CS257 Linear and Convex Optimization Lecture 4

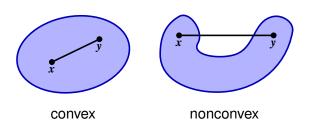
Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

September 28, 2020

Recap: Convex Sets

A set $C \subset \mathbb{R}^n$ is convex if the line segment between any two points $x, y \in C$ lies entirely in *C*, i.e.



 $x \in C, y \in C, \theta \in [0, 1] \implies \theta x + \overline{\theta} y \in C$

Properties.

- The intersection of convex sets is convex.
- The image of a convex set under an affine transformation is convex.
- The inverse image of a convex set under an affine transformation is convex.

Recap: Convex Sets

Convex combination. $\sum_{i=1}^{m} \theta_i x_i$, where $\theta \ge 0, \mathbf{1}^T \theta = 1$

Convex hull of S

- smallest convex set containing S
- set of all convex combinations of elements of S

Examples of convex sets.

- \emptyset , \mathbb{R}^n , singleton (point), line, line segment, ray
- Hyperplane $P = \{ x \in \mathbb{R}^n : w^T x = b \}, w \in \mathbb{R}^n, b \in \mathbb{R}$

• Halfspace
$$H = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{w}^T \boldsymbol{x} \leq b \}$$

- Affine space $S = \{ \boldsymbol{x} \in \mathbb{R}^n : A\boldsymbol{x} = \boldsymbol{b} \}, \boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^m$
- Polyhedron $P = \{ x \in \mathbb{R}^n : Ax \leq b \}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
- Norm ball $\bar{B}(x_0, r) = \{x : ||x x_0|| \le r\}$
- Ellipsoid $\mathcal{E} = \{ \mathbf{x}_0 + A\mathbf{u} : \|\mathbf{u}\|_2 \le 1 \}, \mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{A} \succ \mathbf{0}.$
- Positive semidefinite matrices $\mathcal{S}^n_+ = \{ A \in \mathbb{R}^{n \times n} : A \succeq O \}$
- Simplex $\Delta = \operatorname{conv} \{ \mathbf{x}_0, \dots, \mathbf{x}_m \} = \{ \sum_{i=0}^m \theta_i \mathbf{x}_i : \mathbf{\theta} \ge \mathbf{0}, \mathbf{1}^T \mathbf{\theta} = 1 \}$

Contents

1. Convex Functions

Convex Functions

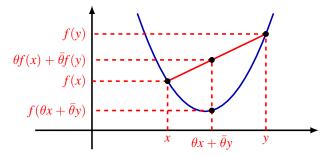
A function $f: S \subset \mathbb{R}^n \to \mathbb{R}$ is convex if

- 1. its domain dom f = S is a convex set
- **2**. for any $x, y \in S$ and $\theta \in [0, 1]$,

$$f(\theta \mathbf{x} + \bar{\theta} \mathbf{y}) \le \theta f(\mathbf{x}) + \bar{\theta} f(\mathbf{y})$$

Note. Condition 1 guarantees $\theta x + \overline{\theta} y$ is in the domain.

Geometrically, the line segment between (x, f(x)) and (y, f(y)) lies above the graph of f.



Convex Functions (cont'd)

A function $f: S \subset \mathbb{R}^n \to \mathbb{R}$ is strictly convex if

- 1. its domain dom f = S is a convex set
- 2. for any $x \neq y \in S$ and $\theta \in (0, 1)$,

$$f(\theta \mathbf{x} + \bar{\theta} \mathbf{y}) < \theta f(\mathbf{x}) + \bar{\theta} f(\mathbf{y})$$

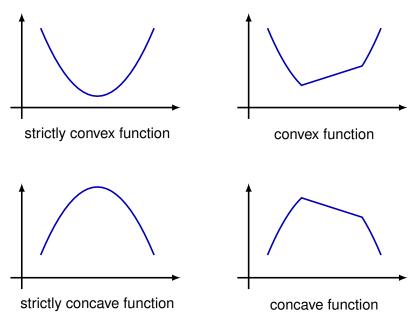
Proposition. Let *f* be convex. If $f(\theta x + \overline{\theta} y) = \theta f(x) + \overline{\theta} f(y)$ for some $\theta = \theta_0 \in (0, 1)$, then it holds for any $\theta \in [0, 1]$, i.e. $g(\theta) = f(\theta x + \overline{\theta} y)$ is an affine function for $\theta \in [0, 1]$.

