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Recap: Lagrange Dual Function

For a general optimization problem (not necessarily convex),

min f(x)
st hi(x)=0,i=1,2,...,k (P)
gi(x) <0,j=1,2,...,m

The (Lagrange) dual function is
k m
i=1 j=1

The variables A € R, i € R™ are called dual variables.

Properties
e Foranyxe X, Aand p > 0, f(x) > f* > L(x, A\, pu) > p(A, )
e The dual function is always concave, whether (P) is convex or not.



Lagrange Dual Problem

To find the best lower bound given by the dual function

>0\ )

solve the (Lagrange) dual problem associated with the primal problem
P),
max (A, p)
Ap

st. >0

(D)

The dual problem (D) is always convex, whether or not (P) is convex.
(X, i) is dual feasible if > 0 and ¢(X, u) > —oc.

Note. The domain of a convex function f is domf = {x : f(x) < +o0},
while the domain of a concave function f is domf = {x : f(x) > —o0o}.
Thus the condition ¢(A, p) > —oco just means (A, p) € dom ¢.



Example

The dual problem of the following LP

n;in fx) =clx

st Ax=b»b
Gx <h
is
MNb—pTh, if —ATAN-G'pu=c
BV o ) = {—oo, o otherwise o
st. u>0

(X, ) is dual feasible if & > 0 and —A”\ — G" u = ¢, which just means
it is feasible for the dual LP,

max (X, pu) = -A'b—pu'h
Ap

st. —ATA-G'p=c
n=0



Example
The dual problem of the following problem

n}in flx) =x"x

st. Ax=0»>
x>0

1
max  p(A,p) = =l — ATA|* — bTA
o

st. u>0

(A, ) is dual feasible if © > 0.



Weak and Strong Duality

Denote by /* and ¢* the primal and dual optimal values, i.e.
[ =inf f(x), 9" = sup @A, p)
xeX A >0
Weak duality: f* > ¢*
e always holds.
Proof. Recall f* > ¢(X, p) for any A and any o > 0. Weak duality
follows by maximizing over A and @ > 0.
e ™ — ¢* is called the (optimal) duality gap of the problem.

Strong duality:  f* = ¢*
® does not hold in general.

e typically holds for convex problems under various conditions
known as constraint qualifications, e.g. Slater’s condition.
* may also hold for nonconvex problems.

e can solve the dual problem instead if it is easier than the primal.



Example

Recall the following pair of primal and dual LP,

min  f(x) =x; + 2x max h(p) =2/
xER? pER3
st. 2x14+x>2 st. 2ui+wmw=1
x>0 p+p3 =2

n=0

e The primal LP can be solved graphically with f/* = f(1,0) = 1.
e The dual is equivalent to

max 24
H1
st 2u <1
1 <2
1 >0

So ¢* = ¢(3,0,3) = 1 = f*, strong duality holds.



Example

: _ 2
min flx)=x

st. x<a

The dual function is
P(p) = iI}}f[x2 fulx—a)]=-" —ap

The dual problem is

max $p) =" —an
st. u>0

The primal and dual optimal values are
1. 1fa>0,f*=f(0) = ¢* = $(0) = 0
2. Ifa <0,/ =f(a) = ¢* = $(~2a) = &

Strong duality holds in both cases.

a x/ 1

d(p)

Case1.a>0

Case2.a<0



Example (cont'd)

Assume a < 0.
e surface: L(x, 1) = x> + p(x — a)
¢ blue curve: x — (x,0,f(x))
e green curve: u— (0, u, ¢(u))

 orange curve: i - (x* (1), p, 6(1))
Note x*(u) = argmin, L(x, u) = —5.

e cyan curve: x — (x, u*, L(x, u*))

e magenta curve: p — (x*, u, L(x*,
e red dot: (x*, u*,f*)

e brown dot: (x*,0,f*)

¢ purple dot: (0, u*,f*)

(x*, u*) is a saddle point of £: for u > 0,

L(x*, p) < L(x*,p17) < L(x, 1)

8/25



Example

Consider _ \
min flx)=x
st. x>0

The optimal value if f* = f(0) = 0.
The dual function is

¢(p) = inf[x’ — pua] = —o0
so the dual optimal value is

¢* = sup p(u) = —o0
>0

The duality gap is infinite. In particular, strong duality does not hold.



