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Recap: Lagrange Dual Function
For a general optimization problem (not necessarily convex),

min
x

f (x)

s.t. hi(x) = 0, i = 1, 2, . . . , k

gj(x) ≤ 0, j = 1, 2, . . . ,m

(P)

The (Lagrange) dual function is

φ(λ,µ) = inf
x
L(x,λ,µ) = inf

x

f (x) +
k∑

i=1

λihi(x) +
m∑

j=1

µjgj(x)


The variables λ ∈ Rk,µ ∈ Rm are called dual variables.

Properties
• For any x ∈ X, λ and µ ≥ 0, f (x) ≥ f ∗ ≥ L(x,λ,µ) ≥ φ(λ,µ)
• The dual function is always concave, whether (P) is convex or not.
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Lagrange Dual Problem
To find the best lower bound given by the dual function

f ∗ ≥ φ(λ,µ)

solve the (Lagrange) dual problem associated with the primal problem
(P),

max
λ,µ

φ(λ,µ)

s.t. µ ≥ 0
(D)

The dual problem (D) is always convex, whether or not (P) is convex.

(λ,µ) is dual feasible if µ ≥ 0 and φ(λ,µ) > −∞.

Note. The domain of a convex function f is dom f = {x : f (x) < +∞},
while the domain of a concave function f is dom f = {x : f (x) > −∞}.
Thus the condition φ(λ,µ) > −∞ just means (λ,µ) ∈ domφ.
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Example
The dual problem of the following LP

min
x

f (x) = cTx

s.t. Ax = b
Gx ≤ h

is

max
λ,µ

φ(λ,µ) =

{
−λTb− µTh, if − ATλ− GTµ = c
−∞, otherwise

s.t. µ ≥ 0

(λ,µ) is dual feasible if µ ≥ 0 and −ATλ− GTµ = c, which just means
it is feasible for the dual LP,

max
λ,µ

ψ(λ,µ) = −λTb− µTh

s.t. − ATλ− GTµ = c
µ ≥ 0
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Example
The dual problem of the following problem

min
x

f (x) = xTx

s.t. Ax = b
x ≥ 0

is

max
λ,µ

φ(λ,µ) = −1
4
‖µ− ATλ‖2 − bTλ

s.t. µ ≥ 0

(λ,µ) is dual feasible if µ ≥ 0.
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Weak and Strong Duality
Denote by f ∗ and φ∗ the primal and dual optimal values, i.e.

f ∗ = inf
x∈X

f (x), φ∗ = sup
λ,µ:µ≥0

φ(λ,µ)

Weak duality: f ∗ ≥ φ∗

• always holds.

Proof. Recall f ∗ ≥ φ(λ,µ) for any λ and any µ ≥ 0. Weak duality
follows by maximizing over λ and µ ≥ 0.
• f ∗ − φ∗ is called the (optimal) duality gap of the problem.

Strong duality: f ∗ = φ∗

• does not hold in general.
• typically holds for convex problems under various conditions

known as constraint qualifications, e.g. Slater’s condition.
• may also hold for nonconvex problems.
• can solve the dual problem instead if it is easier than the primal.
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Example
Recall the following pair of primal and dual LP,

min
x∈R2

f (x) = x1 + 2x2

s.t. 2x1 + x2 ≥ 2

x ≥ 0

max
µ∈R3

ψ(µ) = 2µ1

s.t. 2µ1 + µ2 = 1

µ1 + µ3 = 2

µ ≥ 0

• The primal LP can be solved graphically with f ∗ = f (1, 0) = 1.
• The dual is equivalent to

max
µ1

2µ1

s.t. 2µ1 ≤ 1

µ1 ≤ 2

µ1 ≥ 0

So φ∗ = φ(1
2 , 0,

3
2) = 1 = f ∗, strong duality holds.
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Example
min
x∈R

f (x) = x2

s.t. x ≤ a

The dual function is

φ(µ) = inf
x
[x2 + µ(x− a)] = −µ

2

4
− aµ

The dual problem is

max
µ∈R

φ(µ) = −µ
2

4
− aµ

s.t. µ ≥ 0

The primal and dual optimal values are
1. If a ≥ 0, f ∗ = f (0) = φ∗ = φ(0) = 0

2. If a ≤ 0, f ∗ = f (a) = φ∗ = φ(−2a) = a2

Strong duality holds in both cases.

x/µ

f (x)

φ(µ)

a

Case 1. a ≥ 0

x/µ

f (x)

φ(µ)

−2aa

Case 2. a ≤ 0
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Example (cont’d)
Assume a < 0.
• surface: L(x, µ) = x2 + µ(x− a)
• blue curve: x 7→ (x, 0, f (x))
• green curve: µ 7→ (0, µ, φ(µ))
• orange curve: µ 7→ (x∗(µ), µ, φ(µ)).

