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Recap: Optimality Conditions
Consider unconstrained optimization problem, i.e. X = Rn.

Theorem (1st-order necessary condition). If f is continuously
differentiable and x∗ is a local minimum of f , then its gradient at x∗
vanishes, i.e. ∇f (x∗) = 0.

Theorem (2nd-order necessary condition). If f is twice continuously
differentiable and x∗ is a local minimum of f , then its Hessian matrix
∇2f (x∗) is positive semidefinite, i.e.

dT∇2f (x∗)d ≥ 0, ∀d ∈ Rn.

Theorem (2nd-order sufficient condition). Suppose f is twice
continuously differentiable. If

1. ∇f (x∗) = 0
2. ∇2f (x∗) is positive definite, i.e.

dT∇2f (x∗)d > 0, ∀d 6= 0

then x∗ is a local minimum.
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Lines, Line Segments and Rays
Given x 6= y ∈ Rn, the line passing through x and y consists of points of
the form

z = y + θ(x− y) = θx + (1− θ)y, θ ∈ R

x

y

θ = −0.3
θ = 0

θ = 0.4
θ = 0.7

θ = 1
θ = 1.3

The ray (half-line) with endpoint y and direction x− y consists of points

θx + (1− θ)y, θ ≥ 0

The line segment between x and y consists of points

θx + (1− θ)y, 0 ≤ θ ≤ 1

Note. Often use notation θ̄ = 1− θ.
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Convex Sets
A set C ⊂ Rn is convex if the line segment between any two points
x, y ∈ C lies entirely in C, i.e.

x ∈ C, y ∈ C, θ ∈ [0, 1] =⇒ θx + θ̄y ∈ C

x

y

convex

x y

nonconvex

x y

nonconvex

For θ ∈ [0, 1], θx + θ̄y is called a convex combination of x and y. In a
more symmetric form, a convex combination is

θ1x + θ2y where θ1 ≥ 0, θ2 ≥ 0, θ1 + θ2 = 1
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Examples of Convex Sets

Example. Trivial examples of convex sets include empty set, Rn,
singletons (points), lines, line segments and rays.

Example. A hyperplane P = {x ∈ Rn : wTx = b} is convex, where
w ∈ Rn, b ∈ R.

wTx = b
x0

w

x

Proof. For x1, x2 ∈ P and θ ∈ [0, 1],

wT(θx1 + θ̄x2) = θwTx1 + θ̄wTx2

= θb + θ̄b = b
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Example: Halfspaces

A halfspace H = {x ∈ Rn : wTx ≤ b} is convex.

w

wTx ≤ b

wTx ≥ b

Note. H = {x : f (x) ≤ b} is the so-called sublevel set of f (x) = wTx.
Note ∇f (x) = w.

Proof. For x1, x2 ∈ P and θ ∈ [0, 1],

wT(θx1 + θ̄x2) = θwTx1 + θ̄wTx2

≤ θb + θ̄b = b
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Intersection of Convex Sets
Proposition. The intersection of an arbitrary collection of convex sets
is convex.

x

y

Proof. Let {Ci : i ∈ I} be an arbitrary collection of convex sets with
index set I, and C =

⋂
i∈I Ci their intersection.

• Let x, y ∈ C, θ ∈ [0, 1]

• x, y ∈ Ci for any i ∈ I
• By convexity of Ci, θx + θ̄y ∈ Ci

• θx + θ̄y ∈ C
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Example: Affine Spaces

An affine space S = {x ∈ Rn : Ax = b}, A ∈ Rm×n, b ∈ Rm is convex.

Note. An affine space is a shifted linear space, S = x0 + S0, where
Ax0 = b, and S0 = {x ∈ Rn : Ax = 0} is a linear space.

Can verify convexity by definition; here use the intersection property.

