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Recap: Mathematical Optimization Problems

min
x∈X

f (x)

• f : Rn → R: objective function
• x = (x1, x2, . . . , xn)T ∈ Rn: optimization/decision variables
• X ⊂ Rn: feasible set or constraint set

min
x

f (x)

s. t. gi(x) ≤ 0, i = 1, 2, . . . ,m

• gi : Rn → R: constraint function
• X = {x : gi(x) ≤ 0, i = 1, . . . ,m}

Examples: linear regression, linear programming, SVM
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Recap: Global Minimum and Local Minimum
x∗ ∈ X is a global minimum of f if

f (x∗) ≤ f (x), ∀x ∈ X

x∗ ∈ X is a local minimum of f if there exists ε > 0 s.t.

f (x∗) ≤ f (x), ∀x ∈ X ∩ B(x∗, ε)

Sufficient conditions for existence of global min
• f is continuous and X is compact (closed and bounded)
• f is continuous and coercive (f (x)→∞ as ‖x‖ → ∞)
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Review: Derivative
x is an interior point of X ⊂ Rn if there exists ε > 0 s.t. B(x, ε) ⊂ X.

The interior of X, denoted by int X, is the set of interior points of X.

A function f : X ⊂ Rn → Rm is differentiable at x0 ∈ int X, if there exists
a matrix1 A ∈ Rm×n s.t.

lim
X3x→x0

‖f(x)− f(x0)− A(x− x0)‖
‖x− x0‖

= 0

The matrix A is called the derivative of f at x0, and we write

f ′(x0) = Df(x0) = A

The affine function f(x0) + A(x− x0) is the first-order approximation of
f at x0,

f(x) = f(x0) + f ′(x0)(x− x0) + o(‖x− x0‖)

1More precisely, a linear transformation represented by matrix A
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Review: Derivative
The derivative is given by the Jacobian matrix of f = (f1, . . . , fm)

[f ′(x0)]ij =
∂fi(x0)

∂xj
, i = 1, . . . ,m; j = 1, . . . , n

Example. An affine function f(x) = Ax + b from Rn to Rm has
derivative f ′(x) = A at all x. In particular, when m = 1, f (x) = aTx + b
has derivative f ′(x) = aT , which is a 1× n matrix, i.e. a row vector.

Example. f (x) = 1
2 xTQx = 1

2

n∑
i=1

n∑
j=1

Qijxixj has derivative

f ′(x) =
1
2

xT(Q + QT)

Proof.

∂f
∂xk

=
1
2

n∑
i=1

n∑
j=1

Qij

(
xj
∂xi

∂xk
+ xi

∂xj

∂xk

)
=

1
2

n∑
j=1

Qkjxj +
1
2

n∑
i=1

Qikxi
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Review: Gradient
For a real-valued function f : Rn → R, the gradient of f at x, denoted
by ∇f (x), is the transpose of f ′(x),

∇f (x) = [f ′(x)]T , [∇f (x)]i =
∂f (x)

∂xi
, i = 1, . . . , n

∇f (x) is a column vector and satisfies

f ′(x)∆x = 〈∇f (x),∆x〉 = ∇f (x)T∆x

The first-order approximation of f at x0 is

f (x0) +∇f (x0)T(x− x0)

Example. For symmetric Q, the gradient of f (x) = 1
2 xTQx + bTx + c is

∇f (x) = Qx + b
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Review: Chain Rule
If f : X ⊂ Rn → Rm is differentiable at x0 ∈ X, g : Y ⊂ Rm → Rp is
differentiable at y0 = f(x0), then the composition of f and g defined by
h(x) = g(f(x)) is differentiable at x0, and

h′(x0) = g′(y0)f ′(x0) = g′(f(x0))f ′(x0)

Note. The order is important since g′(y0) ∈ Rp×m and f ′(x0) ∈ Rm×n are
matrices. In general f ′(x0)g′(y0) is undefined.

Rn f−−→ Rm g−−→ Rp

x0 7→ y0 = f(x0) 7→ h(x0) = g(y0)

∆x f ′7→ f ′(x0)∆x g′7→ g′(y0)f ′(x0)∆x
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Review: Chain Rule
Example. h(x) = f(Ax + b) has derivative h′(x0) = f ′(Ax0 + b)A. If f is
real-valued,

∇h(x0) = AT [f ′(Ax0 + b)]T = AT∇f (Ax0 + b)

Example. Given f : Rn → R and x, v ∈ Rn, define

f̃ (t) = f (x + tv)

Then
f̃ ′(t) = f ′(x + tv)v = ∇f (x + tv)Tv = vT∇f (x + tv)

Note. f̃ is the restriction of f to the straight line through x with direction
v. We can often get useful information about f by looking at f̃ , which is
usually easier to deal with.
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First-order Necessary Condition
Consider unconstrained optimization problem, i.e. X = Rn.

