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Recap: Convex Sets
A set C ⊂ Rn is convex if the line segment between any two points
x, y ∈ C lies entirely in C, i.e.

x ∈ C, y ∈ C, θ ∈ [0, 1] =⇒ θx + θ̄y ∈ C

x

y

convex

x y

nonconvex

Properties.
• The intersection of convex sets is convex.
• The image of a convex set under an affine transformation is

convex.
• The inverse image of a convex set under an affine transformation

is convex.
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Recap: Convex Sets
Convex combination.

∑m
i=1 θixi, where θ ≥ 0, 1Tθ = 1

Convex hull of S
• smallest convex set containing S
• set of all convex combinations of elements of S

Examples of convex sets.
• ∅, Rn, singleton (point), line, line segment, ray
• Hyperplane P = {x ∈ Rn : wTx = b}, w ∈ Rn, b ∈ R
• Halfspace H = {x ∈ Rn : wTx ≤ b}
• Affine space S = {x ∈ Rn : Ax = b}, A ∈ Rm×n, b ∈ Rm

• Polyhedron P = {x ∈ Rn : Ax ≤ b}, A ∈ Rm×n, b ∈ Rm

• Norm ball B̄(x0, r) = {x : ‖x− x0‖ ≤ r}
• Ellipsoid E = {x0 + Au : ‖u‖2 ≤ 1}, A ∈ Rn×n, A � O.
• Positive semidefinite matrices Sn

+ = {A ∈ Rn×n : A � O}
• Simplex ∆ = conv{x0, . . . , xm} = {

∑m
i=0 θixi : θ ≥ 0, 1Tθ = 1}



3/15

Contents

1. Convex Functions



4/15

Convex Functions
A function f : S ⊂ Rn → R is convex if

1. its domain dom f = S is a convex set
2. for any x, y ∈ S and θ ∈ [0, 1],

f (θx + θ̄y) ≤ θf (x) + θ̄f (y)

Note. Condition 1 guarantees θx + θ̄y is in the domain.

Geometrically, the line segment between (x, f (x)) and (y, f (y)) lies
above the graph of f .

x yθx + θ̄y

f (x)

f (y)

f (θx + θ̄y)

θf (x) + θ̄f (y)
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Convex Functions (cont’d)
A function f : S ⊂ Rn → R is strictly convex if

1. its domain dom f = S is a convex set
2. for any x 6= y ∈ S and θ ∈ (0, 1),

f (θx + θ̄y)<θf (x) + θ̄f (y)

Proposition. Let f be convex. If f (θx + θ̄y) = θf (x) + θ̄f (y) for some
θ = θ0 ∈ (0, 1), then it holds for any θ ∈ [0, 1], i.e. g(θ) = f (θx + θ̄y) is
an affine function for θ ∈ [0, 1].

Strict convexity says the restriction of f to any line segment in S is not
an affine function.

A function f is (strictly) concave if −f is (strictly) convex.

An affine function f (x) = wTx + b is both convex and concave, but not
strictly convex or strictly concave.
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Convex Functions (cont’d)

strictly convex function convex function

strictly concave function concave function
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Examples
Example. Univariate functions
• f (x) = eax (a ∈ R) is convex, and strictly convex for a 6= 0
• f (x) = log x is strictly concave over (0,∞)

• f (x) = xa is convex over (0,∞) for a ≥ 1 or a ≤ 0
• f (x) = xa is concave over (0,∞) for 0 ≤ a ≤ 1

Example. Any norm ‖ · ‖ : Rn → R is convex,

‖θx + θ̄y‖ ≤ ‖θx‖+ ‖θ̄y‖ = θ‖x‖+ θ̄‖y‖

But not strictly convex (why?)

x1

x2

‖x
‖ 1

1-norm

x1

x2

‖x
‖ 2

2-norm

x1

x2

‖x
‖ ∞

∞-norm
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Restriction to Lines
Proposition. f is convex iff for any x ∈ dom f and any direction d, the
function g(t) = f (x + td) is convex on dom g = {t : x + td ∈ dom f}.

Proof. “⇒”. Assume f is convex. Fix an arbitrary x ∈ dom f and
direction d. Need to show g(t) = f (x + td) is convex.

Let t1, t2 ∈ dom g, θ ∈ [0, 1]. Let xi = x + tid, t̄ = θt1 + θ̄t2 and x̄ = x + t̄d.
1. Note x̄ = x + (θt1 + θ̄t2)d = θx1 + θ̄x2

2. ti ∈ dom g =⇒ xi ∈ dom f

3. dom f is convex =⇒ x̄ ∈ dom f =⇒ t̄ ∈ dom g =⇒ dom g is
convex

4. Since f is convex,

g(̄t) = f (x̄) ≤ θf (x1) + θ̄f (x2) = θg(t1) + θ̄g(t2)

so g is convex.
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Restriction to Lines (cont’d)
Proof (cont’d). “⇐”. Assume g(t) = f (x + td) is convex for any
x ∈ dom f and any direction d. Need to show f is convex.

