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Recap: Convex Optimization Problem

min f(x)

X

st gx) <0, i=12,....m
hi(x) =0, i=12,... .k

1. f, gi are convex functions
2. h; are affine functions, i.e. h;j(x) = alx — b;

Domain. D = domf N (., dom g;)

Feasibleset. X ={x € D: gi(x) < 0,1 <i<m;hi(x)=0,1<i<k}
Optimal value. f* = ilel)f(f(x)

Optimal point. x* € X and f(x*) = f*, i.e. f(x*) < f(x),Vx € X
First-order optimality condition

Vi) (x —x*) >0, VrxeX



Recap: LP

General form Standard form Inequality form
min ¢'x min ¢'x min ¢’x
X X X
st. Bx<d st. Ax=b> st. Ax<b
Ax =b x>0

Conversion to equivalent problems
e introducing slack variables
¢ eliminating equality constraints
® epigraph form
e representing a variable by two nonnegative variables, x = x™ — x~



Recap: Geometry of LP

) T min  —x; — 3x
min c¢'x x
X
st. x1+x <6
st. Ax<b i =
—x1+2x <8
xlaXZZO

e optimization of a linear function over a polyhedron

e graphic solution of simple LP
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Quadratic Program (QP)

1
min  —x'Qx +c’x
x 2

st. Bx <d
Ax =0b

QP is convex iff Q = O.




Quadratically Constrained Quadratic Program (QCQP)

1
min  —x'Qx +c’x
x 2

s.t. ExTQix-i-ciTx—l-d,- <0, i=1,2,....m
Ax=0»b

QCQP is convex if Q = O and Q, = 0, Vi
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Example: Linear Least Squares Regression
Giveny e R", X € R, find w € R? s.t.

min [y — Xw|3

e convex QP with objective
fow) =wXTXxw — 29T Xw +yTy

Geometrically, we are looking for the orthogonal projection y of y onto
the column space of X.

y
/Ty—XW*

*

0 y=Xw

column space of X




Example: Linear Least Squares Regression (cont’d)
By the first-order optimality condition, w* is optimal iff
Viw*) =0
i.e. w* is a solution of the normal equation,
XT'xw =X"y
Case I. X has full column rank, i.e. rankX = p

e XX -0

® unique solution
w* — (XTX)_ley

Note. In this case, the objective f(w) is strictly convex and coercive.

F#) = X XX w[* = 2y X[ - [wl] + [y



Example: Linear Least Squares Regression (cont’d)

Example. Solve
min [ly — Xw|}

with

Solution. The normal equation is
XTxw = X"y
with

XTX:<g (1)) X7y = (6,2)7

Since X has full column rank,

w' = (X"X)"'XxTy = (1.5,2)7



Example: Linear Least Squares Regression (cont’d)

Case Il. rank X = r < p. WLOG assume the first r columns are linearly
independent, i.e.
X = (X1,X»)

where X| € R™" and rank X; = r.

Claim. There is a solution w* with the last p — r components being 0.
® X and X, have the same column space

e If w} solves

in [ly — X
Jnin, [y — Xiwi |

*

then w* = (";}1> solves miny,cpe ||y — Xw||

° wi = (X{X,)"'X]y

Question. Is the solution unique in this case?
A.rankX < p = dwg s.t. Xwo =0 — w* + wy is also a solution.



Example: Linear Least Squares Regression (cont’d)
Example Solve min,, |y — Xw/||3 with

3

21.

2

2.0 2
xX=|01 -1, y=
00 0

Solution. Note rank X =2 < 3.

o |et

¢ By the previous example,

S O N

S = O
N~ —

wi = (X[X1)"'Xy = (1.5,2)"

is a solution to min,, ¢g> [ly — X1wi|%.
e w* = (1.5,2,0)7 is a solution to min,,cgs |ly — Xw||>.



Example: Linear Least Squares Regression (cont’d)

Example (cont'd). The normal equation to the original problem is

XTxw = X"y
where
4 0 4
Xx=(0 1 —-1], X'y=(6,2,4)"
4 -1 5

¢ Note X”X is not invertible, so we cannot use the formula’
wt = (XTX)—ley
 The solution w* = (1.5,2,0)7 satisfies the normal equation.
e The normal equation has infinitely many solutions given by
w=(152,0"+a(-1,1,1)), acR.

All of them are solutions to the least squares problem.

"This formula still applies if we use the so-called pseudo inverse of X" X.