• let AT = (a1, a2, . . . , am),
b = (b1, . . . , bm)T

• S is intersection of m hyperplanes

S =

m⋂
i=1

Pi

where

Pi = {x ∈ Rn : aT
i x = bi}

x3

x1

x2

Note. An affine space S actually contains the line through any x, y ∈ S.
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Example: Polyhedra
A polyhedron P = {x ∈ Rn : Ax ≤ b}, A ∈ Rm×n, b ∈ Rm is convex,
where vector inequality ≤ is interpreted componentwise

• let AT = (a1, a2, . . . , am), b = (b1, . . . , bm)T

• P is intersection of m halfspaces

P =

m⋂
i=1

Hi

where
Hi = {x ∈ Rn : aT

i x ≤ bi}

P

a1

a2

a3
a4

a5

Note. An affine space S = {x : Ax = b} is a polyhedron

Ax = b ⇐⇒ Ax ≤ b and − Ax ≤ b ⇐⇒
(

A
−A

)
x ≤

(
b
b

)
More generally, {x : Ax ≤ b,Cx = d} is a polyhedron.
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Example: Polyhedra (cont’d)
The 1-norm unit ball is a polyhedron is convex,

B1 = {x : ‖x‖1 ≤ 1}

In 2d,

B(2)
1 = {x : x1 + x2 ≤ 1,

x1 − x2 ≤ 1,

− x1 + x2 ≤ 1,

− x1 − x2 ≤ 1}

In 3d,

B(3)
1 = {x : ±x1 ± x2 ± x3 ≤ 1}

x

y

z
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Example: Norm Balls
A closed ball B̄(x0, r) = {x ∈ Rn : ‖x− x0‖ ≤ r} is convex.

x0
r

Proof. For x1, x2 ∈ B̄(x0, r) and θ ∈ [0, 1],

‖(θx1 + θ̄x2)− x0‖ = ‖θ(x1 − x0) + θ̄(x2 − x0)‖
≤ ‖θ(x1 − x0)‖+ ‖θ̄(x2 − x0)‖
= θ‖x1 − x0‖+ θ̄‖x2 − x0‖ ≤ r

Note. True for any norm ‖ · ‖.

Note. Open balls are also convex.
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Example: Ellipsoids
An ellipsoid

E =

{
x ∈ R2 :

x2
1

λ2
1

+
x2

2

λ2
2
≤ 1
}

is convex.

O λ1

λ2

Proof. Let Λ = diag{λ1, λ2}. Note

E = {x : xTΛ−2x ≤ 1} = {x : ‖Λ−1x‖2 ≤ 1} = {Λu : ‖u‖2 ≤ 1}.

For xi = Λui ∈ E , and θ ∈ [0, 1],

θx1 + θ̄x2 = Λ(θu1 + θ̄u2).

Recall the unit ball is convex, so ‖θu1 + θ̄u2‖2 ≤ 1 and θx1 + θ̄x2 ∈ E .
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Example: Ellipsoids (cont’d)
An ellipsoid E = {x0 + Au : ‖u‖2 ≤ 1}, A ∈ Rn×n, A � O is convex.

x0
λ1

λ2

A has eigendecomposition A = QΛQT , where Λ is diagonal and Q is
orthogonal. With ũ = QTu,

E = {x0 + QΛũ : ‖ũ‖2 ≤ 1},

which is a rotated and shifted version of E ′ = {Λũ : ‖ũ‖2 ≤ 1}.

Note. The lengths of semi-axes are eigenvalues of A

Note. Also often written as E = {x : (x− x0)TP−1(x− x0) ≤ 1}, P = A2.
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Affine Transformations and Convex Sets
Proposition. The image of a convex set under an affine transformation
is convex.

Proof. Let C ⊂ Rn be a convex set and f (x) = Ax + b an affine
transformation from Rn to Rm. Given y1, y2 ∈ f (C) = {f (x) : x ∈ C} and
θ ∈ [0, 1], need to show θy1 + θ̄y2 ∈ f (C).

1. By definition, yi = f (xi) for some xi ∈ C, i = 1, 2.
2. Since f is affine,

θy1 + θ̄y2 = θf (x1) + θ̄f (x2)

= θ(Ax1 + b) + θ̄(Ax2 + b)

= A(θx1 + θ̄2) + b

3. Since C is convex, z , θx1 + θ̄x2 ∈ C, so θy1 + θ̄y2 = f (z) ∈ f (C).

Proposition. The inverse image of a convex set under an affine
transformation is convex.
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Example: Positive Semidefinite Matrices
The set of positive semidefinite matrices

Sn
+ = {A ∈ Rn×n : A � O}

is convex.

