CS257 Linear and Convex Optimization

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

October 19, 2020

Recap: Convex Optimization Problem

$$\begin{array}{ll} \min_{\boldsymbol{x}} & f(\boldsymbol{x}) \\ \text{s.t.} & g_i(\boldsymbol{x}) \leq 0, \quad i = 1, 2, \dots, m \\ & h_i(\boldsymbol{x}) = 0, \quad i = 1, 2, \dots, k \end{array}$$

1. f, g_i are convex functions 2. h_i are affine functions, i.e. $h_i(\mathbf{x}) = \mathbf{a}_i^T \mathbf{x} - b_i$ Domain. $D = \operatorname{dom} f \cap (\bigcap_{i=1}^m \operatorname{dom} g_i)$ Feasible set. $X = \{\mathbf{x} \in D : g_i(\mathbf{x}) \le 0, 1 \le i \le m; h_i(\mathbf{x}) = 0, 1 \le i \le k\}$ Optimal value. $f^* = \inf_{\mathbf{x} \in X} f(\mathbf{x})$ Optimal point. $x^* \in X$ and $f(\mathbf{x}^*) = f^*$, i.e. $f(\mathbf{x}^*) \le f(\mathbf{x}), \forall \mathbf{x} \in X$

First-order optimality condition

$$\nabla f(\boldsymbol{x}^*)^T(\boldsymbol{x}-\boldsymbol{x}^*) \ge 0, \quad \forall \boldsymbol{x} \in X$$

Recap: LP

General form	Standard form	Inequality form
$\min_{\boldsymbol{x}} \boldsymbol{c}^T \boldsymbol{x}$	$\min_{\boldsymbol{x}} \boldsymbol{c}^T \boldsymbol{x}$	$\min_{\boldsymbol{x}} \boldsymbol{c}^T \boldsymbol{x}$
s.t. <i>Bx</i> ≤ <i>d</i>	s.t. $Ax = b$	s.t. $Ax \leq b$
Ax = b	$x \ge 0$	

Conversion to equivalent problems

- introducing slack variables
- eliminating equality constraints
- epigraph form
- representing a variable by two nonnegative variables, $x = x^+ x^-$

Recap: Geometry of LP

- optimization of a linear function over a polyhedron
- graphic solution of simple LP

Contents

1. Some Canonical Problem Forms

- 1.1 QP and QCQP
- 1.2 Geometric Program

Quadratic Program (QP)

$$\min_{x} \quad \frac{1}{2}x^{T}Qx + c^{T}x$$

s.t. $Bx \leq d$
 $Ax = b$

QP is convex iff $Q \succeq O$.

Quadratically Constrained Quadratic Program (QCQP)

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{c}^T \mathbf{x}$$

s.t.
$$\frac{1}{2} \mathbf{x}^T \mathbf{Q}_i \mathbf{x} + \mathbf{c}_i^T \mathbf{x} + \mathbf{d}_i \le 0, \quad i = 1, 2, \dots, m$$
$$A\mathbf{x} = \mathbf{b}$$

QCQP is convex if $\boldsymbol{Q} \succeq \boldsymbol{O}$ and $\boldsymbol{Q}_i \succeq \boldsymbol{O}$, $\forall i$

Example: Linear Least Squares Regression

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, find $w \in \mathbb{R}^p$ s.t.

$$\min_{\boldsymbol{w}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_2^2$$

convex QP with objective

$$f(\boldsymbol{w}) = \boldsymbol{w}^T \boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} - 2\boldsymbol{y}^T \boldsymbol{X} \boldsymbol{w} + \boldsymbol{y}^T \boldsymbol{y}$$

Geometrically, we are looking for the orthogonal projection \hat{y} of y onto the column space of X.

Example: Linear Least Squares Regression (cont'd)

By the first-order optimality condition, w^* is optimal iff

 $\nabla f(\mathbf{w}^*) = \mathbf{0}$

i.e. w^* is a solution of the normal equation,

$$\boldsymbol{X}^T \boldsymbol{X} \boldsymbol{w} = \boldsymbol{X}^T \boldsymbol{y}$$

Case I. X has full column rank, i.e. $\operatorname{rank} X = p$

- $X^T X \succ O$
- unique solution

$$\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Note. In this case, the objective f(w) is strictly convex and coercive.

$$f(\boldsymbol{w}) \geq \lambda_{\min}(\boldsymbol{X}^T \boldsymbol{X}) \|\boldsymbol{w}\|^2 - 2\|\boldsymbol{y}^T \boldsymbol{X}\| \cdot \|\boldsymbol{w}\| + \|\boldsymbol{y}\|^2$$

Example: Linear Least Squares Regression (cont'd) Example. Solve

$$\min_{\boldsymbol{w}} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_2^2$$

with

$$\boldsymbol{X} = \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad \boldsymbol{y} = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}.$$

Solution. The normal equation is

$$X^T X w = X^T y$$

with

$$\boldsymbol{X}^{T}\boldsymbol{X} = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \quad \boldsymbol{X}^{T}\boldsymbol{y} = (6,2)^{T}$$

Since X has full column rank,

$$w^* = (X^T X)^{-1} X^T y = (1.5, 2)^T$$

Example: Linear Least Squares Regression (cont'd)

Case II. rank X = r < p. WLOG assume the first *r* columns are linearly independent, i.e.

$$\boldsymbol{X} = (\boldsymbol{X}_1, \boldsymbol{X}_2)$$

where $X_1 \in \mathbb{R}^{n \times r}$ and rank $X_1 = r$.

