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Recap: Convex Functions
A function f : S ⊂ Rn → R is convex if

1. its domain dom f = S is a convex set
2. for any x, y ∈ S and θ ∈ [0, 1],

f (θx + θ̄y) ≤ θf (x) + θ̄f (y)

It is strictly convex if < holds for x 6= y ∈ S and θ ∈ (0, 1).

Properties
• f is convex iff its 1D restrictions g(t) = f (x + td) are convex.

• f is convex iff its epigraph

epi f = {(x, y) ∈ Rn+1 : x ∈ S, y ≥ f (x)}

is a convex set in Rn+1.

• Jensen’s inequality

f

(
m∑

i=1

θixi

)
≤

m∑
i=1

θif (xi), θ ∈ ∆m−1
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Global Minima of Convex Functions
Theorem. Let f be a convex function defined over a convex set S. If
x∗ ∈ S is a local minimum of f , then it is also a global minimum of f
over S.

Proof. Suppose there exists y ∈ S and y 6= x∗ s.t. f (y) < f (x∗). For
θ ∈ (0, 1), let xθ = θx∗ + θ̄y. Then

f (xθ) ≤ θf (x∗) + θ̄f (y) < θf (x∗) + θ̄f (x∗) = f (x∗)

But xθ ∈ S by convexity of S, and

‖xθ − x∗‖ = θ̄‖x∗ − y‖ → 0 as θ → 1

contradicting the assumption that x∗ is a local minimum.

y x∗

Note. This theorem does not assert the existence of a global minimum
in general! It assumes the existence of a local minimum to start with.

Example. f (x) = ex has no global or local minimum over R.



4/26

Global Minima of Convex Functions (cont’d)
Theorem. Let f be a strictly convex function defined over a convex set
S. If x∗ ∈ S is a global minimum of f , then it is unique.

Proof. Suppose there exists y∗ ∈ S and y∗ 6= x∗ s.t. f (y∗) = f (x∗). By
strict convexity,

f
(

x∗ + y∗

2

)
<

1
2

f (x∗) +
1
2

f (y∗) = f (x∗)

contradicting the global optimality of x∗. y∗ x∗x∗+y∗
2

Note. Strict convexity is a sufficient condition for unique global
minimum, but it is not necessary!

Example. f (x) = |x| has a unique global minimum x∗ = 0, but it is not
strictly convex.

Note. Similar results hold for maxima of concave functions.
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Sublevel Sets

x

f (x)

α

Cα

The α-sublevel set of a function f is

Cα = {x ∈ dom f : f (x) ≤ α}

Theorem. Sublevel sets of a convex function
are convex.

Proof. Let x, y ∈ Cα, θ ∈ [0, 1].

f (θx + θ̄y) ≤ θf (x) + θ̄f (y) ≤ θα+ θ̄α = α =⇒ θx + θ̄y ∈ Cα

Examples.
• Halfspace H = {x : wTx ≤ b}, polyhedron P = {x : Ax ≤ b}
• Norm ball B̄(x0, r) = {x : ‖x− x0‖ ≤ r}
• Ellipsoid E = {x0 + Au : ‖u‖2 ≤ 1}, A ∈ Rn×n, A � O.

E = {x : f (x) ≤ 1}, f (x) = ‖A−1(x− x0)‖2
2 = (x− x0)TA−2(x− x0)

We will see shortly f (x) is convex.
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Sublevel Sets (cont’d)
The converse is not true. Nonconvex functions can have convex
sublevel sets.

Example. f (x) =
√
|x| is not convex, but its

sublevel sets are all convex,

Cα =

{
∅, if α < 0
[−α2, α2], if α ≥ 0 x

√
|x|

α

Cα

Example. f (x) = −ex is strictly concave. Its
sublevel sets are all convex,

Cα =

{
∅, if α ≥ 0
[log(−α),∞), if α < 0

x

−ex

α

Cα

Question. Is the level set {x ∈ dom f : f (x) = α} convex?

Note. For concave f , superlevel set {x ∈ dom f : f (x) ≥ α} is convex.
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First-order Condition for Convexity
Theorem. A differentiable f with an open convex domain dom f is
convex iff

f (y) ≥ f (x) +∇f (x)T(y− x), ∀x, y ∈ dom f

Note. First-order Taylor approximation underestimates a convex
function. Geometrically, all tangent “planes” lie below the graph.

y

f (y)

f̂1(y) = f (x) +∇f (x)T(y− x)
(x, f (x))

x

Example. ex ≥ e0 + e0(x− 0) = 1 + x.
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First-order Condition for Convexity (cont’d)
Proof. “⇒”. Assume f is convex. Let d = y− x. By Jensen’s inequality,

f (x + td) = f (ty + t̄x) ≤ tf (y) + t̄f (x), t ∈ (0, 1)

Rearranging,
f (x + td)− f (x)

t
≤ f (y)− f (x)

Letting t→ 0,

∇f (x)T(y− x) = ∇f (x)Td ≤ f (y)− f (x)

x yx + td

Note. f (x+td)−f (x)
t‖d‖ is the slope of the secant line through x and x + td.
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First-order Condition for Convexity (cont’d)
Proof (cont’d). “⇐”. Assume the first-order condition holds.