Example

Consider
. —x> —x+ 3, x| < 1
min  f(x) =< Y g :
x€R X =x+z, |x>3
st. x<0
The primal optimal value is f* = f(0) = 3.
The dual function is
1—|p—1] | -1
. s =1 <1
o(p) = inf[f(x)+px] = { A o)
x U -1 > 1

The dual optimal value is ¢* = ¢(1) = 1. ‘

The duality gap is f* — ¢* = 1

=3



Example (cont'd)

To compute the dual function, note

>+ (p—Dx+3, |x <
Lx,p) =f(x) 4+ pux = 4 -
(x, ) = f(x) + p {x2+(u—1)x4rl, | >

Since y = —x* + (1 — 1)x + 3 is a parabola opening down,

1
2707 2

Pl — ROl—

2

¢1(p) = inf L(x,p) = min {ﬁ(l,,u) /J(—,,u)} _ 1—|p—1]

1
\x|§§

Since y = x> + (1 — 1)x + 1 is a parabola opening up,

_ _ _1)2
L5, p) = el

1
|X|Z§

¢2(p) = inf L(x, p) ={

Thus
¢(p) = min{p (1), p2(p)} = b2(n)

min {£(4, ), £(=1, )} = ==t

w—1]>1
w=1]<1



Example (cont'd)

By definition of dual function,

¢(p) = mf[f (x) + pa] < f(x) + px

Rearranging,

0(x) & —px + ¢(p) < f(x)

Note ¢(x) is a line with slope —n and
intercept ¢(u) that lies below the graph of f.

The dual optimal value ¢* is the largest |
intercept of such lines. We can see

pictorially there is a gap. £ )
This also give us intuition about why strong
duality may hold for nonconvex problem, and
why it usually holds for convex problems. >




Example

Consider
—vx, x>0
min fx)=41 x=0
400, x<0
st. x<0

The primal optimal value is f* = f(0) = 1.

The dual function is

_ 1 0
d(u) = iI;f[f(x) + x] = {_;g, /;ZO

The dual optimal value is ¢* = 0, which is not
attainable.

This is a convex problem with nonzero duality
gap f* — ¢* = 1, a nontypical case.

t"



Example

—vx, x>0
min fx)=<1 x=0
400, x<0
st. x<a
where a > 0.

The primal optimal value is f* = f(a) = —+/a.

The dual function is

1

B(1) = inflf(x) +(x—a)] = {_iii, " e

The dual optimal value is ¢* = ¢(51=) = —/a

S

Strong duality holds in this case.




Slater’s Condition for Convex Problems
Consider a convex problem,
min £(x)
st gx)<0,j=12,....m (CP)
h(x) =Ax—-b=0
with domain D = domf N (L, dom g;).
Slater’s condition. The above problem is strictly feasible, i.e.

I eintD' s.t. gx)<0fori=1,2,....,m, Ax=b

Refined Slater’s condition. If some g; are affine, the requirement
gj(x) < 0 can be relaxed to feasibility gj(x) < 0 for those g;.

Slater’s Theorem. Strong duality holds for (CP) under (refined) Slater’s
condition. Furthermore, if ¢* > —o0, it is attained by some (AX*, u*).

'int D stands for the interior of D. x € int D if there exists § > 0 s.t. B(x, ) C D.
Again we focus on the case D = R", so the requirement x € int D is always satisfied.



Example

—vx, x>0
min f(x) =< 1 x=0
xeR

400, x<0
st. x<a

is a convex problem with domain D = [0, c0). Note int D = (0, c0).

* If a > 0, Slater’s condition is satisfied, e.g. § € int D and § < a, s0
strong duality must hold.

e |f a =0, no point in int D is feasible. Slater’s Theorem is not
applicable? , and it turns out that strong duality does not hold.

2Slater’s condition is only a sufficient condition for strong duality. It is not

necessary.



Example: Strong Duality for LP

min ¢’x max —b'X—hTp
x dual LP Ap
—
st. Ax=b st. —ATA-G'u=c
quuivalence equivalencet
max —c'x min b'A+h'p
* dual LP A
st. Ax=b — st. —ATA-G'p=c
Gx+y=h —u<0
y=>0

e Essentially, dual of dual is primal.

e By refined Slater’s condition, strong duality holds if either the
primal or the dual is feasible.

e When both primal and dual are feasible, f* = ¢* are finite and
they are both attained.



Example: Strong Duality for LP (cont'd)

There are four possibilities
1. Primal feasible, dual feasible, —oo < ¢* = f* < +00
2. Primal feasible, dual infeasible, /* = ¢* = —oo

‘ max A
min  x; — 2xp
s.t. >\+M1 =1
s.t. X —xp = —1
—A+pp =2
x1,x >0
M1, 12 ZO

3. Primal infeasible, dual feasible, f* = ¢* = 400
4. Primal infeasible, dual infeasible, /* = +o00, ¢* = —0c0

. max  —pu1 + 2
min  x; — 2xp

st. —pui+mwm=1
s.t. X1 —x <1 g pe _ 5
x4 < =2 H1r — p2 =
pis po >0

Note. No duality gap in Case 2 and Case 3, but /* — ¢* is undefined.



