example (cont'd)

• (1)+(2)+(3)×2,

$$5 + 6\lambda_1 + 2\lambda_2(x_1 + x_2 + 2x_3) = 0$$
(6)

- Plugging (4) into (6) yields $\lambda_1 = -\frac{5}{6}$.
- Plugging λ_1 into (1)(2)(3), and noting that $\lambda_2 \neq 0$,

$$x_1 = -\frac{1}{12\lambda_2}, \quad x_2 = -\frac{7}{12\lambda_2}, \quad x_3 = \frac{1}{3\lambda_2}$$

• Plugging (8) into (5) yields $\lambda_2 = \pm \sqrt{\frac{33}{72}}$, so

$$(1) \begin{cases} x_1 = -\frac{1}{\sqrt{66}} \\ x_2 = -\frac{7}{\sqrt{66}} \\ x_3 = \frac{4}{\sqrt{66}} \\ \lambda_1 = -\frac{5}{6} \\ \lambda_2 = \sqrt{\frac{33}{72}} \end{cases} \quad \text{or} \quad (2) \begin{cases} x_1 = \frac{1}{\sqrt{66}} \\ x_2 = \frac{7}{\sqrt{66}} \\ x_3 = -\frac{4}{\sqrt{66}} \\ \lambda_1 = -\frac{5}{6} \\ \lambda_2 = -\sqrt{\frac{33}{72}} \end{cases}$$

• (1) global minimum, (2) global maximum

(7)

Contents

1. General Equality Constrained Problems

2. Inequality Constrained Problem

Active and Inactive Constraints

Let $x \in \mathbb{R}^n$ and n > k. Consider

$$\begin{array}{ll} \min_{\bm{x}} & f(\bm{x}) \\ \text{s.t.} & h_i(\bm{x}) = 0, \; i = 1, 2, \dots, k \\ & g_j(\bm{x}) \leq 0, \; j = 1, 2, \dots, m \end{array} \tag{ICP}$$

We do not assume it is a convex problem. Assume the domain is \mathbb{R}^n . The feasible set is

$$X = \{ \mathbf{x} : h_i(\mathbf{x}) = 0, \ 1 \le i \le k; \ g_j(\mathbf{x}) \le 0, \ 1 \le j \le m \}$$

Let $x_0 \in X$. The *j*-th inequality constraint $g_j(x) \le 0$ is called active at x_0 if $g_j(x_0) = 0$, and inactive at x_0 if $g_j(x_0) < 0$. Denote by $J(x_0)$ the set of indices of the active inequality constraints at x_0 ,

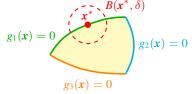
$$J(\mathbf{x}_0) = \{j : g_j(\mathbf{x}_0) = 0\}$$

By convention, equality constraints are considered active at all $x \in X$.

Reduction to Equality Constrained Problem

Suppose x^* is a local minimum of (ICP). It is the solution to

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $h_i(\mathbf{x}) = 0, i = 1, 2, \dots, k$
 $g_j(\mathbf{x}) \le 0, j = 1, 2, \dots, m$
 $\mathbf{x} \in B(\mathbf{x}^*, \delta)$



for some small enough δ . It is equivalent to

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $h_i(\mathbf{x}) = 0, i = 1, 2, \dots, k$
 $g_j(\mathbf{x}) = 0, j \in J(\mathbf{x}^*)$
 $\mathbf{x} \in B(\mathbf{x}^*, \delta)$

If it is known a priori which constraints are active at x^* , we can find x^* by solving the above equality constrained problem.

Reduction to Equality Constrained Problem (cont'd)

A local minimum x^* of (ICP) is also a local minimum of the following

$$\begin{split} \min_{\bm{x}} & f(\bm{x}) \\ \text{s.t.} & h_i(\bm{x}) = 0, \ i = 1, 2, \dots, k \\ & g_j(\bm{x}) = 0, \ j \in J(\bm{x}^*) \end{split}$$

 $x^* \in X$ is a regular point if $\nabla h_i(x^*), 1 \leq i \leq k$ and $\nabla g_j(x^*), j \in J(x^*)$ are linearly independent.