Let z = θx + θ̄y. The first-order condition implies

f (x) ≥ f (z) +∇f (z)T(x− z) (1)

f (y) ≥ f (z) +∇f (z)T(y− z) (2)

θ × (1) + θ̄ × (2) yields

θf (x) + θ̄f (y) ≥ f (z) = f (θx + θ̄y)

x z y
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First-order Condition for Strict Convexity
Theorem. A differentiable f with an open convex domain dom f is
strictly convex iff

f (y) > f (x) +∇f (x)T(y− x), ∀x 6= y ∈ dom f

Proof. Essentially the same proof with inequalities being strict. The
proof of “⇒” requires a further modification. Fix x and d = y− x.

Add an intermediate point x + sd between
x + td and x + d. For 0 < t < s < 1,

f (x + td)− f (x)

t
<

f (x + sd)− f (x)

s
< f (x + d)− f (x),

Now letting t→ 0 yield

∇f (x)Td ≤ f (x + sd)− f (x)

s
< f (x+d)−f (x) = f (y)−f (x)

x

f (x)

x x + td x + sd x + d



12/26

Optimality of Stationary Points
Corollary. If ∇f (x∗) = 0 for a convex function f , then x∗ is a global
minimum. If f is strictly convex, then x∗ is the unique global minimum.

Proof. By the first-order condition and the assumption ∇f (x∗) = 0,

f (x) ≥ f (x∗) +∇f (x∗)T(x− x∗) = f (x∗), ∀x ∈ dom f

so x∗ is a global minimum.

Similarly, if f is strictly convex,

f (x) > f (x∗) +∇f (x∗)T(x− x∗) = f (x∗), ∀x∗ 6= x ∈ dom f

so x∗ is the unique global minimum.

Note. For concave functions, similar results hold with all inequalities
reversed, and min replaced by max.
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Second-order Condition for Convexity
Theorem. A twice continuously differentiable f with an open convex
domain dom f is convex iff ∇2f (x) � O is positive semidefinite at every
x ∈ dom f .

Proof. “⇒”. Assume f is convex. Fix x ∈ dom f and d ∈ Rn.
• dom f is open =⇒ x + td ∈ dom f for small t
• By the second-order Taylor expansion with Peano remainder,

f (x + td) = f (x) + t∇f (x)Td +
1
2

t2dT∇2f (x)d + o(t2).

• By the first-order condition for convexity,

f (x + td) ≥ f (x) + t∇f (x)Td =⇒ 1
2

dT∇2f (x)d + o(1) ≥ 0

• Setting t→ 0 =⇒ dT∇2f (x)d ≥ 0 =⇒ ∇2f (x) � O
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Second-order Condition for Convexity (cont’d)
Proof (cont’d). “⇐”. Assume the second-order condition holds. Fix
x, y ∈ dom f and let d = y− x.
• By the second-order Taylor expansion with Lagrange remainder,

f (y) = f (x + d) = f (x) +∇f (x)Td +
1
2

dT∇2f (x + sd)d, s ∈ (0, 1)

• dom f is convex =⇒ x + sd = sy + s̄x ∈ dom f
• By the second-order condition,

∇2f (x + sd) � O =⇒ f (y) ≥ f (x) +∇f (x)Td

which is the first-order condition for convexity, so f is convex.
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Second-order Condition for Convexity (cont’d)
Theorem. A twice continuously differentiable f with an open convex
domain dom f is strictly convex if ∇2f (x) is positive definite at every
x ∈ dom f .

Proof. Replace � and ≥ by � and > respectively in “⇐” part.

Note. Positive definiteness is sufficient but not necessary.

Example. f (x) = x4 is strictly convex, but f ′′(x) = 0 at x = 0

Example. f (x) = f (x1, x2) = x2
1 + x4

2 is strictly convex, but

∇2f (x) =

(
2 0
0 12x2

2

)
is not positive definite for x2 = 0.

Note. For concave functions, replace “positive (semi)definite” by
“negative (semi)definite” in previous theorems.
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Examples
Example. Exponential f (x) = eax is convex for a ∈ R

Proof. f ′′(x) = a2eax ≥ 0

Example. Logarithm f (x) = log x is strictly concave over (0,∞)

Proof. f ′′(x) = −x−2 < 0

Example. Power f (x) = xa is convex over (0,∞) for a ≥ 1 or a ≤ 0, and
concave over (0,∞) for 0 ≤ a ≤ 1

Proof. f ′′(x) = a(a− 1)xa−2 R 0 depending on a

Note. Domain is important. f (x) = x−1 is concave over (−∞, 0), but
neither convex nor concave over (−1, 0) ∪ (0, 1).
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Example: Negative Entropy
The negative entropy f (x) = x log x is strictly convex over (0,∞).

