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Recap: Lagrange Condition

min
x

f (x)

s.t. hi(x) = 0, i = 1, 2, . . . , k

Regular point. x is a regular point of h if ∇h1(x), . . . ,∇hk(x) are linearly
independent.

First-order necessary condition. If x∗ is a local minimum and also a
regular point, then there exist Lagrange multipliers λ∗1, . . . , λ

∗
k s.t. the

following Lagrange condition holds{
∇f (x∗) +

∑k
i=1 λ

∗
i∇hi(x∗) = 0

hi(x∗) = 0, i = 1, 2, . . . , k

or

∇L(x∗,λ∗) = 0, where L(x,λ) = f (x) +
k∑

i=1

λihi(x)

Note. For x ∈ Rn, we assumed k < n, but also true for k = n (why?)
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Recap: Lagrange Condition for Convex Problem

min
x

f (x)

s.t. hi(x) = aT
i x− bi = 0, i = 1, 2, . . . , k

First-order optimality condition for convex problem. If f is convex and
hi(x) = aT

i x− bi are affine, then x∗ is a global minimum if and only if
there exist Lagrange multipliers λ∗1, . . . , λ

∗
k s.t.{

∇f (x∗) +
∑k

i=1 λ
∗
i ai = 0

hi(x∗) = aT
i x∗ − bi = 0, i = 1, 2, . . . , k

Note. Regularity is not needed in the convex case. We assumed
regularity, i.e. rankA = k for A = (a1, . . . , ak), for simplicity, but it is not
necessary for Lagrange condition to hold. If rankA = k, λ∗ is unique; if
rankA < k, either infeasible or λ∗ is not unique.
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Recap: KKT Conditions
min

x
f (x)

s.t. hi(x) = 0, i = 1, 2, . . . , k

gj(x) ≤ 0, j = 1, 2, . . . ,m

A constraint is active at x0 if it holds with equality at x0.

A point x0 is regular if the gradients of all active constraints at x0 are
linearly independent.

KKT conditions.
1. (dual feasibility) µ∗j ≥ 0, j = 1, 2, . . . ,m

2. (stationarity) ∇f (x∗) +
∑k

i=1 λ
∗
i∇hi(x∗) +

∑m
j=1 µ

∗
j∇gj(x∗) = 0

3. (complementary slackness) µ∗j gj(x∗) = 0, j = 1, 2, . . . ,m
4. (primal feasibility) hi(x∗) = 0, i = 1, . . . , k; gj(x∗) ≤ 0, j = 1, . . . ,m

• KKT is necessary for a regular point x∗ to be a local minimum.
• For a convex problem, KKT is also sufficient for x∗ to be a global

minimum (x∗ need not be regular).
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Sufficiency of KKT Conditions for Convex Problems
Theorem. For a convex problem, i.e. f and gj are convex, and hi are
affine, if there exist λ∗1, . . . , λ

∗
k and µ∗1, . . . , µ

∗
m s.t. the KKT conditions

are satisfied at a feasible x∗ ∈ X, then x∗ is a global minimum.

Note. The previous necessary conditions assume x∗ is regular point.
The sufficient conditions here assume convexity but not regularity.

Proof. We show ∇f (x∗)T(x− x∗) ≥ 0, ∀x ∈ X.
1. By the KKT conditions,

∇f (x∗)T(x−x∗) = −
∑

i

λ∗∇hi(x∗)T(x−x∗)−
∑

j∈J(x∗)

µ∗j∇gj(x∗)T(x−x∗)

It suffices to show ∇hi(x∗)T(x− x∗) = 0 and ∇gj(x∗)T(x− x∗) ≤ 0.
2. Since hi(x) = aT

i x− bi is affine, and hi(x) = h(x∗) = 0 by feasibility,

∇hi(x∗)T(x− x∗) = aT
i (x− x∗) = hi(x)− h(x∗) = 0

3. For j ∈ J(x∗), gj(x∗) = 0 and gj(x) ≤ 0. By the convexity of gj,

∇gj(x∗)T(x− x∗) ≤ gj(x)− gj(x∗) ≤ 0
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Example
min
x∈R3

f (x) = x1 + 2x2 + x3

s.t. h(x) = x1 + x2 + 2x3 = 0

g(x) = ‖x‖2 − 1 ≤ 0

All feasible points are regular. The Lagrangian is

L(x, λ, µ) = x1 + 2x2 + x3 + λ(x1 + x2 + 2x3) + µ(x2
1 + x2

2 + x2
3 − 1)