Theorem. If x∗ is a local minimum of f and f is differentiable at x∗, then
its gradient at x∗ vanishes, i.e.

∇f (x∗) =

(
∂f (x∗)
∂x1

, . . . ,
∂f (x∗)
∂xn

)T

= 0.

Proof. Let d ∈ Rn. Define g(α) = f (x∗ + αd).
• Since x∗ is local minimum, g(α) ≥ g(0)

• For α > 0,

g(α)− g(0)

α
≥ 0 =⇒ g′(0) = lim

α↓0

g(α)− g(0)

α
≥ 0

• By chain rule, g′(0) =
∑n

i=1 di
∂f (x∗)
∂xi

= dT∇f (x∗) ≥ 0

• Replacing d by −d =⇒ −dT∇f (x∗) ≥ 0 =⇒ dT∇f (x∗) = 0
• Setting d = ∇f (x∗) =⇒ ‖∇f (x∗)‖2 = 0 =⇒ ∇f (x∗) = 0
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First-order Necessary Condition (cont’d)

x∗ d
x ∇f (x)

x1

x2

f(
x)
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First-order Necessary Condition (cont’d)
A point x∗ with ∇f (x∗) = 0 is called a stationary point of f .

x

f1(x) = x2

x∗ = 0
mininum

x

f2(x) = x|x|

x∗ = 0
inflection point

x

f2(x) = −x2

x∗ = 0
maxinum

x1

x2

f(
x)

f (x) = x2
1 + x2

2

minimum

x1

x2

f(
x)

f (x) = x2
1 − x2

2

saddle point

x1

x2

f(
x)

f (x) = −x2
1 − x2

2

maximum

x1

x2

f(
x)

f (x) = −x1|x1|+ x2
2

Note. Will see stationarity is sufficient for convex optimization.
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First-order Necessary Condition (cont’d)
For constrained optimization problem, i.e. X 6= Rn,
• if x∗ is in the interior of X, i.e. B(x∗, ε) ⊂ X for some ε > 0, then the

proof still works, so ∇f (x∗) = 0
• otherwise, the proof shows dT∇f (x∗) ≥ 0 for any feasible direction

d at x∗
I d is a feasible direction at x ∈ X if x + αd ∈ X for all sufficiently

small α > 0

• will revisit later

Example. X = [a, b]

• f ′(x1) = 0
• d1f ′(a) ≥ 0 =⇒ f ′(a) ≥ 0
• d2f ′(b) ≥ 0 =⇒ f ′(b) ≤ 0 x

f (x)

x1a
d1 > 0

b

d2 < 0

X
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Review: Second Derivative
The second-order partial derivatives of f : X ⊂ Rn → R at x0 ∈ int X
are

∂2f (x0)

∂xi∂xj
, i, j = 1, 2, . . . , n

The Hessian (matrix) of f at x0, denoted by ∇2f (x0), is given by

[∇2f (x0)]ij =
∂2f (x0)

∂xi∂xj
, i, j = 1, 2, . . . , n

If
∂2f (x)

∂xi∂xj
and

∂2f (x)

∂xj∂xi
exist in a neighborhood of x0 and are continuous

at x0, then
∂2f (x0)

∂xi∂xj
=
∂2f (x0)

∂xj∂xi

so ∇2f (x0) is symmetric.

Will assume twice continuous differentiability when considering ∇2f .
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Review: Second-order Taylor Expansion
The second-order Taylor expansion for f : Rn → R is

f (x + d) = f (x) +

n∑
i=1

∂f (x)

∂xi
di +

1
2

n∑
i=1

n∑
j=1

∂2f (x)

∂xi∂xj
didj + o(‖d‖2)

or in vector notation,

f (x + d) = f (x) +∇f (x)Td +
1
2

dT∇2f (x)d + o(‖d‖2)

Note. This can be used to find the expressions for ∇f and ∇2f .

