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Recap: Convex Functions

A function f : S C R" — R is convex if
1. its domain domf = S is a convex set
2. foranyx,y e Sand 6 € [0, 1],

F(0x + Gy) < 6f (x) + Of (y)
It is strictly convex if < holds forx #y € Sand 6 € (0, 1).

Properties
e fis convex iff its 1D restrictions g(¢) = f(x + td) are convex.
* fis convex iff its epigraph
epif = {(x,y) R :x € S,y > f(x)}
is a convex set in R"*!,
e Jensen’s inequality

f <i eixi> < ieif(xi), 0cA,
i=1 i=1
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1. More Properties of Convex Functions



Global Minima of Convex Functions

Theorem. Let f be a convex function defined over a convex set S. If
x* € Sis a local minimum of £, then it is also a global minimum of f
over S.

Proof. Suppose there exists y € S andy # x* s.t. f(y) < f(x*). For
6 € (0,1), letxy = Ox* + 6y. Then

flxg) < Of(x™) +0f(y) < Of (") + O0f (x") = f(x")

But x4 € S by convexity of S, and

A

Y

|xo —x*|| = Ox* —y| =0 as O —1 y pr
contradicting the assumption that x* is a local minimum.

Note. This theorem does not assert the existence of a global minimum
in general! It assumes the existence of a local minimum to start with.

Example. f(x) = ¢* has no global or local minimum over R.



Global Minima of Convex Functions (cont'd)

Theorem. Let f be a strictly convex function defined over a convex set
S. If x* € S'is a global minimum of f, then it is unique.

Proof. Suppose there exists y* € S and y* # x* s.t. f(y*) = f(x*). By
strict convexity,

F(55) < e+ 507 =16 v

contradicting the global optimality of x*. iy o x

Note. Strict convexity is a sufficient condition for unique global
minimum, but it is not necessary!

Example. f(x) = |x| has a unique global minimum x* = 0, but it is not
strictly convex.

Note. Similar results hold for maxima of concave functions.



Sublevel Sets
The a-sublevel set of a function f is

Co ={x €domf: f(x) <a}
Theorem. Sublevel sets of a convex function
are convex. I
Proof. Letx,y € Cq, 6 € [0, 1].

le—Co—| X

F(0x +0y) < Of(x) + 0f(y) < ba+0a=a = Ox+0ycC,

Examples.
* Halfspace H = {x : w'x < b}, polyhedron P = {x : Ax < b}
e Norm ball B(xg,r) = {x : [x — x| < r}
e Ellipsoid £ = {xo +Au : |ju|, < 1},A e R*™", A > 0.
E={x:flx) <1}, flx)=[A""(x —x0)[3 = (x —x0)"A7>(x —x0)

We will see shortly f(x) is convex.



Sublevel Sets (cont'd)

The converse is not true. Nonconvex functions can have convex
sublevel sets.

Example. f(x) = 4/|x| is not convex, but its
sublevel sets are all convex,

Ca:{(z), ifa<0

[—a?,a?], fa>0

Example. f(x) = —e* is strictly concave. Its 4
sublevel sets are all convex, - Co —

=" fa>0 \\
“ | flog(—a), ), ifa<0 —e

Question. Is the level set {x € domf : f(x) = o} convex?

Note. For concave f, superlevel set {x € domf : f(x) > a} is convex.
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First-order Condition for Convexity

Theorem. A differentiable f with an open convex domain domf is
convex iff

f) = f@x) + V() (y —x), Vx,y € domf

Note. First-order Taylor approximation underestimates a convex
function. Geometrically, all tangent “planes” lie below the graph.
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Example. ¢* > e + (x —0) = 1 +x.



