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Recap: Mathematical Optimization Problems

min f(x)

xeX
e f:R" — R: objective function
® x = (x1,x,...,x,)] € R": optimization/decision variables
e X C R": feasible set or constraint set

min  f(x)

B

s.t. gilx) <0, i=12,....m

® ¢;: R" — R: constraint function
e X={x:gi(x)<0,i=1,...,m}

Examples: linear regression, linear programming, SVM



Recap: Global Minimum and Local Minimum

x* € X is a global minimum of f if

fx*) <f(x), weX

x* € X is a local minimum of f if there exists e > 0 s.t.
f(x") <f(x), VxeXNB(x",e€)
Sufficient conditions for existence of global min

e fis continuous and X is compact (closed and bounded)
e fis continuous and coercive (f(x) — oo as ||x|| — oo)
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Review: Derivative
x is an interior point of X C R” if there exists € > 0 s.t. B(x,¢) C X.
The interior of X, denoted by int X, is the set of interior points of X.

A function f : X C R" — R™ is differentiable at xy € int X, if there exists
a matrix! A € R™*" s 1.

i W) = fro) —Ax —xo)|| _
X3x—rxg Hx —on

The matrix A is called the derivative of f at xy, and we write

f'(x0) = Df(x0) =A

The affine function f(x) +A(x — xo) is the first-order approximation of
S at xo,

S(x) =f(x0) +f (x0) (x = x0) + o(|lx — x0])

"More precisely, a linear transformation represented by matrix A



Review: Derivative
The derivative is given by the Jacobian matrix of f = (fi,...,/n)

Ifi(x0)
B)Cj ’

[f (x0)) =

Example. An affine function f(x) = Ax + b from R" to R™ has
derivative f'(x) = A at all x. In particular, when m = 1, f(x) =a’x + b
has derivative f'(x) = a’, which is a 1 x n matrix, i.e. a row vector.

n n
Example. f(x) = 3x7Qx = 1 >~ >~ Q;xix; has derivative
i=1j=1

7 = 25" (@ + @)

Proof.

al a 1 & | —

lljl



Review: Gradient

For a real-valued function f : R" — R, the gradient of f at x, denoted
by Vf(x), is the transpose of f'(x),

Vi) =[x, [Vix)= agg), i=1,...,n

Vf(x) is a column vector and satisfies
/(@) Ax = (Vf(x), Ax) = Vf(x)" Ax
The first-order approximation of f at xg is

f(x0) + Vf(xo)" (x — x0)

Example. For symmetric Q, the gradient of f(x) = Jx"Qx + b'x + cis

Vf(x) = 0x +b



Review: Chain Rule

Iff: X CR"— R"is differentiable atxg € X,g: Y CR" - R’ is
differentiable at y, = f(xo), then the composition of f and g defined by
h(x) = g(f(x)) is differentiable at x,, and

k' (xo) = g (yo)f' (x0) = &'(f (x0) )f" (x0)

Note. The order is important since g’(y,) € R?*" and f’(x() € R"™*" are
matrices. In general f’(xo)g’(y,) is undefined.

re Ly g AN RP
xo = yo=flxo) =  h(xo) =g

Av L froar & gyl (xo)Ax



Review: Chain Rule

Example. h(x) = f(Ax + b) has derivative k'(x) = f'(Axo + b)A. lf f is
real-valued,

Vh(xo) = AT[f'(Axo +b)]" = ATVf(Axy + b)

Example. Givenf : R” — R and x,v € R", define

f(t) =f(x+ 1)
Then

) =Ff(x+vy=Vfx+o)v=vIVFfx+mw)

Note. f is the restriction of f to the straight line through x with direction
v. We can often get useful information about f by looking at f, which is
usually easier to deal with.



First-order Necessary Condition
Consider unconstrained optimization problem, i.e. X = R".

Theorem. If x* is a local minimum of f and f is differentiable at x*, then
its gradient at x* vanishes, i.e.

. of (x* of (x* r
et = (L) 2V
Proof. Letd € R". Define g(a) =f(x* + od).
e Since x* is local minimum, g(«) > g(0)
e Fora >0,

« al0 (%

g(0) —80)

e By chain rule, ¢'(0) = Y1, ;%) = dTVf(x*) > 0
® Replacingdby -d — —d"Vf(x*) >0 = d"Vf(x*) =0
e Settingd = Vf(x*) — ||[Vf(x")|>? =0 = Vf(x*) =



First-order Necessary Condition (cont'd)
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First-order Necessary Condition (cont'd)
A point x* with Vf(x*) = 0 is called a stationary point of f.

‘fl (x) = ‘fz(x) = x|x| 'fz(x) = —x

x*=0 x*=0 x*=0
mininum inflection point maxinum

fx)=xi+x fx)=xi—x fx)=-xi—-x f(x)=-xnl+x

minimum saddle point maximum

Note. Will see stationarity is sufficient for convex optimization.