At a regular local minimum, Lagrange condition yields $\nabla f(\mathbf{x}^*) + \sum_{i=1}^k \lambda_i^* \nabla h_i(\mathbf{x}^*) + \sum_{j \in J(\mathbf{x}^*)} \mu_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0}$

Setting $\mu_i^* = 0$ for inactive constraints, i.e. $j \notin J(\mathbf{x}^*)$,

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^k \lambda_i^* \nabla h_i(\mathbf{x}^*) + \sum_{j=1}^m \mu_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0}$$

Karush-Kuhn-Tucker (KKT) Conditions

Theorem. If x^* is a local minimum of (ICP) and also a regular point, then there exist Lagrange multipliers² $\lambda_1^*, \ldots, \lambda_k^*, \mu_1^*, \ldots, \mu_m^* \in \mathbb{R}$ s.t. the following KKT conditions hold,

1.
$$\mu_j^* \ge 0, j = 1, 2, ..., m$$

2. $\nabla f(\mathbf{x}^*) + \sum_{i=1}^k \lambda_i^* \nabla h_i(\mathbf{x}^*) + \sum_{j=1}^m \mu_j^* \nabla g_j(\mathbf{x}^*) = \mathbf{0}$
3. $\mu_j^* g_j(\mathbf{x}^*) = 0, j = 1, 2, ..., m$

Note. Condition 2 says $abla_{\mathbf{x}}\mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \mathbf{0}$ for the Lagrangian

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda},\boldsymbol{\mu}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}^T \boldsymbol{h}(\boldsymbol{x}) + \boldsymbol{\mu}^T \boldsymbol{g}(\boldsymbol{x}) = f(\boldsymbol{x}) + \sum_{i=1}^k \lambda_i h_i(\boldsymbol{x}) + \sum_{j=1}^m \mu_j g_j(\boldsymbol{x})$$

Note. Condition 3 is called complementary slackness condition, as it, together with 1 and $g_j(\mathbf{x}) \le 0$, implies either $\mu_i^* = 0$ or $g_j(\mathbf{x}^*) = 0$.

²Sometimes also called KKT multipliers. Sometimes λ_i are called Lagrange multipliers while μ_i are called KKT multipliers.

Geometric Interpretation

Let $x \in \mathbb{R}^2$. Consider

$$\min_{\mathbf{x}} f(\mathbf{x})$$

s.t. $g_j(\mathbf{x}) \le 0, \ j = 1, 2, 3$

Suppose x^* is a local minimum and only g_1 and g_2 are active at x^* . The KKT condition says $\mu_1^* \ge 0$, $\mu_2^* \ge 0$, $\mu_3^* = 0$ and

$$\nabla f(\boldsymbol{x}^*) = -\mu_1^* \nabla g_1(\boldsymbol{x}^*) - \mu_2^* \nabla g_2(\boldsymbol{x}^*)$$

$$g_1(\mathbf{x}) = 0$$

$$\nabla f(\mathbf{x}^*)$$

$$g_2(\mathbf{x}) = 0$$

$$g_3(\mathbf{x}) = 0$$

Geometric Interpretation (cont'd)

Why $\mu_i^* \ge 0$? Assume $\mu_2^* < 0$ and we show a contradiction.

- Let *d* be a tangent vector of $g_1(\mathbf{x}) = 0$ at \mathbf{x}^* , so $d \perp \nabla g_1(\mathbf{x}^*)$.
- $d^T \nabla g_2(\mathbf{x}^*) \neq 0$; otherwise, $d \perp g_2(\mathbf{x}^*)$, so $\nabla g_1(\mathbf{x}^*) \parallel \nabla g_2(\mathbf{x}^*)$, contradicting the regularity of \mathbf{x}^* .
- Replacing *d* by -d if necessary, we can assume $d^T \nabla g_2(\mathbf{x}^*) < 0$.
- Move along the curve $g_1(x) = 0$ in the direction of *d* from x^* to x_1 .

