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Recap: Gradient Descent, L-Lipschitz, L-smoothness

Gradient descent
1: initialization x < xo € R”
2: while || Vf(x)|| > 6 do
3 x «—x —1tVf(x)
4: end while
5: return x

L-Lipschitz
1f(e) =fOIl < Llle —yll,  vx,y

L-smoothness

IVF(x) = VIOl < Llx —yll, Vx,y

A twice continuously differentiable function f : R* — R is L-smooth iff
|A| < L for all eigenvalues X of V3f(x) at all x. If f is convex, then the
condition becomes Ay (V3f(x)) < L.



Recap: Consequences of L-smoothness
e Quadratic upper bound
L
F) <) + V)"0 —x) + Sy — x|

e Gradient descent with constant step size ¢ € (0, ;] satisfies
t
Fon) = fara) = S 1VF o)l
e If f* = inf f(x) is finite,

N
S IVAEI? < 2lfxn) )] < 00, YN

k=0
SO
lim Vf(x;) = 0
k—o00

Note. No assertion about the convergence of f(x;) and x;.



Today

e convergence analysis
e strong convexity
e condition number



Convergence Analysis

Theorem. If f is convex and L-smooth, and x* is a minimum of f, then

for step size € (0, 1], the sequence {x,} produced by the gradient
descent algorithm satisfies

_ o — x|

fln) —fl) < O
Notes.

® f(xx) L fFask — oo.

¢ Any limiting point of x; is an optimal solution.

® The rate of convergence is O(1/k), i.e. # of iterations to guarantee
flxx) —f(x*) <eis O(1/e). Fore = 1077, k = O(107), exponential
in the number of significant digits!

e Faster convergence with larger ¢; best r = % but L is unknown.

e Good initial guess helps.



Proof
1. By the basic gradient step x;+; = x; — tVf(xx),

bt — x> = e — 19 (i) —x*|?

= [P —x*(* + 2|V i) |I* + 209 () (6" — x)
2. By the first-order condition for convexity,
V()" (" — xi) < () = f )
3. Plugging 2 into 1,
e =212 < e = 2|2 + 2V (i) 12+ 26 () — £ (x)]
4. Plugging in 4[|Vf(x)[|* < f(xx) — f(xk41) from slide 2,

et — x| < e — x| + 20 (6) = f (1))



Proof (cont'd)
5. Rearranging,

o =22 = g — 22

fxer) —fx) < 5

6. Summing over k fromOto N — 1,

N—1
o =P — ey = oo — P

D [Flersr) —f(x)] < 5, T

k=0

7. Recalling the descent property f(xi+1) < f(xk),

< o=

N—1
Flaw) — 1) < ;kgﬂwml) —fl) < P



Fast Convergence

The following f is 12-smooth,

2
flx) = 6x
6
Lot — flx) = 6(1 — 12t)**a}
_ 41 T
£ T
= —
2 5 10~
=
1010
0 1 T T T T T
-1.0 -0.5 0.0 0.5 1.0 0 9 4 6 3
X iteration (k)

For small enough step size ¢ (e.g. 0.1),
) = 6x3(1 — 126)%

Need O(log 1) iterations to get within e from optimal.



Slow Convergence

The following f is also 12-smooth,

£(0) Xt if x| <1
X)) =
4lx| =3, if|x[>1

1.0 1 100 4
0.8
N 1072
06 =
S | g
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g
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2 N X
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10° 10t 10? 10° 10*
iteration (k)

X

For xo € (0, 1), small enough step size ¢ (e.g. 0.1), and large «,
1 1
Xp ~ ——, Xp) ~ —=
k /781‘]( f( k) (8[k)2

Need O(1//¢) iterations to get within ¢ from optimal value (i.e. 0).



Strong Convexity

A function f is strongly convex with parameter m > 0, or simply
m-strongly convex, if

Fle) = £x) = Sl

is convex.