First-order Condition for Convexity (cont’d)
Proof. “=”. Assume f is convex. Letd =y — x. By Jensen’s inequality,
flx+id) = f(ty + 1) < of(p) + 7 (x), 1€ (0,1)

Rearranging,

flx +td) — f(x)

Letting r — 0,
Vi) (v — x) = Vf(x)'d < f(y) — f(x)

\

Note. f"‘%‘m is the slope of the secant line through x and x + rd.
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First-order Condition for Convexity (cont’d)

Proof (cont'd). “<”". Assume the first-order condition holds.

Let z = Ox + fAy. The first-order condition implies

f(x) 2 f(z) + Vf(2)" (x —2)
f0) 2 f(2) + V(@) —2)

0 x (1) + 0 x (2) yields
0f (x) + 0f (y) > f(z) = f(6x + Oy)

Y



First-order Condition for Strict Convexity

Theorem. A differentiable f with an open convex domain domf is
strictly convex iff

) >fx) + Vi) (y—x), Vx#yedomf

Proof. Essentially the same proof with inequalities being strict. The
proof of “=” requires a further modification. Fix x andd =y — x.

Add an intermediate point x + sd between
x+dandx+d ForO<r<s<1,

fetd) —flx) _flx+sd) —fx)
t s

<flx+d) — fx), Lo b ox
x x+td x+sd x+d

Now letting ¢+ — 0 yield

Vi) < TETDZIE) e ay fw) = o))

N




Optimality of Stationary Points

Corollary. If Vf(x*) = 0 for a convex function f, then x* is a global
minimum. If f is strictly convex, then x* is the unique global minimum.

Proof. By the first-order condition and the assumption Vf(x*) = 0,
flx) 2 flx*) + Vf(x") (x —x*) = f(x), Vx € domf
so x* is a global minimum.
Similarly, if f is strictly convex,
f) > fx*) + V(") (& —x*) = f(x"), Vx* #x € domf
so x* is the unique global minimum.

Note. For concave functions, similar results hold with all inequalities
reversed, and min replaced by max.
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Second-order Condition for Convexity

Theorem. A twice continuously differentiable f with an open convex
domain domf is convex iff V2f(x) = O is positive semidefinite at every
x € domf.

Proof. “=". Assume f is convex. Fix x € domf and d € R".
® domf is open = x + td € domf for small ¢
¢ By the second-order Taylor expansion with Peano remainder,

1
flx+1td) =f(x) +Vf(x)'d + EszTvzf(x)d + o(F%).
¢ By the first-order condition for convexity,
flx+1d) > f(x) +1Vf(x)'d = %dTVZf(x)d +0(1)>0

e Settingr — 0 = d'V?f(x)d >0 — V?*f(x) >0



Second-order Condition for Convexity (cont’d)

Proof (cont'd). “<”. Assume the second-order condition holds. Fix
x,y € domf and letd =y — x.

e By the second-order Taylor expansion with Lagrange remainder,
1
fO) =fx+d) =f(x)+ Vfx)'d+ 5dTVZf(x +sd)d, sc(0,1)

e domf is convex = x + sd = sy + sx € domf
e By the second-order condition,

V(x+sd) =0 = f(y) > f(x) + Vf(x)'d

which is the first-order condition for convexity, so f is convex.



Second-order Condition for Convexity (cont’d)

Theorem. A twice continuously differentiable f with an open convex
domain domf is strictly convex if V2f(x) is positive definite at every
x € domf.

Proof. Replace = and > by - and > respectively in “<” part.
Note. Positive definiteness is sufficient but not necessary.
Example. f(x) = x* is strictly convex, but f”(x) =0 atx =0
Example. f(x) = f(x1,x2) = x7 + x5 is strictly convex, but

V2f(x) = 2 0 Y is not positive definite for x, = 0.
0 12x3

Note. For concave functions, replace “positive (semi)definite” by
“negative (semi)definite” in previous theorems.