General Unconstrained QP

Minimize quadratic function with Q € R"*" s.t. Q = O,
1
min f(x) = ExTQx +b'x+c
X
By first-order condition, solution satisfies

Vi(x)=Qx+b=0

Case |I. Q = 0. There is a unique solution x* = —Q~'b.

Example. n =2, @ = diag{1,1},b = (1,0)7, c = 0.

1 1
1) = 3 01,2) (é ?) (2) +(1,0) G;) =t + g+

The first-order condition becomes

1) () )- ()

which yields the unique optimal solution x* = (—1



General Unconstrained QP (cont’d)

Case Il. det @ = 0 and b ¢ column space of Q. There is no solution,
and f* = —oc.

Example. n = 2, Q = diag{0, 1}, b = (1,0)7, ¢ = 0.

=g (o 1) () + 0.0 (3) = pi+m
The first-order condition becomes
00 ()+6) =)
0 1) \x 0 0
which has no solution.

It is easy to see that f(x) = 1x3 + x; is unbounded below, so f* = —cc.



General Unconstrained QP (cont’d)

Case lll. det @ = 0 and b € column space of Q. There are infinitely
many solutions.

Example. n = 2, Q = diag{1,0}, b = (1,0)7, c = 0.

. 1 1 0 X1 X1\ 1 2
flx)= E(XI’XZ) (0 O) <x2> +(1,0) <x2> =51 + x1
The first-order condition becomes
10\ (x) (1) _ (0
0 0) \x 0/ \O
which has infinitely many solutions of the form x = (—1, x,) for any
xy € R?, as f is actually independent of x;.



General Unconstrained QP (cont’d)

For the general case (Q is non-diagonal),
¢ Diagonalize Q by an orthogonal matrix U, so
0 =UAUT
where A is diagonal.
e Letx =Uyandb = U"b. Then
1 1 -
fx) = 5y"UTQUY +b"Uy +c = 2y Ay +b'y + ¢ £ 50y)
In the expanded form,
gly) = Zl (;)\iyiz + 151%‘) +c

* Minimizing f(x) is equivalent to minimizing g(y). We can minimize
each term J\y? + b;y; independently.

Exercise. Convince yourself the previous three cases apply to the
non-diagonal case.



Example: Lasso
Lasso (Least Absolute Shrinkage and Selection Operator)

Giveny e R", X € R"™P, ¢t > 0,

y
min [y — Xw|}3 /E
w

st | wli <t

convex problem? yes
QP? no, but can be column space of X
converted to QP
optimal solution exists? yes

> compact feasible set

optimal solution unique?
» yes if n > p and X has full column rank (X”X > 0, strictly convex)
» noin general, e.g. p > n and ¢ is large enough for unconstrained
optima to be feasible



Example: Ridge Regression

Giveny e R", X € R"™P ¢t > 0,

: _ 2
min |y — Xwlf3

st w3 <t

convex problem? yes
QCQP? yes

column space of X

optimal solution exists? yes
» compact feasible set

optimal solution unique?

» yesif n > p and X has full column rank (XX > 0, strictly convex)
»> no in general



Example: SVM
Linearly separable case
R ST
v g
s.t. yiwlx;+b)>1, i=1,2,...,m

Soft margin SVM

1 -
min gIE+C g
=
st ywlxi+b)>1-¢, i=1,2,....m
£>0
Equivalent unconstrained form

1 -
min 5 w3+ C (1= yib = yw'xi)*

i=1



Geometric Program
A monomial is a function f : R , = {x € R" : x > 0} — R of the form

a,

fx) = oy g

a, € R. A posynomial is a sum of monomials,

§ ,.kaaklxakz .. kn

A geometric program (GP) is an optimization problem of the form

fory >0,a,...,

min f(x)
X
s.te gilx) <1, i=1,....m

where f,g;,i = 1,...,m are posynomials and ;,j = 1,...,r are

monomials. The constraint x > 0 is implicit.



Geometric Program (cont’d)

GP is nonconvex (why?)

a a, : .
E ,yth tkl lk2 . lekn S 1’ 1= 17...’m

C Cij; .
njxlﬂxz’z- xit=1, j=1,...r

By yi = logx;, bix = log i, d;j = log n;, GP can be formulated as

Po
min log <Z eagky+b0k>
y

k=1

Pi
s.t. log <Zeai§y+b""> <0, i=1,...,m

k=1
¢y+di=0, j=1,...r

This is convex by the convexity of log-sum-exp (soft max) functions
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