Note. f(x) = 2|x||> + f(x), i.e. f is 2|x||? plus an extra convex term.
Informally, “m-strongly convex” means at least as “convex” as % ||x||*.

Example. f(x) = £|x||* is m-strongly convex iff a > m

flx) = %(11.\’2, ay >m
1) = b

flx) = %azxz, a <m

X



Strong Convexity (cont’d)

Example. f(x) = a’x is not m-strongly convex for any m > 0, as
f(x) = a’x — %|x||* is concave.

Example. f(x) = x* is not m-strongly convex for any m > 0, as
f(x) = x* — Zx? is not convex,

f'x)=12x* —m <0

for |x| < \/m/12.




First-order Condition

A differentiable f is m-strongly convex iff
T m 2
fO) 2 flx) + Vi) o —x) + Sl —ylI% vy

A

f)
)+ V) (v —x) + 2]y — x|’
*fx) + V) (v —x)

—
L
-’
-

l<V

® strong convexity = strict convexity = convexity
* m-strong convexity and L-smoothness together imply

e =y <10) /) — V) = %) < Sl -y



Proof
1. By definition,

f is m-strongly convex <= f(x) =f(x) — %quz is convex
2. By first-order condition for convexity,

= f) > F(x) + Vi) —x), Vxy

3. Noting Vf(x) = Vf(x) — mx,
= ) = Z I 2 £ ) = Z el + (V) = me) (y =), Vi,
4. Rearranging and using y’y —x"x — 2xT(y —x) = (y —x)T(y — x),

= f) 2 f0) + V@) 0 —x) + Tl -yl iy



Second-order Condition

A twice continuously differentiable f is m-strongly convex iff
V3 (x) = ml, Vx

or equivalently, the smallest eigenvalue of V?f(x) satisfies

)\min(sz(x)) >m, Vx

Proof. f(x) = f(x) — 2|\x||* is convex iff V?f(x) = V2f(x) — mI = O

Example. With Q — (1 0

. l 1 .
0 2), we obtain f(x) = 1x"0x = Jx7 + x3 is

1-strongly convex.

More generally, f(x) = 3x”Qx with Q = O is Awin(Q)-strongly convex,
where \nin (Q) is the smallest eigenvalue of Q.



Convergence: 1D Example

f(x) = 1mx® with m > 0 is both m-smooth and m-strongly convex..
Recall the gradient descent step is
X1 = X — 1 () = (1 — mit)xy
and x; — x* = 0iff r € (0, 2).
If + = L, it gets to x* in one step.

Forre (0,1)u (L, 2),
xe = (1 —mt)kxg

so both x;, — x* and f(x;) — f(x*) exponentially fast,
e — x| = (1 —mn)* - |xo — x|

m(1 — mr)*
) — 1)) = " g



Convergence Analysis

Theorem. If f is m-strongly convex and L-smooth, and x* is a minimum
of f, then for step size € (0, 1], the sequence {x;} produced by the
gradient descent algorithm satisfies

_ mi)t
fle) ey < LM

b — 7|12 < (1 = mo)*lxo —x7||?

xp —x*|)?

Notes.
*0<1-7F<1—mt<1,80x; —x*andf(xi) — f(x*)
exponentially fast

e The number of iterations to reach f(x;) — f(x*) < e is O(log 1). For
e = 1077, k = O(p), linear in the number of significant digits!