The KKT conditions (including the constraints) are

µ ≥ 0
∂x1L = 1 + λ+ 2µx1 = 0
∂x2L = 2 + λ+ 2µx2 = 0
∂x3L = 1 + 2λ+ 2µx3 = 0
µ(x2

1 + x2
2 + x2

3 − 1) = 0
x1 + x2 + 2x3 = 0
x2

1 + x2
2 + x2

3 − 1 ≤ 0
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Example (cont’d)
Case I. g is inactive. Thus µ = 0. But this leads to a contradiction.{

∂x1L = 1 + λ+ 2µx1 = 0 =⇒ λ = −1
∂x2L = 2 + λ+ 2µx2 = 0 =⇒ λ = −2

Case II. g is active. This essentially reduces to the example on slide
17 of Lecture 13, but we only take the solution with µ ≥ 0,

x1 = − 1√
66

x2 = − 7√
66

x3 = 4√
66

λ = −5
6

µ =
√

33
72

Since the problem is convex, the above gives a global minimum.

Note. By minimizing −f , one can verify the other solution for the
example on slide 17 of Lecture 13 is a global maximum.
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Example
min
x∈R2

f (x) = (x1 − 2)2 + (x2 − 1)2

s.t. g1(x) = x2
1 − x2 ≤ 0

g2(x) = x1 + x2 − 2 ≤ 0

All feasible points are regular. The Lagrangian is

L(x,µ) = (x1 − 2)2 + (x2 − 1)2 + µ1(x2
1 − x2) + µ2(x1 + x2 − 2)

The KKT conditions (including the constraints) are

µ1 ≥ 0
µ2 ≥ 0
∂x1L = 2(x1 − 2) + 2µ1x1 + µ2 = 0
∂x2L = 2(x2 − 1)− µ1 + µ2 = 0
µ1(x2

1 − x2) = 0
µ2(x1 + x2 − 2) = 0
x2

1 − x2 ≤ 0
x1 + x2 − 2 ≤ 0

x1

x2 x2 = x2
1
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Example (cont’d)
Case I. Both g1 and g2 are inactive, so µ1 = µ2 = 0.{

∂x1L = 2(x1 − 2) = 0
∂x2L = 2(x2 − 1) = 0

=⇒

{
x1 = 2
x2 = 1

But
x2

1 − x2 = 3 > 0

violating g1 ≤ 0.

Case II. g2 is active, but g1 is inactive, so µ1 = 0.
∂x1L = 2(x1 − 2) + µ2 = 0
∂x2L = 2(x2 − 1) + µ2 = 0
x1 + x2 − 2 = 0

=⇒


x1 = 3

2

x2 = 1
2

µ2 = 1

But
x2

1 − x2 =
7
4
> 0

violating g1 ≤ 0.
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Example (cont’d)
Case III. g1 is active, but g2 is inactive, so µ2 = 0.

∂x1L = 2(x1 − 2) + 2µ1x1 = 0
∂x2L = 2(x2 − 1)− µ1 = 0
x2

1 − x2 = 0

From the last two equations,

x2 = x2
1, µ1 = 2(x2 − 1) = 2(x2

1 − 1)

Plugging into the first equation,

2(x1 − 2) + 4x1(x2
1 − 1) = 0 =⇒ φ(x1) , 2x3

1 − x1 − 2 = 0

Note µ1 ≥ 0 =⇒ x2
1 ≥ 1 =⇒ x1 ≥ 1 or x1 ≤ −1.

If x1 ≥ 1, then x2 = x2
1 ≥ 1, contradicting x1 + x2 < 2 (g2 is inactive).