$$\boldsymbol{d}^{T}\nabla f(\boldsymbol{x}^{*}) = \boldsymbol{d}^{T}[-\mu_{1}\nabla g_{1}(\boldsymbol{x}^{*}) - \mu_{2}\nabla g_{2}(\boldsymbol{x}^{*})] = -\mu_{2}^{*}\boldsymbol{d}^{T}\nabla g_{2}(\boldsymbol{x}^{*}) < 0.$$

For a small move, $f(\mathbf{x}_1) < f(\mathbf{x}^*)$, contradicting minimality of $f(\mathbf{x}^*)$.

$$g_{1}(\mathbf{x}) = 0$$

$$g_{1}(\mathbf{x}) = 0$$

$$g_{1}(\mathbf{x}) = 0$$

$$g_{2}(\mathbf{x}) = 0$$

$$g_{3}(\mathbf{x}) = 0$$

Appendix: Proof for $\mu \ge 0$

Suppose $\mu_{j_0}^* < 0$ for some j_0 . Let $J'(\mathbf{x}^*) = J(\mathbf{x}^*) \setminus \{j_0\}$, and *S* the set determined by all active constraints other than g_{j_0} ,

 $S = \{ \mathbf{x} : h_i(\mathbf{x}) = 0, i = 1, 2, \dots, k; g_j(\mathbf{x}) = 0, j \in J'(\mathbf{x}^*) \}$

We will show we can move away from x^* on *S* so that feasibility is maintained but *f* decreases, contradicting the minimality of x^* .

- 1. There exists a direction d_0 tangent to *S* s.t. $\nabla g_{j_0}(\mathbf{x}^*)^T d_0 < 0$
- **2**. KKT then implies $\nabla f(\mathbf{x}^*)^T \mathbf{d}_0 < 0$
- 3. By Implicit Function Theorem, there exists a curve $\mathbf{x}(t) \subset S$ s.t. $\mathbf{x}(0) = \mathbf{x}^*, \mathbf{x}'(0) = \mathbf{d}_0$. Thus $g_j(\mathbf{x}(t)) = 0$ for $j \in J'(\mathbf{x}^*)$.
- 4. By continuity, $g_j(\mathbf{x}(t)) < 0$ for small t and $j \notin J(\mathbf{x}^*)$
- 5. By the chain rule,

$$\left. \frac{d}{dt} g_{j_0}(\boldsymbol{x}(t)) \right|_{t=0} = \nabla g_{j_0}(\boldsymbol{x}^*)^T \boldsymbol{x}'(0) = \nabla g_{j_0}(\boldsymbol{x}^*)^T \boldsymbol{d}_0 < 0$$

For small t > 0, $g_{j_0}(\mathbf{x}(t)) < g_{j_0}(\mathbf{x}^*) = 0$. Similarly, $f(\mathbf{x}(t)) < f(\mathbf{x}^*)$.

Proof for $\mu \geq 0$ (cont'd)

1. There exists a direction d_0 tangent to S s.t. $\nabla g_{j_0}(\mathbf{x}^*)^T d_0 < 0$ Proof.

• Let *A* be a matrix whose columns are $\nabla h_i(\mathbf{x}^*)$ and $\nabla g_j(\mathbf{x}^*)$, i.e.

$$\boldsymbol{A} = [\nabla h_i(\boldsymbol{x}^*), i = 1, \dots, k; \ \nabla g_j(\boldsymbol{x}^*), \ j \in J'(\boldsymbol{x}^*)]$$

• The tangent "plane" (or more precisely, tangent space) of S at x^* is

$$T(\boldsymbol{x}^*) = \operatorname{Null}(\boldsymbol{A}^T) = \{\boldsymbol{d}: \nabla h_i(\boldsymbol{x}^*)^T \boldsymbol{d} = 0, \forall i; \ \nabla g_j(\boldsymbol{x}^*)^T \boldsymbol{d} = 0, \ j \in J'(\boldsymbol{x}^*)\}$$

• By regularity of x*,

 $\nabla g_{j_0}(\mathbf{x}^*) \notin \operatorname{span}\{\nabla h_i(\mathbf{x}^*), \forall i; \nabla g_j(\mathbf{x}^*), j \in J'(\mathbf{x}^*)\} = \operatorname{Range}(\mathbf{A}) = \operatorname{Null}(\mathbf{A}^T)^{\perp}$

so there exists $d_0 \in T(\mathbf{x}^*)$ s.t. $\nabla g_{j_0}(\mathbf{x}^*)^T d_0 \neq 0$.