¢ Since Vf(x*) = 0, the bounds on slide 11 yield
L
Tl = %12 < f) = fx) < 5w — x|

relating the bounds on |jx; — x*||> and those on f(x;) — f(x*)



Proof

Similar to proof without strong convexity, with difference highlighted.
1. By the basic gradient step x4+ = xx — tVf(xx),

ekt —x*|2 = ek — 1V (i) — x|
=l — 2|2 + 2V ) IP + 209 () (" — x0)
2. By m-strong convexity
Vo) (" —x0) < S () — o) = 7 o -
3. Plugging 2 into 1,
Pt =212 < (1) g — x| + 2| Vf (i) | + 26[f (x*) — f (x)]
4. Plugging in f(xcs1) < f(xx) — 4I|Vf(xe)|2 from slide 2,
et — 22 < (L) |l — 27|17+ 26[f () — f (1))
5. Since f(x*) < f(xis1).

et — (1> < (1mi) g — x|



Convergence: 2D Quadratic Function

1 m 0
o) =or 0= (7 7)
where L > m > 0. f is L-smooth and m-strongly convex. x* = 0.

The gradient descent step is
Xpt+1 = X — tVf(xk) = (I — tQ)xk

SO

— mt)kx
x; = (I — 1Q)*xy = [((11 - Ltt))kx(?zl]

and

m L
flxx) = 5(1 — mit)* x5, + 5(1 — L1)*xg,

To ensure convergence, ¢ < % The convergence rate is determined by

the slower of (1 — Lt)?* and (1 — mz)?*.



Convergence: 2D Quadratic Function (cont'd)
To maximize convergence rate, solve

min  max{|l — L[, |1 — mt|}
t

s.t. 0<r<2/L

1

1

1 1 >
2 t 1 2 t
L L L m

Maximum rate achieved by | —mt =Lt—1 — t =

|-

L
L

—2_in which case

mtL?
w=(E) [P = et (55 b
2k
o) 1) = (T ) o) 1)

Depends on x(Q) = Amax(Q) _ L

= 5220y = m» the condition number of @



Condition Number
For a matrix @ € R™" s.t. Q > 0, its condition number’ is defined as

Amax (@)
)\min(Q)

It characterizes how stretched the level curves of f(x) = 1x"Qx are.

r(Q) =

Example. @ = diag{, 1}, f(x1,x2) = 321 + 3.3

T ———— >

Q =diag{l, 1} Q = diag{0.01,1}
K(Q) =1 (Q) = 100

Nondiagonal case reduces to diagonal case in eigenbasis of Q.

For nonquadratic case, x(V>f(x)) plays a similar role.

For a general nonsingular matrix, the condition number is the ratio between its
largest and smallest singular values, K(A) = omax(A)/Tmin(A).



Well-conditioned Problem

The problem min 1x”Qx is well-conditioned if x(Q) is small.
X

Example. @ = diag{0.5, 1}, f(x1,x2) = % + 1x3, K(Q) = 2
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Fast convergence: for xo = (2,1)7,¢ = 1.2, and large «,

Fle) ~ Z(1 = mohg; = (0.4



[ll-conditioned Problem

The problem min %xTQx is ill-conditioned if x(Q) is large.
X

Example. @ = diag{0.01, 1}, f(x1,x2) = 55527 + 323, £(Q) = 100
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Slow convergence (relatively): for xo = (2,1)7,¢ = 1.2, and large «,

flxg) ~ %(1 —mt)*x3, = i(0.988)2"



lll-conditioned Problem (cont'd)
flo ) = 35T @r = 2ood + 18, @ = diag{0.01,1}, £(Q) = 100

e l-smooth = To guarantee convergence, step size® r < 2

¢ This limit is imposed by movement along e, direction

¢ Too pessimistic along other directions, e.g. along e, can use
t <200

WS (ter) uf(te2)

o~

t t

2We proved convergence for ¢ € (0, 1/L]. The proofs can be modified slightly to
show convergence for ¢ € (0,2/L).



lll-condition Problem (cont'd)

The negative gradient direction is far away from the “ideal” direction for
ill-conditioned problem.

For Q = diag{~, 1}, f(x1,x2) = szQ x = It + % 2,
negative gradient direction

~Vf(x) = =Qx = (—yx1, —x2)"

“ideal” direction
d=—x

Q = diag{0.01, 1}
Q = diag{1, 1} #(Q) = 100
K(Q) =1