If x1 ≤ −1, φ(x1) = 0 has no solution since φ′(x1) = 6x2
1 − 1 > 0 for

x1 ≤ −1 and φ(−1) = −3 < 0.

x1

φ(x1)

−1 1
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Example (cont’d)
Case IV. Both g1 and g2 are active.{

x2
1 − x2 = 0

x1 + x2 − 2 = 0
=⇒

{
x1 = 1
x2 = 1

or

{
x1 = −2
x2 = −2

Plugging into {
∂x1L = 2(x1 − 2) + 2µ1x1 + µ2 = 0
∂x2L = 2(x2 − 1)− µ1 + µ2 = 0

yields 
x1 = 1
x2 = 1
µ1 = 2

3

µ2 = 2
3

or


x1 = −2
x2 = −2
µ1 = −2

3 (violating µ1 ≥ 0)
µ2 = 16

3

This is a convex problem, so x∗ = (1, 1)T is the global minimum.
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Lagrange Duality
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Lower Bounds in LP

min
x∈R2

f (x) = x1 + 2x2

s.t. 2x1 + x2 ≥ 2

x1, x2 ≥ 0

Given a feasible solution x0, say (1, 0)T , can we say something about
its quality as measured by f (x0)− f ∗ without knowing f ∗?

If we have a lower bound fLB on f ∗, then we can upper bound f (x0)− f ∗

f (x0)− f ∗ ≤ f (x0)− fLB

Note. A lower bound on f ∗ is the same as a lower bound on f (x) for all
feasible x ∈ X.



13/28

Lower Bounds in LP (cont’d)
For any µ1, µ2, µ3 ≥ 0,

µ1× [ 2x1 + x2 ≥ 2 ]
µ2× [ x1 ≥ 0 ]
µ3× [ x2 ≥ 0 ]

(2µ1 + µ2)x1 + (µ1 + µ3)x2 ≥ 2µ1 =: ψ(µ)

We can set 2µ1 + µ2 = 1 and µ1 + µ3 = 2 so the LHS becomes f .

Thus
f (x) ≥ ψ(µ) = 2µ1

for any x ∈ X and any µ1, µ2, µ3 s.t.

2µ1 + µ2 = 1, µ1 + µ3 = 2, µ1, µ2, µ3 ≥ 0

In particular, f ∗ = infx∈X f (x) ≥ ψ(µ) for such µ.
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Lower Bounds in LP (cont’d)
The quality of the lower bound ψ(µ) varies for different µ.

• ψ(0, 1, 2) = 0. It tells us

f (1, 0)− f ∗ ≤ f (1, 0)− ψ(0, 1, 2) = 1

and
0 = ψ(0, 1, 2) ≤ f ∗ ≤ f (1, 0) = 1

• ψ(1
2 , 0,

3
2) = 1. It tells us

f (1, 0)− f ∗ ≤ f (1, 0)− ψ(1
2
, 0,

3
2
) = 0

and
1 = ψ(

1
2
, 0,

3
2
) ≤ f ∗ ≤ f (1, 0) = 1

so f ∗ = 1 and x0 = (1, 0)T is actually the optimal solution.
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Dual LP
To get the best lower bound, we maximize over µ1, µ2, µ3,

min
x∈R2

f (x) = x1 + 2x2

s.t. 2x1 + x2 ≥ 2

x1 ≥ 0

x2 ≥ 0

max
µ∈R3

ψ(µ) = 2µ1

s.t. 2µ1 + µ2 = 1

µ1 + µ3 = 2

µ1 ≥ 0

µ2 ≥ 0

µ3 ≥ 0

primal LP dual LP

The variables µ1, µ2, µ3 are called dual variables.

The number of dual variables is equal to the number of constraints in
the primal problem.

The dual optimal solution is µ∗ = (1
2 , 0,

3
2)

T and ψ∗ = 1 = f ∗.
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Duality via Lagrangian
The Lagrangian is

L(x,µ) = x1 + 2x2 − µ1(2x1 + x2 − 2)− µ2x1 − µ3x2

If µ ≥ 0 and x ∈ X, then

f (x) = x1 + 2x2

≥ x1 + 2x2 − µ1(2x1 + x2 − 2)︸ ︷︷ ︸
≥0

−µ2x1︸︷︷︸
≥0

−µ3x2︸︷︷︸
≥0

= L(x,λ,µ)

Taking the infimum over x ∈ X first and then relaxing the constraint,

f ∗ = inf
x∈X

f (x) ≥ inf
x∈X
L(x,µ) ≥ inf

x
L(x,µ) =: φ(µ)

