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Recap: Gradient Descent, L-Lipschitz, L-smoothness
Gradient descent

1: initialization x← x0 ∈ Rn

2: while ‖∇f (x)‖ > δ do
3: x← x− t∇f (x)
4: end while
5: return x

L-Lipschitz
‖f (x)− f (y)‖ ≤ L‖x− y‖, ∀x, y

L-smoothness

‖∇f (x)−∇f (y)‖ ≤ L‖x− y‖, ∀x, y

A twice continuously differentiable function f : Rn → R is L-smooth iff
|λ| ≤ L for all eigenvalues λ of ∇2f (x) at all x. If f is convex, then the
condition becomes λmax(∇2f (x)) ≤ L.
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Recap: Consequences of L-smoothness
• Quadratic upper bound

f (y) ≤ f (x) +∇f (x)T(y− x) +
L
2
‖y− x‖2

• Gradient descent with constant step size t ∈ (0, 1
L ] satisfies

f (xk)− f (xk+1) ≥
t
2
‖∇f (xk)‖2

• If f ∗ = inf f (x) is finite,

N∑
k=0

‖∇f (xk)‖2 ≤ 2
t
[f (x0)− f ∗)] <∞, ∀N

so
lim

k→∞
∇f (xk) = 0

Note. No assertion about the convergence of f (xk) and xk.
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Today
• convergence analysis
• strong convexity
• condition number
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Convergence Analysis
Theorem. If f is convex and L-smooth, and x∗ is a minimum of f , then
for step size t ∈ (0, 1

L ], the sequence {xk} produced by the gradient
descent algorithm satisfies

f (xk)− f (x∗) ≤ ‖x0 − x∗‖2

2tk

Notes.
• f (xk) ↓ f ∗ as k→∞.

• Any limiting point of xk is an optimal solution.

• The rate of convergence is O(1/k), i.e. # of iterations to guarantee
f (xk)− f (x∗) ≤ ε is O(1/ε). For ε = 10−p, k = O(10p), exponential
in the number of significant digits!

• Faster convergence with larger t; best t = 1
L , but L is unknown.

• Good initial guess helps.
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Proof

1. By the basic gradient step xk+1 = xk − t∇f (xk),

‖xk+1 − x∗‖2 = ‖xk − t∇f (xk)− x∗‖2

= ‖xk − x∗‖2 + t2‖∇f (xk)‖2 + 2t∇f (xk)
T(x∗ − xk)

2. By the first-order condition for convexity,

∇f (xk)
T(x∗ − xk) ≤ f (x∗)− f (xk)

3. Plugging 2 into 1,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + t2‖∇f (xk)‖2 + 2t[f (x∗)− f (xk)]

4. Plugging in t
2‖∇f (xk)‖2 ≤ f (xk)− f (xk+1) from slide 2,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 + 2t[f (x∗)− f (xk+1)]
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Proof (cont’d)

5. Rearranging,

f (xk+1)− f (x∗) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2

2t

6. Summing over k from 0 to N − 1,

N−1∑
k=0

[f (xk+1)− f (x∗)] ≤ ‖x0 − x∗‖2 − ‖xN − x∗‖2

2t
≤ ‖x0 − x∗‖2

2t

7. Recalling the descent property f (xk+1) ≤ f (xk),

f (xN)− f (x∗) ≤ 1
N

N−1∑
k=0

[f (xk+1)− f (x∗)] ≤ ‖x0 − x∗‖2

2tN
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Fast Convergence
The following f is 12-smooth,

f (x) = 6x2
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x
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f(x
)
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iteration (k)

10−10
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10−1

f
(x
k
)
−
f

(x
∗ )

f(xk) = 6(1− 12t)2kx2
0

For small enough step size t (e.g. 0.1),

f (xk) = 6x2
0(1− 12t)2k

Need O(log 1
ε ) iterations to get within ε from optimal.
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Slow Convergence
The following f is also 12-smooth,

f (x) =

{
x4, if |x| ≤ 1
4|x| − 3, if |x| ≥ 1
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(8tk)−2

For x0 ∈ (0, 1), small enough step size t (e.g. 0.1), and large k,

xk ∼
1√
8tk

, f (xk) ∼
1

(8tk)2

Need O(1/
√
ε) iterations to get within ε from optimal value (i.e. 0).
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Strong Convexity
A function f is strongly convex with parameter m > 0, or simply
m-strongly convex, if

f̃ (x) = f (x)− m
2
‖x‖2

is convex.

Note. f (x) = m
2 ‖x‖2 + f̃ (x), i.e. f is m

2 ‖x‖2 plus an extra convex term.
Informally, “m-strongly convex” means at least as “convex” as m

2 ‖x‖2.

Example. f (x) = a
2‖x‖2 is m-strongly convex iff a ≥ m

x

f (x) = 1
2 a1x2, a1 > m

f (x) = 1
2 mx2

f (x) = 1
2 a2x2, a2 < m
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Strong Convexity (cont’d)
Example. f (x) = aTx is not m-strongly convex for any m > 0, as
f̃ (x) = aTx− m

2 ‖x‖2 is concave.