11/29



First-order Necessary Condition (cont'd)

For constrained optimization problem, i.e. X # R”,

e if x* is in the interior of X, i.e. B(x*,¢) C X for some ¢ > 0, then the
proof still works, so Vf(x*) =0

e otherwise, the proof shows d” Vf(x*) > 0 for any feasible direction
d at x*

> dis a feasible direction at x € X if x + ad € X for all sufficiently
small o > 0

o will revisit later

Example. X = [a, b]

* fllx1)=0
o« 4f(@)>0 = fla)>0
* dof (b)) >0 = f'(b) <0
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Review: Second Derivative
The second-order partial derivatives of f : X C R" - R atxp € int X
are 5% (x0)
f(xo .
=1,2,..
8_xla_x] ) l?.] ) )

The Hessian (matrix) of f at xq, denoted by V?f(xo), is given by

0% (x .
[V2f(x0)];j = 8){-(8;)-)’ ij=1,2...n
10X;

R

0? 0?
r) )
0x;0x; 0x;0x;
at xo, then

If

exist in a neighborhood of x, and are continuous

PPf(x0) _ 9*f(xo)
(9x,-8xj ijaxl-

so V2f(xq) is symmetric.

Will assume twice continuous differentiability when considering V>f.



Review: Second-order Taylor Expansion

The second-order Taylor expansion for f : R" — R is

flx+ +Z 8xl ZZ dd+ (Il4]1?)

ll]

or in vector notation,

flx+d) =f(x) + Vf(x)'d + %dTsz(x)d +o([d|]?)

Note. This can be used to find the expressions for Vf and V?f.
Example. For affine function f(x) = b"x + ¢

Vf(x)=b, Vfix)=
Proof. Compare the following with Taylor expansion.

fx+d)—fx)=pb"(x+d)+c]—p'x+c]=b"d



Review: Second-order Taylor Expansion

Example. For quadratic function f(x) = x”Ax with general A,
Vi) =(A+A"x, VY(x)=A+A"

If A is symmetric, then Vf(x) = 2Ax, V2f(x) = 24A.
Proof.

fx+d) = (x+d Ax +d) =x"Ax + d"Ax + x"Ad + d"Ad
=f(x)+ (Ax +ATx)"d +d"Ad

Since quadratic functions are twice continuously differentiable, V2f is
symmetric. Need to rewrite the above as

Fle+d) = F(x) + (Ax + ATx)Td + %dT(A + ATV

Since a quadratic function is exactly equal to its second-order Taylor
expansion, we must have Vf(x) = Ax + ATx and V?f(x) = A +AT.



Review: Chain Rule for Second Derivative

The composition with affine function g(x) = f(Ax + b) has Hessian
V2g(x) = ATV?f(Ax + b)A

Proof. Lety = Ax +b, i.e. yy = Y., Aux;. Recall Vg(x) = ATVf(y), i.e.

o) Oy =),
Z v Oy Z Dy

Pelx) _~ 0 0f0) ,
0x;0x; N P Ox; 3yk ZZ ayza A&Akj A Vf(.)’) i

Special case. For f(t) = f(x + w),
'(t) =vIV>(x + )y

Proof. Set A < v, x < 1, b + x in the general formula above.



Review: Definite Matrices

Matrix A € R™*" is positive semidefinite, denoted by A > 0O, if

1. it is symmetric, i.e. A = AT

2. xTAx >0, Vx e R”
It is positive definite, denoted by A > 0, if condition 2 is replaced by
2'. xTAx > 0, ¥x € R" and x # 0.

A is negative (semi)definite if —A is positive (semi)definite.

A is indefinite if it is neither positive semidefinite nor negative
semidefinite, i.e. there exists x1,x, € R" s.t.

xlTAxl >0> ngxz
Note. For quadratic forms x”Ax, can always assume A is symmetric,

since
A+AT .
2

xTAx = xTATx = xT (



Review: Test for Positive Definiteness

Vector x is eigenvector of matrix A with associated eigenvalue X if
Ax = M
Find eigenvalues by solving det(\M — A) = 0.

Theorem. Let A be a symmetric matrix.
° A > O iff all its eigenvalues A > 0.
° A = O iff all its eigenvalues A > 0.

Exmaple. A = <; g) is positive definite.

det(M—A)=A—1)(A=5)—4=0 = A=3+2V2>0

Exmaple. A = G i) is positive semidefinite.

det(M—A)=(A—1)(A—4)—4=0 = \ =0\ =5



Review: Test for Positive Definiteness

Given matrix A = (a;) € R"™", a k x k principal submatrix of A consists
of k rows and k columns with the same indices I = {i; < i, < -+ < i},

aj i cc Qg
A=

Aigiy  * 0 gy
A principal minor of order k of A is detA; for some I with |I| = k.