Note x∗(µ) = argminx L(x, µ) = −µ
2 .

• cyan curve: x 7→ (x, µ∗,L(x, µ∗))
• magenta curve: µ 7→ (x∗, µ,L(x∗, µ))
• red dot: (x∗, µ∗, f ∗)
• brown dot: (x∗, 0, f ∗)
• purple dot: (0, µ∗, f ∗)

(x∗, µ∗) is a saddle point of L: for µ ≥ 0,

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗)
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Example
Consider

min
x∈R

f (x) = x3

s.t. x ≥ 0

The optimal value if f ∗ = f (0) = 0.

The dual function is

φ(µ) = inf
x
[x3 − µx] = −∞

so the dual optimal value is

φ∗ = sup
µ≥0

φ(µ) = −∞

The duality gap is infinite. In particular, strong duality does not hold.
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Example
Consider

min
x∈R

f (x) =

{
−x2 − x + 3

4 , |x| ≤
1
2

x2 − x + 1
4 , |x| ≥ 1

2

s.t. x ≤ 0

The primal optimal value is f ∗ = f (0) = 3
4 . x

f (x)

The dual function is

φ(µ) = inf
x
[f (x)+µx] =

{
1−|µ−1|

2 , |µ− 1| ≤ 1
1−(µ−1)2

4 , |µ− 1| ≥ 1

The dual optimal value is φ∗ = φ(1) = 1
2 .

The duality gap is f ∗ − φ∗ = 1
4 .

µ

φ(µ)
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Example (cont’d)
To compute the dual function, note

L(x, µ) = f (x) + µx =

{
−x2 + (µ− 1)x + 3

4 , |x| ≤
1
2

x2 + (µ− 1)x + 1
4 , |x| > 1

2

Since y = −x2 + (µ− 1)x + 3
4 is a parabola opening down,

φ1(µ) = inf
|x|≤ 1

2

L(x, µ) = min

{
L(1

2
, µ),L(−1

2
, µ)

}
=

1− |µ− 1|
2

Since y = x2 + (µ− 1)x + 1
4 is a parabola opening up,

φ2(µ) = inf
|x|≥ 1

2

L(x, µ) =

{
L(1−µ

2 , µ) = 1−(µ−1)2

4 , |µ− 1| ≥ 1
min

{
L(1

2 , µ),L(−
1
2 , µ)

}
= 1−|µ−1|

2 , |µ− 1| ≤ 1

Thus
φ(µ) = min{φ1(µ), φ2(µ)} = φ2(µ)
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Example (cont’d)

x

f (x)

µ = 1

By definition of dual function,

φ(µ) = inf
x
[f (x) + µx] ≤ f (x) + µx

Rearranging,

`(x) , −µx + φ(µ) ≤ f (x)

Note `(x) is a line with slope −µ and
intercept φ(µ) that lies below the graph of f .

The dual optimal value φ∗ is the largest
intercept of such lines. We can see
pictorially there is a gap.

This also give us intuition about why strong
duality may hold for nonconvex problem, and
why it usually holds for convex problems.

x

f1(x)

x

f2(x)
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Example
Consider

min
x∈R

f (x) =


−
√

x, x > 0
1 x = 0
+∞, x < 0

s.t. x ≤ 0

The primal optimal value is f ∗ = f (0) = 1.

x

f (x)

The dual function is

φ(µ) = inf
x
[f (x) + µx] =

{
− 1

4µ , µ > 0

−∞, µ ≤ 0

The dual optimal value is φ∗ = 0, which is not
attainable.

This is a convex problem with nonzero duality
gap f ∗ − φ∗ = 1, a nontypical case.

µ

φ(µ)
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Example

min
x∈R

f (x) =


−
√

x, x > 0
1 x = 0
+∞, x < 0

s.t. x ≤ a

where a > 0.

The primal optimal value is f ∗ = f (a) = −
√

a.

x

f (x)

a

−
√

a

The dual function is

φ(µ) = inf
x
[f (x)+µ(x−a)] =

{
− 1

4µ − aµ, µ > 0

−∞, µ ≤ 0

The dual optimal value is φ∗ = φ( 1
2
√

a) = −
√

a

Strong duality holds in this case.

µ

φ(µ)

1
2
√

a

−
√

a
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Slater’s Condition for Convex Problems
Consider a convex problem,

min
x

f (x)

s.t. gj(x) ≤ 0, j = 1, 2, . . . ,m

h(x) = Ax− b = 0

(CP)

with domain D = dom f ∩ (
⋂m

i=1 dom gj).