Example. For affine function f (x) = bTx + c

∇f (x) = b, ∇f 2(x) = O

Proof. Compare the following with Taylor expansion.

f (x + d)− f (x) = [bT(x + d) + c]− [bTx + c] = bTd
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Review: Second-order Taylor Expansion
Example. For quadratic function f (x) = xTAx with general A,

∇f (x) = (A + AT)x, ∇2f (x) = A + AT

If A is symmetric, then ∇f (x) = 2Ax, ∇2f (x) = 2A.
Proof.

f (x + d) = (x + d)TA(x + d) = xTAx + dTAx + xTAd + dTAd

= f (x) + (Ax + ATx)Td + dTAd

Since quadratic functions are twice continuously differentiable, ∇2f is
symmetric. Need to rewrite the above as

f (x + d) = f (x) + (Ax + ATx)Td +
1
2

dT(A + AT)d

Since a quadratic function is exactly equal to its second-order Taylor
expansion, we must have ∇f (x) = Ax + ATx and ∇2f (x) = A + AT .
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Review: Chain Rule for Second Derivative
The composition with affine function g(x) = f (Ax + b) has Hessian

∇2g(x) = AT∇2f (Ax + b)A

Proof. Let y = Ax + b, i.e. yk =
∑

i Akixi. Recall ∇g(x) = AT∇f (y), i.e.

∂g(x)

∂xj
=
∑

k

∂f (y)

∂yk

∂yk

∂xj
=
∑

k

∂f (y)

∂yk
Akj

∂2g(x)

∂xi∂xj
=
∑

k

∂

∂xi

∂f (y)

∂yk
Akj =

∑
k

∑
`

∂2f (y)

∂y`∂yk
A`iAkj = [AT∇2f (y)A]ij

Special case. For f̃ (t) = f (x + tv),

f̃ ′′(t) = vT∇2f (x + tv)v

Proof. Set A← v, x← t, b← x in the general formula above.
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Review: Definite Matrices
Matrix A ∈ Rn×n is positive semidefinite, denoted by A � O, if

1. it is symmetric, i.e. A = AT

2. xTAx ≥ 0, ∀x ∈ Rn

It is positive definite, denoted by A � O, if condition 2 is replaced by
2′. xTAx > 0, ∀x ∈ Rn and x 6= 0.

A is negative (semi)definite if −A is positive (semi)definite.

A is indefinite if it is neither positive semidefinite nor negative
semidefinite, i.e. there exists x1, x2 ∈ Rn s.t.

xT
1 Ax1 > 0 > xT

2 Ax2

Note. For quadratic forms xTAx, can always assume A is symmetric,
since

xTAx = xTATx = xT
(

A + AT

2

)
x
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Review: Test for Positive Definiteness
Vector x is eigenvector of matrix A with associated eigenvalue λ if

Ax = λx

Find eigenvalues by solving det(λI − A) = 0.

Theorem. Let A be a symmetric matrix.
• A � O iff all its eigenvalues λ > 0.
• A � O iff all its eigenvalues λ ≥ 0.

Exmaple. A =

(
1 2
2 5

)
is positive definite.

det(λI − A) = (λ− 1)(λ− 5)− 4 = 0 =⇒ λ = 3± 2
√

2 > 0

Exmaple. A =

(
1 2
2 4

)
is positive semidefinite.

det(λI − A) = (λ− 1)(λ− 4)− 4 = 0 =⇒ λ1 = 0, λ2 = 5
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Review: Test for Positive Definiteness
Given matrix A = (aij) ∈ Rn×n, a k × k principal submatrix of A consists
of k rows and k columns with the same indices I = {i1 < i2 < · · · < ik},

AI =

ai1i1 · · · ai1ik
...

. . .
...

aiki1 · · · aikik


A principal minor of order k of A is det AI for some I with |I| = k.

If I = {1, 2, . . . , k}, Dk(A) , det AI is called the leading principal minor
of order k.

Theorem (Sylvester). Let A be a symmetric matrix.
• A � O iff Dk(A) > 0 for k = 1, 2, . . . , n.
• A � O iff det AI ≥ 0 for all I ⊂ {1, 2, . . . , n}

Note. For positive semidefiniteness, we need to check all principal
minors, not just the leading principal minors.



21/29

Review: Test for Positive Definiteness

Exmaple. A =

(
1 2
2 5

)
is positive definite.

D1(A) = det(1) = 1 > 0, D2(A) = det A = 1 > 0

Example. A =

(
1 2
2 4

)
is positive semidefinite.

D1(A) = det(1) = 1, det A{2} = det(4) = 4, D2(A) = det A = 0

Note. It is not enough to check Dk(A) ≥ 0 for all k!

Example. A =

(
0 0
0 −2

)
is negative semidefinite,

D1(A) = det(0) = 0, D2(A) = det A = 0,

but
det A{2} = det(−2) = −2 < 0
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Review: Test for Positive Definiteness

Exmaple. A =

(
1 2
2 5

)
is positive definite.

