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Recap: Convex Optimization Problem
min

x
f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m

hi(x) = 0, i = 1, 2, . . . , k

1. f , gi are convex functions
2. hi are affine functions, i.e. hi(x) = aT

i x− bi

Domain. D = dom f ∩ (
⋂m

i=1 dom gi)

Feasible set. X = {x ∈ D : gi(x) ≤ 0, 1 ≤ i ≤ m; hi(x) = 0, 1 ≤ i ≤ k}

Optimal value. f ∗ = inf
x∈X

f (x)

Optimal point. x∗ ∈ X and f (x∗) = f ∗, i.e. f (x∗) ≤ f (x),∀x ∈ X

First-order optimality condition

∇f (x∗)T(x− x∗) ≥ 0, ∀x ∈ X
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Recap: LP

General form

min
x

cTx

s.t. Bx ≤ d
Ax = b

Standard form

min
x

cTx

s.t. Ax = b
x ≥ 0

Inequality form

min
x

cTx

s.t. Ax ≤ b

Conversion to equivalent problems
• introducing slack variables
• eliminating equality constraints
• epigraph form
• representing a variable by two nonnegative variables, x = x+ − x−
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Recap: Geometry of LP

min
x

cTx

s.t. Ax ≤ b

min
x

− x1 − 3x2

s.t. x1 + x2 ≤ 6

− x1 + 2x2 ≤ 8

x1, x2 ≥ 0

−cx∗

x1 x2

f(
x)

x1

x2 −c

x∗ = (4/3, 14/3)

• optimization of a linear function over a polyhedron
• graphic solution of simple LP



4/21

Contents
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1.1 QP and QCQP
1.2 Geometric Program
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Quadratic Program (QP)

min
x

1
2

xTQx + cTx

s.t. Bx ≤ d
Ax = b

QP is convex iff Q � O.

−∇f (x∗)x∗

x1

x2

f(
x) x1

x2

−∇f (x∗)
x∗
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Quadratically Constrained Quadratic Program (QCQP)

min
x

1
2

xTQx + cTx

s.t.
1
2

xTQix + cT
i x + di ≤ 0, i = 1, 2, . . . ,m

Ax = b

QCQP is convex if Q � O and Qi � O, ∀i

X
−∇f (x∗)

x∗

x1

x2

f(
x) x1

x2

−∇f (x∗)

x∗
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Example: Linear Least Squares Regression
Given y ∈ Rn, X ∈ Rn×p, find w ∈ Rp s.t.

min
w
‖y− Xw‖2

2

• convex QP with objective

f (w) = wTXTXw− 2yTXw + yTy

Geometrically, we are looking for the orthogonal projection ŷ of y onto
the column space of X.

O

y

ŷ = Xw∗

y− Xw∗

column space of X
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Example: Linear Least Squares Regression (cont’d)
By the first-order optimality condition, w∗ is optimal iff

∇f (w∗) = 0

i.e. w∗ is a solution of the normal equation,

XTXw = XTy

Case I. X has full column rank, i.e. rankX = p
• XTX � O
• unique solution

w∗ = (XTX)−1XTy

Note. In this case, the objective f (w) is strictly convex and coercive.

f (w) ≥ λmin(XTX)‖w‖2 − 2‖yTX‖ · ‖w‖+ ‖y‖2
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Example: Linear Least Squares Regression (cont’d)
Example. Solve

min
w
‖y− Xw‖2

2

with

X =

2 0
0 1
0 0

 , y =

3
2
2

 .

Solution. The normal equation is

XTXw = XTy

with

XTX =

(
4 0
0 1

)
, XTy = (6, 2)T

Since X has full column rank,

w∗ = (XTX)−1XTy = (1.5, 2)T
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Example: Linear Least Squares Regression (cont’d)
Case II. rankX = r < p. WLOG assume the first r columns are linearly
independent, i.e.

