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Recap: Optimality Conditions
Consider unconstrained optimization problem, i.e. X = R".

Theorem (1st-order necessary condition). If f is continuously
differentiable and x* is a local minimum of £, then its gradient at x*
vanishes, i.e. Vf(x*) = 0.

Theorem (2nd-order necessary condition). If f is twice continuously
differentiable and x* is a local minimum of £, then its Hessian matrix
V2f(x*) is positive semidefinite, i.e.

d"V’f(x*)d >0, VdecR"

Theorem (2nd-order sufficient condition). Suppose f is twice
continuously differentiable. If

1. Vf(x*) =0
2. V*f(x*) is positive definite, i.e.

d'V?f(x*)d >0, Vvd+#0

then x* is a local minimum.
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Lines, Line Segments and Rays

Given x #y € R”", the line passing through x and y consists of points of
the form

z=y+60x—y)=6x+(1—-0)y, 6€R

The ray (half-line) with endpoint y and direction x — y consists of points

Ox+(1—0)y, 0>0

The line segment between x and y consists of points
Ox+(1—-0)y, 0<0<1

Note. Often use notation § = 1 — 6.



Convex Sets

A set C C R"is convex if the line segment between any two points
x,y € C lies entirely in C, i.e.

xcCyecC,Hc[01] = Ox+0yccC

-
b y
convex nonconvex nonconvex

For 0 € [0, 1], Ox + 0y is called a convex combination of x and y. In a
more symmetric form, a convex combination is

91x+02y where 6, >0,0,>0,00+6,=1



Examples of Convex Sets

Example. Trivial examples of convex sets include empty set, R”,
singletons (points), lines, line segments and rays.

Example. A hyperplane P = {x € R" : wlx = b} is convex, where
weR", beR.

Proof. For x;,x, € Pand 6 € [0, 1],

wl (0x) 4 0x3) = 0w x| + Ow'x,
=0b+6b=0b



Example: Halfspaces

A halfspace H = {x € R" : wl'x < b} is convex.

Note. H = {x : f(x) < b} is the so-called sublevel set of f(x) = w’x.
Note Vf(x) = w.

Proof. Forx;,x, € Pand d € [0, 1],

wT(le + 0xy) = Ow'x, + Ow’x,
<0b+0b=b



Intersection of Convex Sets

Proposition. The intersection of an arbitrary collection of convex sets
is convex.

Proof. Let {C; : i € I'} be an arbitrary collection of convex sets with
index set 1, and C = ,; C; their intersection.

° letx,yc C,0€][0,1]

e x,ycCiforanyiel

e By convexity of C;, 6x + 0y € C;
e fx+fOyccC



Example: Affine Spaces

An affine space S = {x ¢ R" : Ax = b}, A € R™*", b € R" is convex.

Note. An affine space is a shifted linear space, S = xy + Sy, where
Axp =b,and Sy = {x € R" : Ax = 0} is a linear space.

Can verify convexity by definition; here use the intersection property.
o letA” = (a,ay,. .. ,a,),

b= (by,...,by)"
e S is intersection of m hyperplanes

X3

> X)
where
X1

Pi={xcR":alx=b;}

Note. An affine space S actually contains the line through any x,y € S.



Example: Polyhedra

A polyhedron P = {x ¢ R" : Ax < b}, A € R™" b € R" is convex,
where vector inequality < is interpreted componentwise

° |etAT:(a1,a2,...,am>,b:(b],...,bm)T a, a;
e P is intersection of m halfspaces
m
P = ﬂHl as
i=1 a)
where a

Hi={xcR":alx < b;}
Note. An affine space S = {x : Ax = b} is a polyhedron

Ax=b < Ax<band —Ax<b — (fA>x§ (lb))

More generally, {x : Ax < b,Cx =d} is a polyhedron.



Example: Polyhedra (cont’d)

The 1-norm unit ball is a polyhedron is convex,

Bi = fx:|xlly < 1}

A
In 2d, /\
352):{x:x1+x2§1, >
X]-)CQSI, \\/
— X1 +x2 S 17
—x;—x < 1} Z
In 3d,
BY = {x: dx a3 < 1} 4&
AN

v y

X



Example: Norm Balls

A closed ball B(xg,r) = {x € R" : ||lx — xo|| < r} is convex.