• Replacing d_0 by $-d_0 \in T(x^*)$ if necessary, we have

 $\nabla g_{j_0}(\boldsymbol{x}^*)^T \boldsymbol{d}_0 < 0$

Proof for $\mu \ge 0$ (cont'd)

2. For d_0 given by step 1, $\nabla f(\mathbf{x}^*)^T d_0 < 0$ Proof.

By KKT Conditions 2 and 3

$$\nabla f(\boldsymbol{x}^*) = -\sum_{i=1}^k \lambda_i^* \nabla h_i(\boldsymbol{x}^*) - \sum_{j \in J(\boldsymbol{x}^*)} \mu_j^* \nabla g_j(\boldsymbol{x}^*) - \sum_{j \notin J(\boldsymbol{x}^*)} \mu_j^* \nabla g_j(\boldsymbol{x}^*) = 0$$

• Since $\boldsymbol{d}_0 \in \operatorname{Null}(\boldsymbol{A}^T)$, $\mu_{j_0}^* < 0$,

$$\nabla f(\mathbf{x}^*)^T \mathbf{d}_0 = -\sum_{i=1}^k \lambda_i^* \underbrace{\nabla h_i(\mathbf{x}^*)^T \mathbf{d}_0}_{=\mathbf{0}} - \sum_{j \in J'(\mathbf{x}^*)} \mu_j^* \underbrace{\nabla g_j(\mathbf{x}^*)^T \mathbf{d}_0}_{=\mathbf{0}} - \mu_{j_0}^* \underbrace{\nabla g_{j_0}(\mathbf{x}^*)^T \mathbf{d}_0}_{<\mathbf{0}}$$

Proof for $\mu \geq 0$ (cont'd)

3. There exists a curve $\mathbf{x}(t) \subset S$ s.t. $\mathbf{x}(0) = \mathbf{x}^*, \mathbf{x}'(0) = \mathbf{d}_0$

Proof. For notational simplicity, denote $g_j, j \in J'(\mathbf{x}^*)$ by h_{k+1}, \ldots, h_K .

• Define $\tilde{\mathbf{x}}(t, \boldsymbol{\alpha}) = \mathbf{x}^* + t\mathbf{d}_0 + \sum_{i=1}^K \alpha_i \nabla h_i(\mathbf{x}^*)$ and

$$\tilde{h}_p(t, \boldsymbol{\alpha}) = h_p(\tilde{\boldsymbol{x}}(t, \boldsymbol{\alpha})), \quad 1 \le p \le K$$

• Note $\tilde{h}_p(0, 0) = h_p(x^*) = 0$, and

$$\frac{\partial \tilde{h}_p(0, \mathbf{0})}{\partial \alpha_q} = \sum_{\ell=1}^n \frac{\partial h_p(\mathbf{x}^*)}{\partial x_\ell} \frac{\partial \tilde{x}_\ell(0, \mathbf{0})}{\partial \alpha_q} = \nabla h_p(\mathbf{x}^*)^T \nabla h_q(\mathbf{x}^*)$$

• By regularity of $x^*, A = [\nabla h_1(x^*), \dots, \nabla \tilde{h}_K(x^*)]$ has rank *K*, so

$$\frac{\partial \hat{\boldsymbol{h}}(0,\boldsymbol{0})}{\partial \boldsymbol{\alpha}} = \boldsymbol{A}^T \boldsymbol{A} \succ \boldsymbol{O}$$

and hence nonsingular.