Examples

Example. Exponential f(x) = ¢** is convex fora € R

Proof. f(x) = a®e™* > 0

Example. Logarithm f(x) = log x is strictly concave over (0, co)

Proof. f"(x) = —x2 <0

Example. Power f(x) = x“ is convex over (0, 00) fora > 1 ora < 0, and
concave over (0,00) for0 <a <'1

Proof. f”(x) = a(a — 1)x*~* = 0 depending on a

Note. Domain is important. f(x) = x~! is concave over (—o0,0), but
neither convex nor concave over (—1,0) U (0, 1).



Example: Negative Entropy

The negative entropy f(x) = xlogx is strictly convex over (0, 00).
Proof. f/(x) =logx + 1, f"(x) =x~' >0

1 xlog x

0\./ X

f is still strictly convex with this extension.



Example: Quadratic Functions

A quadratic function

1
flx) = ExTQx +b'x+c
with symmetric Q is convex iff Q = 0, and strictly convex iff @ > O.

Proof. For convexity, V2f(x) = Q and use second-order condition.
For strict convexity, note Vf(x) = Ox + b and

1
flx+d)=fx)+ Vf(x)'d+ 5dTQal
By first-order condition, f is strictly convex iff for d # 0

fx+d)>f(x)+Vfx)'d <= d'Qd — Q0

Note. Recall in general V2f(x) = O is not a necessary condition for
strict convexity, but it is necessary when f is quadratic.



Example: Quadratic Functions (cont’d)
Quadratic function f(x) = x”Qx in R?

strictly convex convex neither convex nor concave

Q = diag{—1,-1} Q = diag{—1,0}
strictly concave concave

20/26



Example: Least Squares Loss

The least squares loss

f(x) = |lAx —y|I3
is always convex.

Proof. f is a quadratic function,
f(x) = (Ax —y)T(Ax —y) = xTATAx — 29T Ax + yTy.
ATA > O since
xTATAx = (Ax)T (Ax) = ||Ax||3 >0

Question. When is it strictly convex?

Answer. When ATA = 0, which is true iff A has full column rank.

x"ATAx =0 <= |Ax|p =0 < Ax =0



Example: Log-sum-exp Function
Log-sum-exp function defined below is convex
f(x) =log (Z ex’)
i=1
Note. Also called “soft max”, as it smoothly approximates max x;.
Forn=2, Ax = x; — x1, o
f(x1,x2) = log(e" + €2) = logle" (1 4+ 2¥)] = x; + log(1 + €?)

~ x1 + max{0, Ax} = max{x;,x}

log(1 + e2%)

max{0, Ax}




Example: Log-sum-exp Function (cont'd)
Proof. Let s(x) = Y ;_, €%, s0 f(x) = log s(x).

» Of(x) 18s_ex"

Y O _sax, s

O’ (x) Ogi e ehied 1, i=j
H; £ === —0j— —5— = &% — &g, 0j=
T Oxi0x;  Ox; s Y 52 8i0y — 818] / 0, i#j

For any d € R",
dva d Zdesz—Zgldz (th z> >0
i=1 j=1

by the convexity of x — x> (why?), so V2f(x) = O.
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4. Convexity-preserving Operations



Convexity-preserving Operations

® nonnegative combinations

m

£ = efix)

i=1
e composition with affine functions
fx) = g(Ax +b)
e composition of convex/concave functions
fx) =h(g1(x),...,8gm(x))

pointwise maximum/supremum

f(x) = sup fi(x)

icl

partial minimization

flx) = inf f(x,y)

yeC



Extended-value Extension

gaiven convex f : § C R" — R, define its extended-value extension
f:R" > RU{co} by

=y {f(x), xes
oo, x¢8§
with extended arithmetic and ordering
at+oo=o0fora>—-o0; a-co=ocfora>0; 0-c0=0
e The (effective) domain of f, also the domain of f, is
domf = domf =8 = {x: f(x) < o0}
e fis convex iff f is convex, i.e. for any x,y € R" and 0 € [0, 1],
f(0x + 8y) < 0f(x) + 07 (v),
e f and f have the same epigraph; we will identify f with f

Note. We can similarly extend a concave function by f(x) = —oo for
x ¢ domf.
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