Proof. For x;,x, € B(xo,r) and 0 € [0, 1],
[1(6x1 + 6x2) — xol| = [10(x1 —x0) + O(x2 — x0)|
< |01 —x0)| + [0 (x2 — x0)|
= 0|jx1 — xol| + 0lx2 —x0 < r
Note. True for any norm || - ||.

Note. Open balls are also convex.



Example: Ellipsoids
An ellipsoid

x2 x2
5:{xeR2:1+2§1}
ALA

is convex.

Proof. Let A = diag{\;, A\»}. Note
E={x XA 2x <1} ={x:[|[A x| <1} = {Au: ||ul, < 1}.
Forx; = Au; € £,and 0 € [0, 1],
Ox1 + Oxy = A(Ouy + Ous).

Recall the unit ball is convex, so ||0u; + Ou,||> < 1 and Ox; + Ox, € £.



Example: Ellipsoids (cont'd)
An ellipsoid € = {xo + Au : |jul]» < 1}, A € R™", A > O is convex.

\

A has eigendecomposition A = QAQT, where A is diagonal and Q is
orthogonal. With & = Q" u,

E={xo+ QAu: |ul, <1},
which is a rotated and shifted version of &' = {Au : ||a|j, < 1}.
Note. The lengths of semi-axes are eigenvalues of A

Note. Also often written as £ = {x : (x —x¢)"P~'(x —xo) < 1}, P = A2



Affine Transformations and Convex Sets

Proposition. The image of a convex set under an affine transformation
is convex.

Proof. Let C C R”" be a convex set and f(x) = Ax + b an affine
transformation from R” to R™. Given y,,y, € f(C) = {f(x) : x € C} and
6 € [0, 1], need to show Oy, + 0y, € f(C).

1. By definition, y; = f(x;) forsome x; € C, i =1, 2.

2. Since f is affine,

Oy, + Oy, = 0f (x1) + 0f (x2)
= 0(Ax| +b) + 0(Ax2 + b)
= A(Ox, +9_2) +b

3. Since C is convex, z £ 6x; + 0x, € C, so Oy, + Oy, = f(z) € f(C).

Proposition. The inverse image of a convex set under an affine
transformation is convex.



Example: Positive Semidefinite Matrices
The set of positive semidefinite matrices

St ={AeR":A 0}
iS convex.

Proof. For arbitrary A,B € S and 6 € [0, 1], x € R", need to show
A + 6B € S".. Check the definition of positive semidefiniteness.

1. A + OB is symmetric,
(A +60B)" = 0AT + OB" = 0A + 0B
2. xT(0A + 6B)x > 0 for any x,

x"(AA + 6B)x = 9(x"Ax) + O(x"Bx) > 0



Example: Positive Semidefinite Matrices (cont’d)

For n = 2, can identify S with a subset of R3. By Sylvester's Theorem,

A:()ZC i)eSi = )CZO,yZO,xyZz2

Boundary 9S85 = {(x,y,z) : x > 0,y > 0,z* = xy}

16/27



Convex Combination

A convex combination of x1,x»,...,x,, € R" is a point of the form
Z Oix; = O1x1 + 6oxo + -+ - + OpXip
i=1

where §; > O foralliand )", 6, = 1.

Theorem. If Cis convex, and x,x;,...,x, € C, then any convex
combination >, 0;x; € C.

In general, y, = x;, and x3
Ok—1 Ok
= Tyt =, k>2 3
Yk o Yi—1 oL k> = y; = (1 NGy, + O3x3 = > Oix;
i=1
where

k [ < »

X1 — 01X +60x) X2
O = E (95 o) Y2 0,+6,



Convex Hull

The convex hull of a set S ¢ R”, denoted conv S, is the smallest convex
set containing S.

Theorem. conv S is the set of all convex combinations of points in S, i.e.
m m
conv S = {Zeix,- meN;x; €85,0,>0,i= l,...,m;ZQi = 1}
i=1 i=1

Note. Actually we need at most n + 1 points here, i.e. we can impose
the condition m < n + 1 in the above representation.

X1

X2 U
X5

X3

X4



Affinely Independent Points

m+ 1 points xg,x1,...,x,; € R" are affinely independent if
x| — Xo, ..., X, — Xxo are linearly independent.