Proof for $\mu \ge 0$ (cont'd)

Proof (cont'd).

• By Implicit Function Theorem, there exists $\alpha(t)$ for small |t| s.t. $\alpha(0) = \mathbf{0}$ and $\tilde{\mathbf{h}}(t, \alpha(t)) = \mathbf{h}(\tilde{\mathbf{x}}(t, \alpha(t))) = \mathbf{0}$. Furthermore,

$$\boldsymbol{\alpha}'(0) = \left[\frac{\partial \tilde{\boldsymbol{h}}(0,\boldsymbol{0})}{\partial \boldsymbol{\alpha}}\right]^{-1} \frac{\partial \tilde{\boldsymbol{h}}(0,\boldsymbol{0})}{\partial t} = \left[\frac{\partial \tilde{\boldsymbol{h}}(0,\boldsymbol{0})}{\partial \boldsymbol{\alpha}}\right]^{-1} \begin{bmatrix}\nabla h_1(\boldsymbol{x}^*)^T \boldsymbol{d}_0\\ \vdots\\ \nabla h_K(\boldsymbol{x}^*)^T \boldsymbol{d}_0\end{bmatrix} = \boldsymbol{0}$$

since $\boldsymbol{d}_0 \in T(\boldsymbol{x}^*) = \operatorname{Null}(\boldsymbol{A}^T)$.

• Let $\mathbf{x}(t) = \tilde{\mathbf{x}}(t, \boldsymbol{\alpha}(t))$. Then $\mathbf{h}(\mathbf{x}(t)) = \mathbf{0}$, so $\mathbf{x}(t) \subset S$.

$$\boldsymbol{x}'(0) = \boldsymbol{d}_0 + \sum_{i=1}^K \alpha_i'(0) \nabla h_i(\boldsymbol{x}^*) = \boldsymbol{d}_0$$

Sufficiency of KKT Conditions for Convex Problems

Theorem. For convex (ICP), i.e. f and g_j are convex, and h_i are affine, if there exist $\lambda_1^*, \ldots, \lambda_k^*$ and μ_1^*, \ldots, μ_m^* s.t. the KKT conditions are satisfied at a feasible $x^* \in X$, then x^* is a global minimum of (ICP).

Note. The previous necessary conditions assume x^* is regular point. The sufficient conditions here assume convexity but not regularity.

Proof. We show $\nabla f(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \ge 0, \forall \mathbf{x} \in X.$

1. By the KKT conditions,

$$\nabla f(\boldsymbol{x}^*)^T(\boldsymbol{x}-\boldsymbol{x}^*) = -\sum_i \lambda^* \nabla h_i(\boldsymbol{x}^*)^T(\boldsymbol{x}-\boldsymbol{x}^*) - \sum_{j \in J(\boldsymbol{x}^*)} \mu_j^* \nabla g_j(\boldsymbol{x}^*)^T(\boldsymbol{x}-\boldsymbol{x}^*)$$

It suffices to show $\nabla h_i(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) = 0$ and $\nabla g_j(\mathbf{x}^*)^T(\mathbf{x} - \mathbf{x}^*) \le 0$. 2. Since $h_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} - b_i$ is affine, and $h_i(\mathbf{x}) = h(\mathbf{x}^*) = 0$ by feasibility,

$$\nabla h_i(\boldsymbol{x}^*)^T(\boldsymbol{x}-\boldsymbol{x}^*) = \boldsymbol{a}_i^T(\boldsymbol{x}-\boldsymbol{x}^*) = h_i(\boldsymbol{x}) - h(\boldsymbol{x}^*) = 0$$

3. For $j \in J(\mathbf{x}^*)$, $g_j(\mathbf{x}^*) = 0$ and $g_j(\mathbf{x}) \le 0$. By the convexity of g_j ,

$$\nabla g_j(\boldsymbol{x}^*)^T(\boldsymbol{x}-\boldsymbol{x}^*) \le g_j(\boldsymbol{x}) - g_j(\boldsymbol{x}^*) \le 0$$