If1=1{1,2,...,k}, Diy(A) = det A, is called the leading principal minor
of order k.

Theorem (Sylvester). Let A be a symmetric matrix.
®* A-0iff D(A) >0fork=1,2,...,n.
e A>OiffdetA; >0foralll C {1,2,...,n}

Note. For positive semidefiniteness, we need to check all principal
minors, not just the leading principal minors.



Review: Test for Positive Definiteness

Exmaple. A = G i) is positive definite.

Dl(A) = det(l) =1>0, Dz(A) =detA=1>0

Example. A = <; i) is positive semidefinite.

Di(A) =det(1) =1, detA{z} = det(4) =4, D(A) =detA =0

Note. It is not enough to check Dy(A) > 0 for all k!
0 0. . e
Example. A = 0 _o)is negative semidefinite,

Di(A) = det(0) =0, Ds(A) = detA =0,

but
detA{z} = det(—2) =-2<0



Review: Test for Positive Definiteness
Exmaple. A = (; i) is positive definite.
¢ Use definition,
xTAx = x} 4+ 4xpx0 + 55 = (x; +2x0)* + x5 >0, Vr € R?

. . 2x; =0
with equality < {xl + 0)62 — x=0
Xy =

¢ Find eigenvalues by solving det(A\ —A) =0

det(A__zl A__25> =A—1DA=5)—4=0 = A=3+2V2>0

e Check leading principal minors

Di(A) =det(1) =1>0, DyA)=detA=1>0



Review: Test for Positive Definiteness

1
Exmaple. A = (2
1

[c<BRV I 8]

1

8 | is not positive definite.
1

Check leading principal minors

Di(A) = det(1) = 1 > 0, Da(A) = det G §>:1>o

5 8
8 1

2 8
11

25

D3(A) = detA = 1 x B

‘—Zx‘ '—le) ’:—36<0

Can also check eigenvalues, e.g. using numpy .linalg.eig,

A1 = 11.69585173, X, = 0.58307572, M3 = —5.27892745



Review: Eigendecomposition

A symmetric matrix A € R"*" has the following eigendecomposition
n
A=0AQ" =) wp]
i=1

where A = diag{\,..., \}, Q = (v1,...,v,) is an orthogonal matrix,
i.e. QTQ =1, and Av,~ = )\,‘V,‘.

3
corresponding eigenvectors v, = %(1, DT and v, = %(—1, DT. The
eigendecomposition is

=1\ /1 1 yan aNT /-1 /-IN\T

A — 2] (2 0 _Liay () (v (2
11 o 1 SR G )|
Vi V2 V2 \V2 V2 \V2

Example. A = } <_31 ) has eigenvalues A; = 1 and X, = 1, with

_ﬁ‘_
~—
~//~
SILS-

S-S



Review: Geometry of Quadratic Forms
Quadratic form f(x) = xTAx in R?

A =diag{l, 1} A = diag{0, 1} A =diag{l, -1}
positive definite positive semidefinite indefinite

A =diag{-1,-1} A =diag{-1,0}
negative definite negative semidefinite
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Review: Geometry of Quadratic Forms

Quadratic form f(x) = xTAx in R?

A =diag{l, 1}

X2 X2,
{ é% } X1 E %

A =diag{},1}

X1

V2

Vi

X1
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Second-order Necessary Condition

Theorem. If f : R” — R is twice continuously differentiable and x* is a
local minimum of £, then its Hessian matrix V2f(x*) is positive
semidefinite, i.e.

d"V?f(x*)d >0, VdcR"

Proof. Fix d € R". By the first-order necessary condition, Vf(x*) = 0.
By the second-order Taylor expansion, for any ¢ > 0,

2
F& +d) = f(x7) + Sd"VPF(x)d + o) > f(x")
2

So |
SA" () + o] = 0

Taking the limit ¢ — 0 yields d” Vf(x*)d’ > 0.

Note. Can apply the same argument to g(«) = f(x* + ad) with local
minimum o* = 0 and use chain rule to obtain g”(0) = d” V2f(x*)d > 0.



Second-order Sufficient Condition

Theorem. Suppose f is twice continuously differentiable. If
1. Vf(x*) =0
2. Vf(x*) is positive definite, i.e.

d'Vf(x*)d >0, Vd#0

then x* is a local minimum.

Proof. Use second-order Tayler expansion.

Note. In condition 2, positive definiteness cannot be replaced by
positive semidefiniteness.

filx) = x? fa(x) = fx) = —|xf



Second-order Sufficient Condition (cont'd)
V£(0) = 0 and V2£(0) = O for all examples below.

S(x)

f@) =l + xf

Sx)

X1
f@) =—[nl = nf
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