Claim. There is a solution w^* with the last p - r components being 0.

- X and X₁ have the same column space
- If w_1^* solves

$$\min_{\boldsymbol{w}_1\in\mathbb{R}^r}\|\boldsymbol{y}-\boldsymbol{X}_1\boldsymbol{w}_1\|$$

then
$$w^* = \begin{pmatrix} w_1^* \\ 0 \end{pmatrix}$$
 solves $\min_{w \in \mathbb{R}^p} \|y - Xw\|$
 $w_1^* = (X_1^T X_1)^{-1} X_1^T y$

Question. Is the solution unique in this case? A. rank X is also a solution. Example: Linear Least Squares Regression (cont'd) Example Solve $\min_{w} ||y - Xw||_2^2$ with

$$X = \begin{pmatrix} 2 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}, \quad y = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}.$$

Solution. Note $\operatorname{rank} X = 2 < 3$.

Let

$$\boldsymbol{X}_1 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$$

By the previous example,

$$w_1^* = (X_1^T X_1)^{-1} X_1^T y = (1.5, 2)^T$$

is a solution to $\min_{w_1 \in \mathbb{R}^2} \|y - X_1 w_1\|^2$. • $w^* = (1.5, 2, 0)^T$ is a solution to $\min_{w \in \mathbb{R}^3} \|y - Xw\|^2$.

Example: Linear Least Squares Regression (cont'd) Example (cont'd). The normal equation to the original problem is

$$X^T X w = X^T y$$

where

$$\boldsymbol{X}^{T}\boldsymbol{X} = \begin{pmatrix} 4 & 0 & 4 \\ 0 & 1 & -1 \\ 4 & -1 & 5 \end{pmatrix}, \quad \boldsymbol{X}^{T}\boldsymbol{y} = (6, 2, 4)^{T}$$

- Note $X^T X$ is not invertible, so we cannot use the formula¹ $w^* = (X^T X)^{-1} X^T y$
- The solution $w^* = (1.5, 2, 0)^T$ satisfies the normal equation.
- The normal equation has infinitely many solutions given by

$$w = (1.5, 2, 0)^T + \alpha (-1, 1, 1)^T, \quad \alpha \in \mathbb{R}.$$

All of them are solutions to the least squares problem.

¹This formula still applies if we use the so-called pseudo inverse of $X^T X$.

General Unconstrained QP

Minimize quadratic function with $Q \in \mathbb{R}^{n \times n}$ s.t. $Q \succeq O$,

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + c$$

By first-order condition, solution satisfies

$$\nabla f(\boldsymbol{x}) = \boldsymbol{Q}\boldsymbol{x} + \boldsymbol{b} = \boldsymbol{0}$$

Case I. $Q \succ O$. There is a unique solution $x^* = -Q^{-1}b$.

Example. $n = 2, \mathbf{Q} = \text{diag}\{1, 1\}, \mathbf{b} = (1, 0)^T, c = 0.$ $f(\mathbf{x}) = \frac{1}{2}(x_1, x_2) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + (1, 0) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + x_1$

The first-order condition becomes

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

which yields the unique optimal solution $x^* = (-1, 0)$.

General Unconstrained QP (cont'd)

Case II. det Q = 0 and $b \notin$ column space of Q. There is no solution, and $f^* = -\infty$.

Example. n = 2, $Q = \text{diag}\{0, 1\}$, $b = (1, 0)^T$, c = 0.

$$f(\mathbf{x}) = \frac{1}{2}(x_1, x_2) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + (1, 0) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{2}x_2^2 + x_1$$

The first-order condition becomes

$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

which has no solution.

It is easy to see that $f(\mathbf{x}) = \frac{1}{2}x_2^2 + x_1$ is unbounded below, so $f^* = -\infty$.

General Unconstrained QP (cont'd)

Case III. det Q = 0 and $b \in$ column space of Q. There are infinitely many solutions.

Example. n = 2, $Q = \text{diag}\{1, 0\}$, $b = (1, 0)^T$, c = 0.

$$f(\mathbf{x}) = \frac{1}{2}(x_1, x_2) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + (1, 0) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{2}x_1^2 + x_1$$

The first-order condition becomes

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

which has infinitely many solutions of the form $x = (-1, x_2)$ for any $x_2 \in \mathbb{R}^2$, as *f* is actually independent of x_2 .