Example: Dual Formulation of SVM

Recall the primal formulation of SVM,

1
min S [wl + C1¢
st yixlw+b)>1-6, i=1,2,....n
£>0
where C > 0 is a hyperparameter, and 1 is the vector of all 1’s.

e convex problem with affine constraints.
¢ always feasible. Indeed, given any w, b,

&= —ywx+b)]", i=12...,n

yields a feasible solution (w, b, &), where (x)™ = max{x, 0}.
¢ strong duality holds by refined Slater’s condition
e can solve the dual problem instead, which turns out to be useful!



Example: Dual Formulation of SVM (cont’d)
The Lagrangian is

1 n
i=1

T
1 n
= S Iwll3 - (Zyimx,) w—plyb+(Cl—p—a)€+17p
i=1

Minimizing over w, b, £ yields the dual function (w = >, yiux;),

n n
T — 355 pipyiyxlxg, ifply=0,C1—p—a=0
o(p, ) = i=1j=1

—00, otherwise
The dual problem is
max  ¢(p, )
Mn,o

s.t. >0, x>0



Example: Dual Formulation of SVM (cont’d)

Making the constraints explicit, we obtain the equivalent problem,

max 17 p Z Z Ll yiy ] Xj

i=1 j=1
s.t. ply=0
p+a=C1
p=>0,a>0
Eliminating «, we obtain the following dual formulation of SVM,

max 17 Z Z il YiYiX; xj
i=1 j=1
s.t. ply=0
0<p<Cl
Can be solved by specialized algorithms called Sequential Minimal
Optimization (SMO). Also amenable to further generalization using the
kernel trick that replaces x!x; by a kernel (function) K (x;, x;).



Duality Gap

Given primal feasible x and dual feasible (A, ), the difference
fx) = oA p)

is called the duality gap associated with x and (A, ).

Note
P(A, p) <" <fF < flx)

If the duality gap is zero, i.e. f(x) = ¢(A, i), then all inequalities
become equalities, so x is primal optimal, and (A, p) is dual optimal.

If the gap f(x) — ¢(A, ) < ¢, then the dual solution (A, ) serves as a
proof or certificate that x is e-suboptimal,

fO) =f" <flx) = oA p) <€

When strong duality holds, this can serve as a stopping criterion in an
iterative algorithm, i.e. stop when f(x) — ¢(X, u) < e for some (A, p).



Strong Duality and KKT for Convex Problems

Consider a differentiable convex problem and its dual,
min f(x) max  ¢(A, p) = inf L(x, A, p)
X Al X

st gx)<0 st. u>0
h(x)=Ax —b =0

KKT conditions hold at x* with Lagrange multipliers A*, u*, i.e.
1. (primal feasibility) k(x*) = 0, g(x*) <0
2. (dual feasibility) pu* > 0
3. (stationarity) V L(x*, A", u*) =0
4. (complementary slackness) M;gj(x*) =0,j=1,2,....m
if and only if all the following conditions hold,
1. strong duality holds, i.e. f* = ¢*
2. x* is a primal optimal solution, i.e. f* = f(x*)
3. (A%, u*) is a dual optimal solution, i.e. ¢* = (™, u*)



Proof of Necessity

Assume KKT holds at x* with Lagrange multipliers A*, p*.

e Since p* >0, L(x, X", u*) = f(x) + (A)Th(x) + () g(x) is
convex in x.

e The stationarity condition V,L(x*, A*, u*) = 0 implies x* is a
global minimum of L(x, A*, u*), i.e.
Lx", A5 1) = inf L(x, A", 1) = ¢(A", p7)
X
¢ By primal feasibility and complementary slackness,

LO N p") =) + (A) h(x") + (17) g x™) = f(x)
> T %

<o)
f(x") = oA, p)
¢ By the discussion on slide 22, x* is primal optimal, (A*, p*) is dual
optimal and strong duality holds.



Proof of Sufficiency

Assume strong duality holds, x* is primal optimal, and (\*, u*) is dual
optimal. We only need to show the stationarity condition and the
complementary slackness condition.

ff=9" (strong duality)

= p(A", ") (dual optimality of (A*, ™))
=inf L(x, \*, u*) (definition of dual function)
< L(x*, A%, ™) (definition of infimum)
=f") + (N) h(x) +(p* )" glx")

e =~

=0 >0 <0

< f(x*) (primal and dual feasibility of x*, p*)
=f" (primal optimality of x*)

So both inequality holds with equality. The first implies x* is a
minimum of L(x, A*, u*), so V,L(x*, A", u*) = 0. The second implies
(n*)Tg(x*) =0, s0 pgj(x*) =0forj=1,2,...,m.