X2 X2
7 e
X0 X1 X0 X1
affinely independent points in R? affinely dependent points in R?
Proposition. xg,x1,...,x, € R" are affinely independent iff

m m
Zcixizﬂand Zc,-zO = ¢;=0fori=0,1,....m
i=0 i=0

Note. In R”, the maximum number linearly independent vectors is n,
so the maximum number of affinely independent points is n + 1.



Simplexes

An m-dimensional simplex, also called an m-simplex, is the convex hull
of m + 1 affinely independent points. More specifically, the simplex
determined by affinely independent points xg,x1,...,x,, is

CODV{)C(), e ,xm} = {Qoxo +0x1+ -+ 0ux,:0 >0, 176 = 1}

Note. R” only has m-simplexes with m < n

e (-simplexes are points
¢ 1-simplexes are line segments
® 2-simplexes are triangles
e 3-simplexes are tetrahedra
X3
x2

P 4

[ ] X0 X2

X0 X0 X0 X1

X1



Simplexes (cont'd)

Example. The probability n-simplex is the n-simplex in R**!
determined by the standard basis vectors ey, ..., e, 1,

A, ={xeR": x>0, 1"x =1}

€

0 e

Example. The unit n-simplex in R” is the n-simplex determined by
0 € R" and the standard basis vectors ey, ... ,e, € R",

Al ={xeR": x>0, 1"x < 1}

e es3

€



Simplexes (cont'd)

The m-simplex in R" determined by affinely independent points
X0,X1,-..,%Xy 1S the image of A,, under a linear transformation

0= zm:Giei '—>x:zm:9,-x,- = X0
i=0 i=0




Simplexes (cont'd)
Note

x—ZH,x,—xo+ZG Xi —Xo)

and @' = (0y,...,0,)" € AL

The simplex conv{xy,...,x,} is also the image of A/ under the affine

transformation
0 — x=xy+ B0

where B = (x; — xg,...,X, — Xo) € R,




Simplexes (cont'd)
Example. Letx; = (1,0,0)", x, = (0,1,0)" and x3 = (1,1,1)7.

Points in the 2-simplex determined by x;, x,, x5 are of the form

3
x= Zeixi = (61 + 03,00 + 03,05)7
i—1

where 6 € A,,i.e. 6; > 0,0, + 6, + 03 = 1.

Alternatively,
X =Xx] + 92()62 —xl) + 93()63 —xl) = (1 — 05,0, + 93,93)T =X +BO’,

where
-1 0
B=(x;—xi,x3—x1)=[ 1 1],0 =(6,065)" €A}
0 1

Note B has full column rank by the affine independence of the x;’s.



Simplex as Polyhedron

A simplex is a polyhedron, i.e. its points x can be
specified by linear equalities and inequalities in x.

Example. Recall for the 2-simplex determined by
x; = (1,0,0)7, x, = (0,1,0)" and x3 = (1,1, 1)7,

x=X60=(0)+ 65,0, + 93,03)T — =X 'x= (x1 — x3,2%2 —X3,X3)T

Since 0 € A,, x satisfies

xl—X320
Xy —x3 >0
X3ZO

X1+x—x3=1

Note. This derivation does not work in general, as X may not even be
a square matrix, let alone an invertible matrix.



Simplex as Polyhedron (cont'd)

Example (cont'd). Recall the other representation,

-1 0
x=x+B0 B=(xs—x;,x3—x1)=| 1 1],0 €A
0 1
Note B has full column rank by affine independence of the x;’s, so it
can be augmented to an invertible matrix B,

i 1 00i-10 x
(I,By=(I,B,x)= |0 1 0! 1 1 %
00 1:0 1 =«

By elementary row operations,

-1 0 0:!1 0!x
Ay I . 1 |
(I,B,*) — (Az o *> = {11001*]



Simplex as Polyhedron (cont'd)
By those elementary row operations,

_ / Al _ Al 1 /
Ix =Ix + B — <A>x_<A2 x + 0 0

OrAix =A1x; + 9,, Arx = Arx

Since 8’ € A, the points x = (x1,x2,x3) in the 2-simplex satisfy
Aix >Ax 174 (x — x1) < 1,Ax = Arx,
Using A1, A, from the previous slide,
x <1
X1 +x>1

x <1

X1+x—x3=1

Note. This method works for any simplex.



	Convex Sets