Proof. For arbitrary A,B ∈ Sn
+ and θ ∈ [0, 1], x ∈ Rn, need to show

θA + θ̄B ∈ Sn
+. Check the definition of positive semidefiniteness.

1. θA + θ̄B is symmetric,

(θA + θ̄B)T = θAT + θ̄BT = θA + θ̄B

2. xT(θA + θ̄B)x ≥ 0 for any x,

xT(θA + θ̄B)x = θ(xTAx) + θ̄(xTBx) ≥ 0
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Example: Positive Semidefinite Matrices (cont’d)
For n = 2, can identify S2

+ with a subset of R3. By Sylvester’s Theorem,

A =

(
x z
z y

)
∈ S2

+ ⇐⇒ x ≥ 0, y ≥ 0, xy ≥ z2

Boundary ∂Sn
2 = {(x, y, z) : x ≥ 0, y ≥ 0, z2 = xy}

0
0.5

1 0

0.5

1
−1

0

1

x
y

z
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Convex Combination
A convex combination of x1, x2, . . . , xm ∈ Rn is a point of the form

m∑
i=1

θixi = θ1x1 + θ2x2 + · · ·+ θmxm

where θi ≥ 0 for all i and
∑m

i=1 θi = 1.

Theorem. If C is convex, and x1, x2, . . . , xm ∈ C, then any convex
combination

∑m
i=1 θixi ∈ C.

x1

(y1)
x2

x3

y2 = θ1x1+θ2x2
θ1+θ2

y3 = (1 − θ3)y2 + θ3x3 =
3∑

i=1
θixi

In general, y1 = x1, and

yk =
σk−1

σk
yk−1 +

θk

σk
xk, k ≥ 2

where

σk =

k∑
i=1

θi
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Convex Hull
The convex hull of a set S ⊂ Rn, denoted conv S, is the smallest convex
set containing S.

Theorem. conv S is the set of all convex combinations of points in S, i.e.

conv S =

{
m∑

i=1

θixi : m ∈ N; xi ∈ S, θi ≥ 0, i = 1, . . . ,m;

m∑
i=1

θi = 1

}

Note. Actually we need at most n + 1 points here, i.e. we can impose
the condition m ≤ n + 1 in the above representation.

x1
x2

x3
x4

x5x6x7

S
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Affinely Independent Points
m + 1 points x0, x1, . . . , xm ∈ Rn are affinely independent if
x1 − x0, . . . , xm − x0 are linearly independent.

x0 x1

x2

affinely independent points in R2

x0 x1

x2x3

affinely dependent points in R2

Proposition. x0, x1, . . . , xm ∈ Rn are affinely independent iff

m∑
i=0

cixi = 0 and
m∑

i=0

ci = 0 =⇒ ci = 0 for i = 0, 1, . . . ,m

Note. In Rn, the maximum number linearly independent vectors is n,
so the maximum number of affinely independent points is n + 1.
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Simplexes
An m-dimensional simplex, also called an m-simplex, is the convex hull
of m + 1 affinely independent points. More specifically, the simplex
determined by affinely independent points x0, x1, . . . , xm is

conv{x0, . . . , xm} = {θ0x0 + θ1x1 + · · ·+ θmxm : θ ≥ 0, 1Tθ = 1}

Note. Rn only has m-simplexes with m ≤ n

• 0-simplexes are points
• 1-simplexes are line segments
• 2-simplexes are triangles
• 3-simplexes are tetrahedra

x0 x0

x1

x0 x1

x2

x0

x1

x2

x3
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Simplexes (cont’d)
Example. The probability n-simplex is the n-simplex in Rn+1

determined by the standard basis vectors e1, . . . , en+1,

∆n = {x ∈ Rn+1 : x ≥ 0, 1Tx = 1}

0 e1

e2

0
e1

e2

e3

Example. The unit n-simplex in Rn is the n-simplex determined by
0 ∈ Rn and the standard basis vectors e1, . . . , en ∈ Rn,