• Use definition,

xTAx = x2
1 + 4x1x2 + 5x2

2 = (x1 + 2x2)2 + x2
2 ≥ 0, ∀x ∈ R2

with equality ⇐⇒

{
x1 + 2x2 = 0
x2 = 0

⇐⇒ x = 0

• Find eigenvalues by solving det(λI − A) = 0

det

(
λ− 1 −2
−2 λ− 5

)
= (λ− 1)(λ− 5)− 4 = 0 =⇒ λ = 3± 2

√
2 > 0

• Check leading principal minors

D1(A) = det(1) = 1 > 0, D2(A) = det A = 1 > 0
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Review: Test for Positive Definiteness

Exmaple. A =

1 2 1
2 5 8
1 8 1

 is not positive definite.

Check leading principal minors

D1(A) = det(1) = 1 > 0, D2(A) = det

(
1 2
2 5

)
= 1 > 0

D3(A) = det A = 1×
∣∣∣∣5 8
8 1

∣∣∣∣− 2×
∣∣∣∣2 8
1 1

∣∣∣∣+ 1×
∣∣∣∣2 5
1 8

∣∣∣∣ = −36 < 0

Can also check eigenvalues, e.g. using numpy.linalg.eig,

λ1 = 11.69585173, λ2 = 0.58307572, λ3 = −5.27892745
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Review: Eigendecomposition
A symmetric matrix A ∈ Rn×n has the following eigendecomposition

A = QΛQT =

n∑
i=1

λivivT
i

where Λ = diag{λ1, . . . , λn}, Q = (v1, . . . , vn) is an orthogonal matrix,
i.e. QTQ = I, and Avi = λivi.

Example. A = 1
4

(
3 −1
−1 3

)
has eigenvalues λ1 = 1

2 and λ2 = 1, with

corresponding eigenvectors v1 = 1√
2
(1, 1)T and v2 = 1√

2
(−1, 1)T . The

eigendecomposition is

A =

(
1√
2
−1√

2
1√
2

1√
2

)( 1
2 0
0 1

)( 1√
2

1√
2

−1√
2

1√
2

)
=

1
2

(
1√
2

1√
2

)(
1√
2

1√
2

)T

+

(−1√
2

1√
2

)(−1√
2

1√
2

)T
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Review: Geometry of Quadratic Forms
Quadratic form f (x) = xTAx in R2

x1

x2

f(
x)

A = diag{1, 1}
positive definite

x1

x2

f(
x)

A = diag{0, 1}

positive semidefinite

x1

x2

f(
x)

A = diag{1,−1}

indefinite

x1

x2

f(
x)

A = diag{−1,−1}
negative definite

x1

x2

f(
x)

A = diag{−1, 0}
negative semidefinite
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Review: Geometry of Quadratic Forms
Quadratic form f (x) = xTAx in R2

x1

x2

f(
x)

A = diag{1, 1}

x1

x2

f(
x)

A = diag{1
2 , 1}

x1

x2

f(
x)

A = 1
4

(
3 −1
−1 3

)

x1

x2

x1

x2

x1

x2

v1v2
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Second-order Necessary Condition
Theorem. If f : Rn → R is twice continuously differentiable and x∗ is a
local minimum of f , then its Hessian matrix ∇2f (x∗) is positive
semidefinite, i.e.

dT∇2f (x∗)d ≥ 0, ∀d ∈ Rn

Proof. Fix d ∈ Rn. By the first-order necessary condition, ∇f (x∗) = 0.
By the second-order Taylor expansion, for any t > 0,

f (x∗ + td) = f (x∗) +
t2

2
dT∇2f (x)d + o(t2‖d‖2) ≥ f (x∗)

So
1
2

dT∇2f (x)d + o(‖d‖2) ≥ 0

Taking the limit t→ 0 yields dT∇f (x∗)dT ≥ 0.

Note. Can apply the same argument to g(α) = f (x∗ + αd) with local
minimum α∗ = 0 and use chain rule to obtain g′′(0) = dT∇2f (x∗)d ≥ 0.
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Second-order Sufficient Condition
Theorem. Suppose f is twice continuously differentiable. If

1. ∇f (x∗) = 0
2. ∇2f (x∗) is positive definite, i.e.

dT∇2f (x∗)d > 0, ∀d 6= 0

then x∗ is a local minimum.

Proof. Use second-order Tayler expansion.

Note. In condition 2, positive definiteness cannot be replaced by
positive semidefiniteness.

x

f1(x) = |x|3

x∗ = 0

x

f2(x) = x3

x∗ = 0

x

f2(x) = −|x|3

x∗ = 0
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Second-order Sufficient Condition (cont’d)
∇f (0) = 0 and ∇2f (0) = O for all examples below.

x1

x2

f(
x)

f (x) = |x1|3 + |x2|3
x1

x2

f(
x)

f (x) = |x1|3 − |x2|3

x1

x2

f(
x)

f (x) = −|x1|3 − |x2|3
x1

x2

f(
x)

f (x) = −x3
1 + |x2|3
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