Strict convexity says the restriction of f to any line segment in S is not an affine function.

A function f is (strictly) concave if -f is (strictly) convex.

An affine function $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$ is both convex and concave, but not strictly convex or strictly concave.

Convex Functions (cont'd)



Examples

Example. Univariate functions

- $f(x) = e^{ax}$ ($a \in \mathbb{R}$) is convex, and strictly convex for $a \neq 0$
- $f(x) = \log x$ is strictly concave over $(0, \infty)$

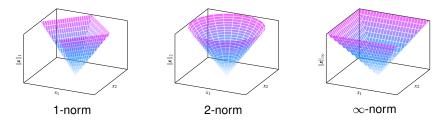
•
$$f(x) = x^a$$
 is convex over $(0, \infty)$ for $a \ge 1$ or $a \le 0$

• $f(x) = x^a$ is concave over $(0, \infty)$ for $0 \le a \le 1$

Example. Any norm $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}$ is convex,

$$\|\theta \mathbf{x} + \bar{\theta} \mathbf{y}\| \le \|\theta \mathbf{x}\| + \|\bar{\theta} \mathbf{y}\| = \theta \|\mathbf{x}\| + \bar{\theta} \|\mathbf{y}\|$$

But not strictly convex (why?)



Restriction to Lines

Proposition. *f* is convex iff for any $x \in \text{dom} f$ and any direction *d*, the function g(t) = f(x + td) is convex on dom $g = \{t : x + td \in \text{dom} f\}$.

Proof. " \Rightarrow ". Assume *f* is convex. Fix an arbitrary $x \in \text{dom} f$ and direction *d*. Need to show g(t) = f(x + td) is convex.

Let $t_1, t_2 \in \text{dom } g, \theta \in [0, 1]$. Let $\mathbf{x}_i = \mathbf{x} + t_i \mathbf{d}, \overline{t} = \theta t_1 + \overline{\theta} t_2$ and $\overline{\mathbf{x}} = \mathbf{x} + \overline{t} \mathbf{d}$. 1. Note $\overline{\mathbf{x}} = \mathbf{x} + (\theta t_1 + \overline{\theta} t_2) \mathbf{d} = \theta \mathbf{x}_1 + \overline{\theta} \mathbf{x}_2$

2.
$$t_i \in \operatorname{dom} g \implies \mathbf{x}_i \in \operatorname{dom} f$$

- 3. dom f is convex $\implies \bar{x} \in \text{dom} f \implies \bar{t} \in \text{dom} g \implies \text{dom} g$ is convex
- 4. Since *f* is convex,

$$g(\bar{t}) = f(\bar{\boldsymbol{x}}) \le \theta f(\boldsymbol{x}_1) + \bar{\theta} f(\boldsymbol{x}_2) = \theta g(t_1) + \bar{\theta} g(t_2)$$

so g is convex.

Restriction to Lines (cont'd)

Proof (cont'd). " \Leftarrow ". Assume g(t) = f(x + td) is convex for any $x \in \text{dom} f$ and any direction *d*. Need to show *f* is convex.

Fix
$$x, y \in \text{dom} f, \theta \in [0, 1]$$
. Let $d = x - y$, and $g(t) = f(y + td)$.
1. $x, y \in \text{dom} f \implies 1, 0 \in \text{dom} g$
2. $\text{dom} g \text{ is convex} \implies \theta \in \text{dom} g \implies x + \theta d \in \text{dom} f$
3. Since $\theta x + \overline{\theta} y = y + \theta d, \ \theta x + \overline{\theta} y \in \text{dom} f \implies \text{dom} f$ is convex.
4. Since g is convex and $\theta = \theta \times 1 + \overline{\theta} \times 0$,

$$f(\theta \mathbf{x} + \bar{\theta} \mathbf{y}) = g(\theta) \le \theta g(1) + \bar{\theta} g(0) = \theta f(\mathbf{x}) + \bar{\theta} f(\mathbf{y})$$

so f is convex.