∆′n = {x ∈ Rn : x ≥ 0, 1Tx ≤ 1}

0 e1 0 e1

e2

0
e1

e2

e3



22/27

Simplexes (cont’d)
The m-simplex in Rn determined by affinely independent points
x0, x1, . . . , xm is the image of ∆m under a linear transformation

θ =

m∑
i=0

θiei 7→ x =

m∑
i=0

θixi = Xθ

where

X = (x0, x1, . . . , xm) ∈ Rn×(m+1), θ = (θ0, θ1, . . . , θm)T ∈ ∆m

0
e1

e2

e0
x0

x1
x2
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Simplexes (cont’d)
Note

x =

m∑
i=0

θixi = x0 +

m∑
i=1

θi(xi − x0)

and θ′ = (θ1, . . . , θm)T ∈ ∆′m.

The simplex conv{x0, . . . , xm} is also the image of ∆′m under the affine
transformation

θ′ 7→ x = x0 + Bθ′

where B = (x1 − x0, . . . , xm − x0) ∈ Rn×m.

0
e1

e2

e0
x0

x1
x2

0 e1

e2
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Simplexes (cont’d)

0
x1

x2

x3

x4 = (1, 1, 0)T

Example. Let x1 = (1, 0, 0)T , x2 = (0, 1, 0)T and x3 = (1, 1, 1)T .
Points in the 2-simplex determined by x1, x2, x3 are of the form

x =

3∑
i=1

θixi = (θ1 + θ3, θ2 + θ3, θ3)T

where θ ∈ ∆2, i.e. θi ≥ 0, θ1 + θ2 + θ3 = 1.

Alternatively,

x = x1 + θ2(x2 − x1) + θ3(x3 − x1) = (1− θ2, θ2 + θ3, θ3)T = x1 + Bθ′,

where

B = (x2 − x1, x3 − x1) =

−1 0
1 1
0 1

 , θ′ = (θ2, θ3)T ∈ ∆′2

Note B has full column rank by the affine independence of the xi’s.
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Simplex as Polyhedron

0
x1

x2

x3

x4

A simplex is a polyhedron, i.e. its points x can be
specified by linear equalities and inequalities in x.

Example. Recall for the 2-simplex determined by
x1 = (1, 0, 0)T , x2 = (0, 1, 0)T and x3 = (1, 1, 1)T ,

x = Xθ = (θ1 + θ3, θ2 + θ3, θ3)T =⇒ θ = X−1x = (x1 − x3, x2 − x3, x3)T

Since θ ∈ ∆2, x satisfies 
x1 − x3 ≥ 0
x2 − x3 ≥ 0
x3 ≥ 0
x1 + x2 − x3 = 1

Note. This derivation does not work in general, as X may not even be
a square matrix, let alone an invertible matrix.
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Simplex as Polyhedron (cont’d)
Example (cont’d). Recall the other representation,

x = x1 + Bθ′, B = (x2 − x1, x3 − x1) =

−1 0
1 1
0 1

 , θ′ ∈ ∆′2

Note B has full column rank by affine independence of the xi’s, so it
can be augmented to an invertible matrix B̃,

(I, B̃) = (I,B, ∗) =

 1 0 0 −1 0 ∗
0 1 0 1 1 ∗
0 0 1 0 1 ∗


By elementary row operations,

(I,B, ∗)→
(

A1 I ∗
A2 O ∗

)
=

 −1 0 0 1 0 ∗
1 1 0 0 1 ∗
−1 −1 1 0 0 ∗
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Simplex as Polyhedron (cont’d)

0
x1

x2

x3

x4

By those elementary row operations,

Ix = Ix1 + Bθ′ =⇒
(

A1
A2

)
x =

(
A1
A2

)
x1 +

(
I
O

)
θ′

or A1x = A1x1 + θ′, A2x = A2x1

Since θ′ ∈ ∆′2, the points x = (x1, x2, x3)T in the 2-simplex satisfy

A1x ≥ A1x1, 1TA1(x− x1) ≤ 1,A2x = A2x1

Using A1, A2 from the previous slide,
x1 ≤ 1
x1 + x2 ≥ 1
x2 ≤ 1
x1 + x2 − x3 = 1

Note. This method works for any simplex.
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