To maximize the lower bound, solve the dual problem

max
µ

φ(µ)

s.t. µ ≥ 0
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Duality via Lagrangian (cont’d)
Rewriting the Lagrangian as

L(x,µ) = (1− 2µ1 − µ2)x1 + (2− µ1 − µ3)x2 + 2µ1

The dual objective

φ(µ) = inf
x
L(x,µ) =

{
2µ1, if 1− 2µ1 − µ2 = 0, 2− µ1 − µ3 = 0
−∞, otherwise

The dual problem is

max
µ

φ(µ) =

{
2µ1, if 1− 2µ1 − µ2 = 0, 2− µ1 − µ3 = 0
−∞, otherwise

s. t. µ ≥ 0

which is equivalent to the dual LP

max
µ

ψ(µ) = 2µ1

s. t. 2µ1 + µ2 = 1, µ1 + µ3 = 2, µ ≥ 0
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Dual of General LP
Given c ∈ Rn,A ∈ Rk×n, b ∈ Rk,G ∈ Rm×n,h ∈ Rm, consider

min
x

f (x) = cTx

s.t. Ax = b
Gx ≤ h

For λ ∈ Rk, µ ∈ Rm and µ ≥ 0,

−λTAx− µTGx ≥ −λTb− µTh =: ψ(λ,µ)

If −ATλ− GTµ = c, then we can lower bound f ∗ by f ∗ ≥ ψ(λ,µ).

To maximize the lower bound, solve the following dual problem

max
λ,µ

ψ(λ,µ) = −λTb− µTh

s.t. − ATλ− GTµ = c
µ ≥ 0
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Duality via Lagrangian
The Lagrangian is

L(x,λ,µ) = cTx + λT(Ax− b) + µT(Gx− h), λ ∈ Rk,µ ∈ Rm

If µ ≥ 0 and x ∈ X, i.e. Ax = b and Gx ≤ h, then

f (x) = cTx ≥ cTx + λT(Ax− b)︸ ︷︷ ︸
=0

+µT(Gx− h)︸ ︷︷ ︸
≤0

= L(x,λ,µ)

Taking the infimum over x ∈ X first and then relaxing the constraint,

f ∗ = inf
x∈X

f (x) ≥ inf
x∈X
L(x,λ,µ) ≥ inf

x
L(x,λ,µ) =: φ(λ,µ)

To maximize the lower bound, solve the dual problem

max
λ,µ

φ(λ,µ)

s.t. µ ≥ 0
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Duality via Lagrangian (cont’d)
Note

L(x,λ,µ) = (c + ATλ+ GTµ)Tx− bTλ− hTµ.

An affine function is bounded below iff the coefficient for x is zero1.

The dual problem

max
λ,µ

φ(λ,µ) =

{
−bTλ− hTµ, if c + ATλ+ GTµ = 0
−∞ otherwise

s.t. µ ≥ 0

which is equivalent to the dual LP

max
λ,µ

ψ(λ,µ) = −bTλ− hTµ

s.t. − ATλ− GTµ = c
µ ≥ 0

1Consider f (x) = aT x + c. If a = 0, then infx f (x) = c. If a 6= 0, letting x = −ta and
t→ +∞ yields infx f (x) ≤ −t‖a‖2 + c→ −∞.
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Lagrange Dual Function
Consider the general optimization problem (not necessarily convex),

min
x

f (x)

s.t. hi(x) = 0, i = 1, 2, . . . , k

gj(x) ≤ 0, j = 1, 2, . . . ,m

(P)

The Lagrangian is

L(x,λ,µ) = f (x) +
k∑

i=1

λihi(x) +
m∑

j=1

µjgj(x)

The (Lagrange) dual function is

φ(λ,µ) = inf
x∈D
L(x,λ,µ) = inf

x∈D

f (x) +
k∑

i=1

λihi(x) +
m∑

j=1

µjgj(x)


where D = dom f ∩ (

⋂k
i=1 dom hi) ∩ (

⋂m
j=1 dom gj) is the domain of the

problem. We will downplay the role of D and focus on the case D = Rn.
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Example
Given A ∈ Rk×n,

min
x

f (x) = ‖x‖2 = xTx

s.t. Ax = b

The Lagrangian is

L(x,λ) = xTx + λT(Ax− b)