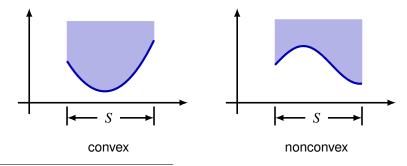
Epigraph

Recall the graph of $f: S \subset \mathbb{R}^n \to \mathbb{R}$ is the set

$$\{(\boldsymbol{x}, f(\boldsymbol{x})) \in \mathbb{R}^{n+1} : \boldsymbol{x} \in S\}$$

The epigraph¹ of f is

$$epif = \{(\boldsymbol{x}, y) \in \mathbb{R}^{n+1} : \boldsymbol{x} \in S, y \ge f(\boldsymbol{x})\}$$



¹The prefix epi- means "above", "over".

Epigraph (cont'd)

Theorem. $f : S \subset \mathbb{R}^n \to \mathbb{R}$ is a convex function iff epif is a convex set.

Proof. " \Rightarrow ". Assume *f* is convex. Let $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2) \in \text{epi}f, \theta \in [0, 1]$. Need to show $(\bar{\mathbf{x}}, \bar{\mathbf{y}}) \triangleq (\theta \mathbf{x}_1 + \bar{\theta} \mathbf{x}_2, \theta y_1 + \bar{\theta} y_2) \in \text{epi}f$.



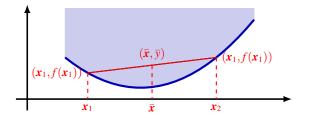
1. $f \text{ convex} \implies \bar{x} \in S \text{ and } f(\bar{x}) \leq \theta f(x_1) + \bar{\theta} f(x_2)$

2. $(\mathbf{x}_i, y_i) \in \operatorname{epi} f \implies f(\mathbf{x}_i) \le y_i \implies \theta f(\mathbf{x}_1) + \overline{\theta} f(\mathbf{x}_2) \le \theta y_1 + \overline{\theta} y_2 = \overline{y}$

3. By 1 and 2, $\bar{x} \in S$ and $f(\bar{x}) \leq \bar{y} \implies (\bar{x}, \bar{y}) \in epif$

Epigraph (cont'd)

Proof (cont'd). " \Leftarrow ". Assume epi*f* is convex. Let $x_1, x_2 \in S$, $\theta \in [0, 1]$. Need to show $\bar{x} \triangleq \theta x_1 + \bar{\theta} x_2 \in S$ and $f(\bar{x}) \le \theta f(x_1) + \bar{\theta} f(x_2) \triangleq \bar{y}$.



1. $f(\mathbf{x}_i) \leq f(\mathbf{x}_i) \implies (\mathbf{x}_i, f(\mathbf{x}_i)) \in \operatorname{epi} f$ by definition 2. $\operatorname{epi} f$ convex $\implies (\bar{\mathbf{x}}, \bar{\mathbf{y}}) = \theta(\mathbf{x}_1, f(\mathbf{x}_1)) + \bar{\theta}(\mathbf{x}_2, f(\mathbf{x}_2)) \in \operatorname{epi} f$ 3. $\bar{\mathbf{x}} \in S, f(\bar{\mathbf{x}}) \leq \bar{\mathbf{y}} = \theta f(\mathbf{x}_1) + \bar{\theta} f(\mathbf{x}_2)$ by definition of $\operatorname{epi} f$

Jensen's Inequality

For convex function $f, x, y \in \text{dom} f, \theta \in [0, 1]$

$$f(\theta \mathbf{x} + \bar{\theta} \mathbf{y}) \le \theta f(\mathbf{x}) + \bar{\theta} f(\mathbf{y})$$

More generally, for $x_i \in \text{dom} f$, $\theta_i \ge 0$, and $\sum_{i=1}^m \theta_i = 1$,

$$f\left(\sum_{i=1}^{m} \theta_i \mathbf{x}_i\right) \leq \sum_{i=1}^{m} \theta_i f(\mathbf{x}_i)$$

Example. $f(x) = x^2$ is convex over \mathbb{R} .