Slater’s condition. The above problem is strictly feasible, i.e.

∃x ∈ intD1 s. t. gj(x) < 0 for i = 1, 2, . . . ,m, Ax = b

Refined Slater’s condition. If some gj are affine, the requirement
gj(x) < 0 can be relaxed to feasibility gj(x) ≤ 0 for those gj.

Slater’s Theorem. Strong duality holds for (CP) under (refined) Slater’s
condition. Furthermore, if φ∗ > −∞, it is attained by some (λ∗,µ∗).

1intD stands for the interior of D. x ∈ intD if there exists δ > 0 s.t. B(x, δ) ⊂ D.
Again we focus on the case D = Rn, so the requirement x ∈ intD is always satisfied.
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Example

min
x∈R

f (x) =


−
√

x, x > 0
1 x = 0
+∞, x < 0

s.t. x ≤ a

is a convex problem with domain D = [0,∞). Note intD = (0,∞).

• If a > 0, Slater’s condition is satisfied, e.g. a
2 ∈ intD and a

2 < a, so
strong duality must hold.

• If a = 0, no point in intD is feasible. Slater’s Theorem is not
applicable2 , and it turns out that strong duality does not hold.

2Slater’s condition is only a sufficient condition for strong duality. It is not
necessary.
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Example: Strong Duality for LP

min
x

cTx

s.t. Ax = b
Gx ≤ h

dual LP
max
λ,µ

− bTλ− hTµ

s.t. − ATλ− GTµ = c
µ ≥ 0

equivalence

min
λ,µ

bTλ+ hTµ

s.t. − ATλ− GTµ = c
− µ ≤ 0

dual LP
max

x,y
− cTx

s.t. Ax = b
Gx + y = h
y ≥ 0

equivalence

• Essentially, dual of dual is primal.
• By refined Slater’s condition, strong duality holds if either the

primal or the dual is feasible.
• When both primal and dual are feasible, f ∗ = φ∗ are finite and

they are both attained.
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Example: Strong Duality for LP (cont’d)
There are four possibilities

1. Primal feasible, dual feasible, −∞ < φ∗ = f ∗ < +∞
2. Primal feasible, dual infeasible, f ∗ = φ∗ = −∞

min x1 − 2x2

s.t. x1 − x2 = −1

x1, x2 ≥ 0

max λ

s.t. λ+ µ1 = 1

−λ+ µ2 = −2

µ1, µ2 ≥ 0

3. Primal infeasible, dual feasible, f ∗ = φ∗ = +∞
4. Primal infeasible, dual infeasible, f ∗ = +∞, φ∗ = −∞

min x1 − 2x2

s.t. x1 − x2 ≤ 1

−x1 + x2 ≤ −2

max −µ1 + 2µ2

s.t. − µ1 + µ2 = 1

µ1 − µ2 = −2

µ1, µ2 ≥ 0

Note. No duality gap in Case 2 and Case 3, but f ∗ − φ∗ is undefined.
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Example: Dual Formulation of SVM
Recall the primal formulation of SVM,

min
w,b,ξ

1
2
‖w‖2

2 + C1Tξ

s. t. yi(xT
i w + b) ≥ 1− ξi, i = 1, 2, . . . , n

ξ ≥ 0

where C > 0 is a hyperparameter, and 1 is the vector of all 1’s.
• convex problem with affine constraints.
• always feasible. Indeed, given any w, b,

ξi = [1− yi(wTxi + b)]+, i = 1, 2, . . . , n

yields a feasible solution (w, b, ξ), where (x)+ = max{x, 0}.
• strong duality holds by refined Slater’s condition
• can solve the dual problem instead, which turns out to be useful!
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Example: Dual Formulation of SVM (cont’d)
The Lagrangian is

L(w, b, ξ,µ,α) =
1
2
‖w‖2

2 + C1Tξ +

n∑
i=1

µi[1− ξi − yi(xT
i w + b)]−αTξ

=
1
2
‖w‖2

2 −

(
n∑

i=1

yiµixi

)T

w− µTyb + (C1− µ−α)Tξ + 1Tµ

Minimizing over w, b, ξ yields the dual function (w =
∑n

i=1 yiµixi),

φ(µ,α) =

1Tµ− 1
2

n∑
i=1

n∑
j=1

µiµjyiyjxT
i xj, if µTy = 0,C1− µ−α = 0

−∞, otherwise

The dual problem is

max
µ,α

φ(µ,α)

s. t. µ ≥ 0, α ≥ 0
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Example: Dual Formulation of SVM (cont’d)
Making the constraints explicit, we obtain the equivalent problem,