Since L(x,λ) is convex in x, its minimum satisifies

∇xL(x,λ) = 2x + ATλ = 0 =⇒ x = −1
2

ATλ

The dual function is

φ(λ) = L
(
−1

2
ATλ,λ

)
= −1

4
λTAATλ− bTλ = −1

4
‖ATλ‖2 − bTλ
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Example
Given A ∈ Rk×n,

min
x

f (x) = xTx

s.t. Ax = b
x ≥ 0

The Lagrangian is

L(x,λ,µ) = xTx + λT(Ax− b)− µTx

Since L(x,λ,µ) is convex in x, its minimum satisifies

∇xL(x,λ,µ) = 2x + ATλ− µ = 0 =⇒ x =
1
2
(µ− ATλ)

The dual function is

φ(λ,µ) = L
(

1
2
(µ− ATλ),λ,µ

)
= −1

4
‖µ− ATλ‖2 − bTλ
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Lower Bound for Optimal Value
For any λ and any µ ≥ 0, the optimal value f ∗ of (P) is bounded by

f ∗ ≥ φ(λ,µ)

Proof. Let X = {x : hi(x) = 0, ∀i; gj(x) ≤ 0, ∀j} be the feasible set.
• If X = ∅, then f ∗ = +∞, trivially true.
• If X 6= ∅, for µ ≥ 0 and x ∈ X,

f (x) ≥ f (x) +
k∑

i=1

λi hi(x)︸︷︷︸
=0

+

m∑
j=1

µjgj(x)︸ ︷︷ ︸
≤0

= L(x,λ,µ)

Minimizing over x,

f ∗ = inf
x∈X

f (x) ≥ inf
x

f (x) ≥ inf
x
L(x,λ,µ) = φ(λ,µ)
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Concavity of Dual Function
The dual function is always concave, whether the primal problem (P)
is convex or not.

Proof. Note L(x,λ,µ) is affine in (λ,µ). Thus φ(λ,µ) = infx L(x,λ,µ)
is the pointwise infimum of a family of affine functions indexed by x,
and hence concave. (Recall the pointwise supremum of convex
functions is convex).

φ(λ,µ) = inf
x∈D

f (x) +
k∑

i=1

λihi(x) +
m∑

j=1

µjgj(x)


= − sup

x∈D

−f (x)−
k∑

i=1

λihi(x)−
m∑

j=1

µjgj(x)


︸ ︷︷ ︸

pointwise supremum of convex (affine) functions in (λ,µ)

Example. φ(λ,µ) = − 1
4‖µ− ATλ‖2 − bTλ is concave.
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Lagrange Dual Problem
To find the best lower bound given by the dual function

f ∗ ≥ φ(λ,µ)

solve the (Lagrange) dual problem associated with the primal problem
(P),

max
λ,µ

φ(λ,µ)

s.t. µ ≥ 0
(D)

The dual problem (D) is always convex, whether or not (P) is convex.

(λ,µ) is dual feasible if µ ≥ 0 and φ(λ,µ) > −∞.

Note. The domain of a convex function f is dom f = {x : f (x) < +∞},
while the domain of a concave function f is dom f = {x : f (x) > −∞}.
Thus the condition φ(λ,µ) > −∞ just means (λ,µ) ∈ domφ.
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Example
The dual problem of the following general LP

min
x

f (x) = cTx

s.t. Ax = b
Gx ≤ h

is

max
λ,µ

φ(λ,µ) =

{
−λTb− µTh, if − ATλ− GTµ = c
−∞, otherwise

s.t. µ ≥ 0

(λ,µ) is dual feasible if µ ≥ 0 and −ATλ− GTµ = c, which just means
it is feasible for the dual LP,

max
λ,µ

ψ(λ,µ) = −λTb− µTh

s.t. − ATλ− GTµ = c
µ ≥ 0
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Example
The dual problem of the following problem

min
x

f (x) = xTx

s.t. Ax = b
x ≥ 0

is

max
λ,µ

φ(λ,µ) = −1
4
‖µ− ATλ‖2 − bTλ

s.t. µ ≥ 0

(λ,µ) is dual feasible if µ ≥ 0.