Proof. f ′(x) = log x + 1, f ′′(x) = x−1 > 0

xO

x log x

Note. We typically extend the definition of f to x = 0 by continuity, i.e.

f (0) , lim
x→0+

f (x) = 0

f is still strictly convex with this extension.
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Example: Quadratic Functions
A quadratic function

f (x) =
1
2

xTQx + bTx + c

with symmetric Q is convex iff Q � O, and strictly convex iff Q � O.

Proof. For convexity, ∇2f (x) = Q and use second-order condition.

For strict convexity, note ∇f (x) = Qx + b and

f (x + d) = f (x) +∇f (x)Td +
1
2

dTQd

By first-order condition, f is strictly convex iff for d 6= 0

f (x + d) > f (x) +∇f (x)Td ⇐⇒ dTQd ⇐⇒ Q � O

Note. Recall in general ∇2f (x) � O is not a necessary condition for
strict convexity, but it is necessary when f is quadratic.
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Example: Quadratic Functions (cont’d)
Quadratic function f (x) = xTQx in R2

x1

x2

f(
x)

Q = diag{1, 1}
strictly convex

x1

x2

f(
x)

Q = diag{0, 1}

convex

x1

x2

f(
x)

Q = diag{1,−1}

neither convex nor concave

x1

x2

f(
x)

Q = diag{−1,−1}
strictly concave

x1

x2

f(
x)

Q = diag{−1, 0}
concave
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Example: Least Squares Loss
The least squares loss

f (x) = ‖Ax− y‖2
2

is always convex.

Proof. f is a quadratic function,

f (x) = (Ax− y)T(Ax− y) = xTATAx− 2yTAx + yTy.

ATA � O since

xTATAx = (Ax)T(Ax) = ‖Ax‖2
2 ≥ 0

Question. When is it strictly convex?

Answer. When ATA � O, which is true iff A has full column rank.

xTATAx = 0 ⇐⇒ ‖Ax‖2 = 0 ⇐⇒ Ax = 0
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Example: Log-sum-exp Function
Log-sum-exp function defined below is convex

f (x) = log

(
n∑

i=1

exi

)

Note. Also called “soft max”, as it smoothly approximates max
1≤i≤n

xi.

For n = 2, ∆x = x2 − x1,

f (x1, x2) = log(ex1 + ex2) = log[ex1(1 + e∆x)] = x1 + log(1 + e∆)

≈ x1 + max{0,∆x} = max{x1, x2}

∆x

log(1 + e∆x)

max{0,∆x}
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Example: Log-sum-exp Function (cont’d)
Proof. Let s(x) =

∑n
k=1 exk , so f (x) = log s(x).

gi ,
∂f (x)

∂xi
=

1
s
∂s
∂xi

=
exi

s

Hij ,
∂2f (x)

∂xi∂xj
=
∂gi

∂xj
=

exi

s
δij −

exiexj

s2 = giδij − gigj, δij =

{
1, i = j
0, i 6= j

For any d ∈ Rn,

dT∇2f (x)d =

n∑
i=1

n∑
j=1

didjHij =

n∑
i=1

gid2
i −

(
n∑

i=1

gidi

)2

≥ 0

by the convexity of x 7→ x2 (why?), so ∇2f (x) � O.
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Convexity-preserving Operations
• nonnegative combinations

f (x) =

m∑
i=1

cifi(x)

• composition with affine functions

f (x) = g(Ax + b)

• composition of convex/concave functions

f (x) = h(g1(x), . . . , gm(x))

• pointwise maximum/supremum

f (x) = sup
i∈I

fi(x)

• partial minimization
f (x) = inf

y∈C
f (x, y)
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Extended-value Extension
Given convex f : S ⊂ Rn → R, define its extended-value extension
f̃ : Rn → R ∪ {∞} by

f̃ (x) =

{
f (x), x ∈ S
∞, x /∈ S

with extended arithmetic and ordering

a +∞ =∞ for a > −∞; a · ∞ =∞ for a > 0; 0 · ∞ = 0

• The (effective) domain of f̃ , also the domain of f , is

dom f̃ = dom f = S = {x : f̃ (x) <∞}
• f is convex iff f̃ is convex, i.e. for any x, y ∈ Rn and θ ∈ [0, 1],

f̃ (θx + θ̄y) ≤ θf̃ (x) + θ̄ f̃ (y),

• f and f̃ have the same epigraph; we will identify f with f̃

Note. We can similarly extend a concave function by f (x) = −∞ for
x /∈ dom f .
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