X = (X1,X2)

where X1 ∈ Rn×r and rankX1 = r.

Claim. There is a solution w∗ with the last p− r components being 0.
• X and X1 have the same column space
• If w∗1 solves

min
w1∈Rr

‖y− X1w1‖

then w∗ =
(

w∗1
0

)
solves minw∈Rp ‖y− Xw‖

• w∗1 = (XT
1 X1)

−1XT
1 y

Question. Is the solution unique in this case?
A. rankX < p =⇒ ∃w0 s.t. Xw0 = 0 =⇒ w∗ + w0 is also a solution.
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Example: Linear Least Squares Regression (cont’d)
Example Solve minw ‖y− Xw‖2

2 with

X =

2 0 2
0 1 −1
0 0 0

 , y =

3
2
2

 .

Solution. Note rankX = 2 < 3.
• Let

X1 =

2 0
0 1
0 0


• By the previous example,

w∗1 = (XT
1 X1)

−1XT
1 y = (1.5, 2)T

is a solution to minw1∈R2 ‖y− X1w1‖2.
• w∗ = (1.5, 2, 0)T is a solution to minw∈R3 ‖y− Xw‖2.
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Example: Linear Least Squares Regression (cont’d)
Example (cont’d). The normal equation to the original problem is

XTXw = XTy

where

XTX =

4 0 4
0 1 −1
4 −1 5

 , XTy = (6, 2, 4)T

• Note XTX is not invertible, so we cannot use the formula1

w∗ = (XTX)−1XTy
• The solution w∗ = (1.5, 2, 0)T satisfies the normal equation.
• The normal equation has infinitely many solutions given by

w = (1.5, 2, 0)T + α(−1, 1, 1)T , α ∈ R.

All of them are solutions to the least squares problem.

1This formula still applies if we use the so-called pseudo inverse of XT X.
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General Unconstrained QP
Minimize quadratic function with Q ∈ Rn×n s.t. Q � O,

min
x

f (x) =
1
2

xTQx + bTx + c

By first-order condition, solution satisfies

∇f (x) = Qx + b = 0

Case I. Q � O. There is a unique solution x∗ = −Q−1b.

Example. n = 2, Q = diag{1, 1}, b = (1, 0)T , c = 0.

f (x) =
1
2
(x1, x2)

(
1 0
0 1

)(
x1
x2

)
+ (1, 0)

(
x1
x2

)
=

1
2

x2
1 +

1
2

x2
2 + x1

The first-order condition becomes(
1 0
0 1

)(
x1
x2

)
+

(
1
0

)
=

(
0
0

)
which yields the unique optimal solution x∗ = (−1, 0).
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General Unconstrained QP (cont’d)
Case II. detQ = 0 and b /∈ column space of Q. There is no solution,
and f ∗ = −∞.

Example. n = 2, Q = diag{0, 1}, b = (1, 0)T , c = 0.

f (x) =
1
2
(x1, x2)

(
0 0
0 1

)(
x1
x2

)
+ (1, 0)

(
x1
x2

)
=

1
2

x2
2 + x1

The first-order condition becomes(
0 0
0 1

)(
x1
x2

)
+

(
1
0

)
=

(
0
0

)
which has no solution.

It is easy to see that f (x) = 1
2 x2

2 + x1 is unbounded below, so f ∗ = −∞.
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General Unconstrained QP (cont’d)
Case III. detQ = 0 and b ∈ column space of Q. There are infinitely
many solutions.