Fix x, y ∈ dom f , θ ∈ [0, 1]. Let d = x− y, and g(t) = f (y + td).
1. x, y ∈ dom f =⇒ 1, 0 ∈ dom g

2. dom g is convex =⇒ θ ∈ dom g =⇒ x + θd ∈ dom f

3. Since θx + θ̄y = y + θd, θx + θ̄y ∈ dom f =⇒ dom f is convex.
4. Since g is convex and θ = θ × 1 + θ̄ × 0,

f (θx + θ̄y) = g(θ) ≤ θg(1) + θ̄g(0) = θf (x) + θ̄f (y)

so f is convex.
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Epigraph
Recall the graph of f : S ⊂ Rn → R is the set

{(x, f (x)) ∈ Rn+1 : x ∈ S}

The epigraph1 of f is

epi f = {(x, y) ∈ Rn+1 : x ∈ S, y ≥ f (x)}

S

convex

S

nonconvex

1The prefix epi- means “above”, “over”.
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Epigraph (cont’d)
Theorem. f : S ⊂ Rn → R is a convex function iff epi f is a convex set.

Proof. “⇒”. Assume f is convex. Let (x1, y1), (x2, y2) ∈ epi f , θ ∈ [0, 1].
Need to show (x̄, ȳ) , (θx1 + θ̄x2, θy1 + θ̄y2) ∈ epi f .

x1 x2

(x1, f (x1))

(x1, f (x1))

(x̄, ȳ)

x̄

(x1, y1)

(x2, y2)

1. f convex =⇒ x̄ ∈ S and f (x̄) ≤ θf (x1) + θ̄f (x2)

2. (xi, yi) ∈ epi f =⇒ f (xi) ≤ yi =⇒ θf (x1) + θ̄f (x2) ≤ θy1 + θ̄y2 = ȳ

3. By 1 and 2, x̄ ∈ S and f (x̄) ≤ ȳ =⇒ (x̄, ȳ) ∈ epi f
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Epigraph (cont’d)
Proof (cont’d). “⇐”. Assume epi f is convex. Let x1, x2 ∈ S, θ ∈ [0, 1].
Need to show x̄ , θx1 + θ̄x2 ∈ S and f (x̄) ≤ θf (x1) + θ̄f (x2) , ȳ.

x1 x2

(x1, f (x1))

(x1, f (x1))(x̄, ȳ)

x̄

1. f (xi) ≤ f (xi) =⇒ (xi, f (xi)) ∈ epi f by definition
2. epi f convex =⇒ (x̄, ȳ) = θ(x1, f (x1)) + θ̄(x2, f (x2)) ∈ epi f

3. x̄ ∈ S, f (x̄) ≤ ȳ = θf (x1) + θ̄f (x2) by definition of epi f
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Jensen’s Inequality
For convex function f , x, y ∈ dom f , θ ∈ [0, 1]

f (θx + θ̄y) ≤ θf (x) + θ̄f (y)

More generally, for xi ∈ dom f , θi ≥ 0, and
∑m

i=1 θi = 1,

f

(
m∑

i=1

θixi

)
≤

m∑
i=1

θif (xi)

Example. f (x) = x2 is convex over R.(
n∑

i=1

1
n

xi

)2

≤
n∑

i=1

1
n

x2
i =⇒ 1

n

n∑
i=1

xi ≤

√√√√1
n

n∑
i=1

x2
i

Example. f (x) = log x is concave over (0,∞). For xi > 0,

log

(
n∑

i=1

1
n

xi

)
≥

n∑
i=1

1
n

log xi =⇒ 1
n

n∑
i=1

xi ≥ n

√√√√ n∏
i=1

xi
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Hölder’s Inequality
Let p, q ∈ (1,∞) be conjugate exponents, i.e. p−1 + q−1 = 1. For
x = (x1, . . . , xn)T , y = (y1, . . . , yn)T , Hölder’s inequality holds,

n∑
i=1

|xiyi| ≤ ‖x‖p‖y‖q

Proof. Assume x 6= 0, y 6= 0; otherwise trivial. Let x̃ = x/‖x‖p and
ỹ = y/‖y‖q. The above inequality is equivalent to

∑n
i=1 |x̃iỹi| ≤ 1.

1. Show x
1
p y

1
q ≤ 1

p x + 1
q y for x, y ≥ 0.

I trivial if xy = 0
I if xy > 0, log x is concave =⇒ log

(
1
p x + 1

q y
)
≥ 1

p log x + 1
q log y

2. Let x = |x̃i|p and y = |ỹi|q in the inequality in 1,

|x̃i| · |ỹi| ≤ p−1|x̃i|p + q−1|ỹi|q

3. Sum over i and note ‖x̃‖p = ‖ỹ‖q = 1,
n∑

i=1

|x̃iỹi| ≤
1
p
‖x̃‖p

p +
1
q
‖ỹ‖q

q =
1
p

+
1
q

= 1
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Minkowski’s Inequality
For 1 < p <∞,

‖x + y‖p ≤ ‖x‖p + ‖y‖p

Proof. Only need to consider case ‖x + y‖p > 0.
• ‖x + y‖p

p =
∑

i |xi + yi|p ≤
∑

i |xi| · |xi + yi|p−1 +
∑

i |yi| · |xi + yi|p−1

• Let p−1 + q−1 = 1. By Hölder, and note (p− 1)q = p,

∑
i

|xi| · |xi + yi|p−1 ≤ ‖x‖p

(∑
i

|xi + yi|(p−1)q

)1/q

= ‖x‖p‖x + y‖p/q
p

• Interchange x and y,
∑

i
|yi| · |xi + yi|p−1 ≤ ‖y‖p‖x + y‖p/q

p

• Combining above inequalities,

‖x + y‖p
p ≤ (‖x‖p + ‖y‖p)‖x + y‖p/q

p

• Cancel ‖x + y‖p/q
p and note p− p/q = 1.
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