max
µ,α

1Tµ− 1
2

n∑
i=1

n∑
j=1

µiµjyiyjxT
i xj

s. t. µTy = 0

µ+α = C1
µ ≥ 0, α ≥ 0

Eliminating α, we obtain the following dual formulation of SVM,

max
µ

1Tµ− 1
2

n∑
i=1

n∑
j=1

µiµjyiyjxT
i xj

s. t. µTy = 0

0 ≤ µ ≤ C1

Can be solved by specialized algorithms called Sequential Minimal
Optimization (SMO). Also amenable to further generalization using the
kernel trick that replaces xT

i xj by a kernel (function) K(xi, xj).
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Duality Gap
Given primal feasible x and dual feasible (λ,µ), the difference

f (x)− φ(λ,µ)

is called the duality gap associated with x and (λ,µ).

Note
φ(λ,µ) ≤ φ∗ ≤ f ∗ ≤ f (x)

If the duality gap is zero, i.e. f (x) = φ(λ,µ), then all inequalities
become equalities, so x is primal optimal, and (λ,µ) is dual optimal.

If the gap f (x)− φ(λ,µ) ≤ ε, then the dual solution (λ,µ) serves as a
proof or certificate that x is ε-suboptimal,

f (x)− f ∗ ≤ f (x)− φ(λ,µ) ≤ ε

When strong duality holds, this can serve as a stopping criterion in an
iterative algorithm, i.e. stop when f (x)− φ(λ,µ) ≤ ε for some (λ,µ).
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Strong Duality and KKT for Convex Problems
Consider a differentiable convex problem and its dual,

min
x

f (x)

s.t. g(x) ≤ 0
h(x) = Ax− b = 0

max
λ,µ

φ(λ,µ) = inf
x
L(x,λ,µ)

s.t. µ ≥ 0

KKT conditions hold at x∗ with Lagrange multipliers λ∗, µ∗, i.e.
1. (primal feasibility) h(x∗) = 0, g(x∗) ≤ 0
2. (dual feasibility) µ∗ ≥ 0
3. (stationarity) ∇xL(x∗,λ∗,µ∗) = 0
4. (complementary slackness) µ∗j gj(x∗) = 0, j = 1, 2, . . . ,m

if and only if all the following conditions hold,
1. strong duality holds, i.e. f ∗ = φ∗

2. x∗ is a primal optimal solution, i.e. f ∗ = f (x∗)
3. (λ∗,µ∗) is a dual optimal solution, i.e. φ∗ = φ(λ∗,µ∗)
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Proof of Necessity
Assume KKT holds at x∗ with Lagrange multipliers λ∗,µ∗.
• Since µ∗ ≥ 0, L(x,λ∗,µ∗) = f (x) + (λ∗)Th(x) + (µ∗)Tg(x) is

convex in x.
• The stationarity condition ∇xL(x∗,λ∗,µ∗) = 0 implies x∗ is a

global minimum of L(x,λ∗,µ∗), i.e.

L(x∗,λ∗,µ∗) = inf
x
L(x,λ∗,µ∗) = φ(λ∗,µ∗)

• By primal feasibility and complementary slackness,

L(x∗,λ∗,µ∗) = f (x∗) + (λ∗)T h(x∗)︸ ︷︷ ︸
=0

+(µ∗)Tg(x∗)︸ ︷︷ ︸
=0

= f (x∗)

so
f (x∗) = φ(λ∗,µ∗)

• By the discussion on slide 22, x∗ is primal optimal, (λ∗,µ∗) is dual
optimal and strong duality holds.
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Proof of Sufficiency
Assume strong duality holds, x∗ is primal optimal, and (λ∗,µ∗) is dual
optimal. We only need to show the stationarity condition and the
complementary slackness condition.

f ∗ = φ∗ (strong duality)
= φ(λ∗,µ∗) (dual optimality of (λ∗,µ∗))
= inf

x
L(x,λ∗,µ∗) (definition of dual function)

≤ L(x∗,λ∗,µ∗) (definition of infimum)

= f (x∗) + (λ∗)T h(x∗)︸ ︷︷ ︸
=0

+( µ∗︸︷︷︸
≥0

)T g(x∗)︸ ︷︷ ︸
≤0

≤ f (x∗) (primal and dual feasibility of x∗, µ∗)
= f ∗ (primal optimality of x∗)

So both inequality holds with equality. The first implies x∗ is a
minimum of L(x,λ∗,µ∗), so ∇xL(x∗,λ∗,µ∗) = 0. The second implies
(µ∗)Tg(x∗) = 0, so µjgj(x∗) = 0 for j = 1, 2, . . . ,m.