$$\left(\sum_{i=1}^n \frac{1}{n} x_i\right)^2 \le \sum_{i=1}^n \frac{1}{n} x_i^2 \implies \frac{1}{n} \sum_{i=1}^n x_i \le \sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2}$$

Example. $f(x) = \log x$ is concave over $(0, \infty)$. For $x_i > 0$,

$$\log\left(\sum_{i=1}^{n}\frac{1}{n}x_{i}\right) \geq \sum_{i=1}^{n}\frac{1}{n}\log x_{i} \implies \frac{1}{n}\sum_{i=1}^{n}x_{i} \geq \sqrt[n]{\left|\prod_{i=1}^{n}x_{i}\right|}$$

Hölder's Inequality

Let $p, q \in (1, \infty)$ be conjugate exponents, i.e. $p^{-1} + q^{-1} = 1$. For $\mathbf{x} = (x_1, \dots, x_n)^T$, $\mathbf{y} = (y_1, \dots, y_n)^T$, Hölder's inequality holds, $\sum_{i=1}^n |x_i y_i| \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q$

Proof. Assume $x \neq 0, y \neq 0$; otherwise trivial. Let $\tilde{x} = x/||x||_p$ and $\tilde{y} = y/||y||_q$. The above inequality is equivalent to $\sum_{i=1}^n |\tilde{x}_i \tilde{y}_i| \leq 1$. 1. Show $x^{\frac{1}{p}} y^{\frac{1}{q}} \leq \frac{1}{p} x + \frac{1}{q} y$ for $x, y \geq 0$. \blacktriangleright trivial if xy = 0 \blacktriangleright if xy > 0, $\log x$ is concave $\implies \log\left(\frac{1}{p}x + \frac{1}{q}y\right) \geq \frac{1}{p}\log x + \frac{1}{q}\log y$ 2. Let $x = |\tilde{x}_i|^p$ and $y = |\tilde{y}_i|^q$ in the inequality in 1, $|\tilde{x}_i| \cdot |\tilde{y}_i| \leq p^{-1} |\tilde{x}_i|^p + q^{-1} |\tilde{y}_i|^q$

3. Sum over *i* and note $\|\tilde{\mathbf{x}}\|_p = \|\tilde{\mathbf{y}}\|_q = 1$,

$$\sum_{i=1}^{n} |\tilde{x}_i \tilde{y}_i| \le \frac{1}{p} \|\tilde{\boldsymbol{x}}\|_p^p + \frac{1}{q} \|\tilde{\boldsymbol{y}}\|_q^q = \frac{1}{p} + \frac{1}{q} = 1$$

Minkowski's Inequality

For 1 ,

 $\|x + y\|_p \le \|x\|_p + \|y\|_p$

Proof. Only need to consider case $||\mathbf{x} + \mathbf{y}||_p > 0$.

- $\|\mathbf{x} + \mathbf{y}\|_p^p = \sum_i |x_i + y_i|^p \le \sum_i |x_i| \cdot |x_i + y_i|^{p-1} + \sum_i |y_i| \cdot |x_i + y_i|^{p-1}$
- Let $p^{-1} + q^{-1} = 1$. By Hölder, and note (p 1)q = p,

$$\sum_{i} |x_{i}| \cdot |x_{i} + y_{i}|^{p-1} \leq ||\mathbf{x}||_{p} \left(\sum_{i} |x_{i} + y_{i}|^{(p-1)q}\right)^{1/q} = ||\mathbf{x}||_{p} ||\mathbf{x} + \mathbf{y}||_{p}^{p/q}$$

- Interchange x and y, $\sum_{i} |y_i| \cdot |x_i + y_i|^{p-1} \le ||\mathbf{y}||_p ||\mathbf{x} + \mathbf{y}||_p^{p/q}$
- Combining above inequalities,

$$\|\mathbf{x} + \mathbf{y}\|_p^p \le (\|\mathbf{x}\|_p + \|\mathbf{y}\|_p) \|\mathbf{x} + \mathbf{y}\|_p^{p/q}$$

• Cancel $||\mathbf{x} + \mathbf{y}||_p^{p/q}$ and note p - p/q = 1.