Example. n = 2, Q = diag{1, 0}, b = (1, 0)T , c = 0.

f (x) =
1
2
(x1, x2)

(
1 0
0 0

)(
x1
x2

)
+ (1, 0)

(
x1
x2

)
=

1
2

x2
1 + x1

The first-order condition becomes(
1 0
0 0

)(
x1
x2

)
+

(
1
0

)
=

(
0
0

)
which has infinitely many solutions of the form x = (−1, x2) for any
x2 ∈ R2, as f is actually independent of x2.
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General Unconstrained QP (cont’d)
For the general case (Q is non-diagonal),
• Diagonalize Q by an orthogonal matrix U, so

Q = UΛUT

where Λ is diagonal.
• Let x = Uy and b̃ = UTb. Then

f (x) =
1
2

yTUTQUy + bTUy + c =
1
2

yTΛy + b̃
T

y + c , g(y)

In the expanded form,

g(y) =
n∑

i=1

(
1
2
λiy2

i + b̃iyi

)
+ c

• Minimizing f (x) is equivalent to minimizing g(y). We can minimize
each term 1

2λiy2
i + b̃iyi independently.

Exercise. Convince yourself the previous three cases apply to the
non-diagonal case.
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Example: Lasso
Lasso (Least Absolute Shrinkage and Selection Operator)

Given y ∈ Rn, X ∈ Rn×p, t > 0,

min
w

‖y− Xw‖2
2

s. t. ‖w‖1 ≤ t

• convex problem? yes
• QP? no, but can be

converted to QP
• optimal solution exists? yes

I compact feasible set

• optimal solution unique?
I yes if n ≥ p and X has full column rank (XTX � O, strictly convex)
I no in general, e.g. p > n and t is large enough for unconstrained

optima to be feasible

O

y

ŷ = Xw∗

column space of X
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Example: Ridge Regression

Given y ∈ Rn, X ∈ Rn×p, t > 0,

min
w

‖y− Xw‖2
2

s. t. ‖w‖2
2 ≤ t

• convex problem? yes
• QCQP? yes

• optimal solution exists? yes
I compact feasible set

• optimal solution unique?
I yes if n ≥ p and X has full column rank (XTX � O, strictly convex)
I no in general

O

y

ŷ = Xw∗

column space of X
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Example: SVM
Linearly separable case

min
w,b

1
2
‖w‖2

s. t. yi(wTxi + b) ≥ 1, i = 1, 2, . . . ,m

Soft margin SVM

min
w,b,ξ

1
2
‖w‖2

2 + C
m∑

i=1

ξi

s. t. yi(wTxi + b) ≥ 1− ξi, i = 1, 2, . . . ,m

ξ ≥ 0

Equivalent unconstrained form

min
w,b

1
2
‖w‖2

2 + C
n∑

i=1

(1− yib− yiwTxi)
+
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Geometric Program
A monomial is a function f : Rn

++ = {x ∈ Rn : x > 0} → R of the form

f (x) = γxa1
1 xa2

2 · · · x
an
n

for γ > 0, a1, . . . , an ∈ R. A posynomial is a sum of monomials,

f (x) =
p∑

k=1

γkxak1
1 xak2

2 · · · x
akn
n

A geometric program (GP) is an optimization problem of the form

min
x

f (x)

s. t. gi(x) ≤ 1, i = 1, . . . ,m

hj(x) = 1, j = 1, . . . , r

where f , gi, i = 1, . . . ,m are posynomials and hj, j = 1, . . . , r are
monomials. The constraint x > 0 is implicit.
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Geometric Program (cont’d)
GP is nonconvex (why?)

min
x

p0∑
k=1

γ0kxa0k1
1 xa0k2

2 · · · xa0kn
n

s. t.

pi∑
k=1

γikxaik1
1 xaik2

2 · · · xaikn
n ≤ 1, i = 1, . . . ,m

ηjx
cj1
1 xcj2

2 · · · x
cjn
n = 1, j = 1, . . . , r

By yi = log xi, bik = log γik, dj = log ηj, GP can be formulated as

min
y

log

( p0∑
k=1

eaT
0ky+b0k

)

s. t. log

( pi∑
k=1

eaT
iky+bik

)
≤ 0, i = 1, . . . ,m

cT
j y + dj = 0, j = 1, . . . , r

This is convex by the convexity of log-sum-exp (soft max) functions
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