General Unconstrained QP (cont'd)

For the general case (Q is non-diagonal),

• Diagonalize Q by an orthogonal matrix U, so

$$Q = U\Lambda U^T$$

where Λ is diagonal.

• Let x = Uy and $\tilde{b} = U^T b$. Then

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{y}^T \mathbf{U}^T \mathbf{Q} \mathbf{U} \mathbf{y} + \mathbf{b}^T \mathbf{U} \mathbf{y} + c = \frac{1}{2}\mathbf{y}^T \mathbf{\Lambda} \mathbf{y} + \tilde{\mathbf{b}}^T \mathbf{y} + c \triangleq g(\mathbf{y})$$

In the expanded form,

$$g(\mathbf{y}) = \sum_{i=1}^{n} \left(\frac{1}{2} \lambda_i y_i^2 + \tilde{b}_i y_i \right) + c$$

Minimizing *f*(*x*) is equivalent to minimizing *g*(*y*). We can minimize each term ¹/₂λ_iy²_i + *b*_iy_i independently.

Exercise. Convince yourself the previous three cases apply to the non-diagonal case.

Example: Lasso

Lasso (Least Absolute Shrinkage and Selection Operator)

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, t > 0,

 $\min_{\boldsymbol{w}} \quad \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{w}\|_{2}^{2}$ s.t. $\|\boldsymbol{w}\|_{1} \le t$

- convex problem? yes
- QP? no, but can be converted to QP
- optimal solution exists? yes
 - compact feasible set
- optimal solution unique?
 - yes if $n \ge p$ and X has full column rank ($X^T X \succ O$, strictly convex)
 - no in general, e.g. p > n and t is large enough for unconstrained optima to be feasible

Example: Ridge Regression

- optimal solution exists? yes
 - compact feasible set
- optimal solution unique?
 - ▶ yes if $n \ge p$ and X has full column rank ($X^T X \succ O$, strictly convex)
 - no in general

Example: SVM

Linearly separable case

$$\min_{\boldsymbol{w},b} \quad \frac{1}{2} \|\boldsymbol{w}\|^2$$

s.t. $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1, \quad i = 1, 2, \dots, m$

Soft margin SVM

$$\min_{\boldsymbol{w}, b, \boldsymbol{\xi}} \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^m \xi_i$$

s.t. $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \xi_i, \quad i = 1, 2, \dots, m$
 $\boldsymbol{\xi} \ge \boldsymbol{0}$

Equivalent unconstrained form

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + C \sum_{i=1}^{n} (1 - y_{i}b - y_{i}\boldsymbol{w}^{T}\boldsymbol{x}_{i})^{+}$$

Geometric Program

A monomial is a function $f:\mathbb{R}^n_{++}=\{\pmb{x}\in\mathbb{R}^n:\pmb{x}>\pmb{0}\}
ightarrow\mathbb{R}$ of the form

$$f(\boldsymbol{x}) = \gamma x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

for $\gamma > 0, a_1, \ldots, a_n \in \mathbb{R}$. A posynomial is a sum of monomials,

$$f(\mathbf{x}) = \sum_{k=1}^{p} \gamma_k x_1^{a_{k1}} x_2^{a_{k2}} \cdots x_n^{a_{kn}}$$

A geometric program (GP) is an optimization problem of the form

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s.t. $g_i(\mathbf{x}) \le 1, \quad i = 1, \dots, m$
 $h_j(\mathbf{x}) = 1, \quad j = 1, \dots, r$

where $f, g_i, i = 1, ..., m$ are posynomials and $h_j, j = 1, ..., r$ are monomials. The constraint x > 0 is implicit.

Geometric Program (cont'd)

GP is nonconvex (why?)

$$\min_{\mathbf{x}} \quad \sum_{k=1}^{p_0} \gamma_{0k} x_1^{a_{0k1}} x_2^{a_{0k2}} \cdots x_n^{a_{0kn}} \\ \text{s.t.} \quad \sum_{k=1}^{p_i} \gamma_{ik} x_1^{a_{ik1}} x_2^{a_{ik2}} \cdots x_n^{a_{ikn}} \le 1, \quad i = 1, \dots, m \\ \eta_j x_1^{c_{j1}} x_2^{c_{j2}} \cdots x_n^{c_{jn}} = 1, \quad j = 1, \dots, r$$

By $y_i = \log x_i$, $b_{ik} = \log \gamma_{ik}$, $d_j = \log \eta_j$, GP can be formulated as

$$\begin{split} \min_{\mathbf{y}} & \log\left(\sum_{k=1}^{p_0} e^{\boldsymbol{a}_{0k}^T \mathbf{y} + b_{0k}}\right) \\ \text{s.t.} & \log\left(\sum_{k=1}^{p_i} e^{\boldsymbol{a}_{ik}^T \mathbf{y} + b_{ik}}\right) \leq 0, \quad i = 1, \dots, m \\ & \boldsymbol{c}_j^T \mathbf{y} + d_j = 0, \quad j = 1, \dots, r \end{split}$$

This is convex by the convexity of log-sum-exp (soft max) functions