Example. f (x) = x4 is not m-strongly convex for any m > 0, as
f̃ (x) = x4 − m

2 x2 is not convex,

f̃ ′′(x) = 12x2 − m < 0

for |x| <
√

m/12.

x

m
2 x2

f (x) = x4

x

f̃ (x)
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First-order Condition
A differentiable f is m-strongly convex iff

f (y) ≥ f (x) +∇f (x)T(y− x) +
m
2
‖x− y‖2, ∀x, y

y

f (y)

f (x) +∇f (x)T(y− x)

f (x) +∇f (x)T(y− x) + m
2 ‖y− x‖2

(x, f (x))

• strong convexity =⇒ strict convexity =⇒ convexity
• m-strong convexity and L-smoothness together imply

m
2
‖x− y‖2 ≤ f (y)− f (x)−∇f (x)T(y− x) ≤ L

2
‖x− y‖2
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Proof

1. By definition,

f is m-strongly convex ⇐⇒ f̃ (x) = f (x)− m
2
‖x‖2 is convex

2. By first-order condition for convexity,

⇐⇒ f̃ (y) ≥ f̃ (x) +∇f̃ (x)T(y− x), ∀x, y

3. Noting ∇f̃ (x) = ∇f (x)− mx,

⇐⇒ f (y)− m
2
‖y‖2 ≥ f (x)− m

2
‖x‖2 + (∇f (x)−mx)T(y− x), ∀x, y

4. Rearranging and using yTy− xTx− 2xT(y− x) = (y− x)T(y− x),

⇐⇒ f (y) ≥ f (x) +∇f (x)T(y− x) +
m
2
‖x− y‖2, ∀x, y
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Second-order Condition
A twice continuously differentiable f is m-strongly convex iff

∇2f (x) � mI, ∀x

or equivalently, the smallest eigenvalue of ∇2f (x) satisfies

λmin(∇2f (x)) ≥ m, ∀x

Proof. f̃ (x) = f (x)− m
2 ‖x‖2 is convex iff ∇2 f̃ (x) = ∇2f (x)− mI � O

Example. With Q =

(
1 0
0 2

)
, we obtain f (x) = 1

2 xTQx = 1
2 x2

1 + x2
2 is

1-strongly convex.

More generally, f (x) = 1
2 xTQx with Q � O is λmin(Q)-strongly convex,

where λmin(Q) is the smallest eigenvalue of Q.
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Convergence: 1D Example
f (x) = 1

2 mx2 with m > 0 is both m-smooth and m-strongly convex..

Recall the gradient descent step is

xk+1 = xk − tf ′(xk) = (1− mt)xk

and xk → x∗ = 0 iff t ∈ (0, 2
m).

If t = 1
m , it gets to x∗ in one step.

For t ∈ (0, 1
m) ∪ ( 1

m ,
2
m),

xk = (1− mt)kx0

so both xk → x∗ and f (xk)→ f (x∗) exponentially fast,

|xk − x∗| = (1− mt)k · |x0 − x∗|

|f (xk)− f (x∗)| = m(1− mt)2k

2
|x0 − x∗|2
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Convergence Analysis
Theorem. If f is m-strongly convex and L-smooth, and x∗ is a minimum
of f , then for step size t ∈ (0, 1

L ], the sequence {xk} produced by the
gradient descent algorithm satisfies

f (xk)− f (x∗) ≤ L(1− mt)k

2
‖x0 − x∗‖2

‖xk − x∗‖2 ≤ (1− mt)k‖x0 − x∗‖2

Notes.
• 0 ≤ 1− m

L ≤ 1− mt < 1, so xk → x∗ and f (xk)→ f (x∗)
exponentially fast

• The number of iterations to reach f (xk)− f (x∗) ≤ ε is O(log 1
ε ). For

ε = 10−p, k = O(p), linear in the number of significant digits!

• Since ∇f (x∗) = 0, the bounds on slide 11 yield

m
2
‖xk − x∗‖2 ≤ f (xk)− f (x∗) ≤ L

2
‖xk − x∗‖2

relating the bounds on ‖xk − x∗‖2 and those on f (xk)− f (x∗)
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Proof
Similar to proof without strong convexity, with difference highlighted.

1. By the basic gradient step xk+1 = xk − t∇f (xk),

‖xk+1 − x∗‖2 = ‖xk − t∇f (xk)− x∗‖2

= ‖xk − x∗‖2 + t2‖∇f (xk)‖2 + 2t∇f (xk)
T(x∗ − xk)

2. By m-strong convexity

∇f (xk)
T(x∗ − xk) ≤ f (x∗)− f (xk)−

m
2
‖xk − x∗‖2

3. Plugging 2 into 1,

‖xk+1 − x∗‖2 ≤ (1−mt)‖xk − x∗‖2 + t2‖∇f (xk)‖2 + 2t[f (x∗)− f (xk)]

4. Plugging in f (xk+1) ≤ f (xk)− t
2‖∇f (xk)‖2 from slide 2,

‖xk+1 − x∗‖2 ≤ (1−mt)‖xk − x∗‖2 + 2t[f (x∗)− f (xk+1)]

5. Since f (x∗) ≤ f (xk+1),

‖xk+1 − x∗‖2 ≤ (1−mt)‖xk − x∗‖2
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Convergence: 2D Quadratic Function

f (x) =
1
2

xTQx, Q =

(
m 0
0 L

)
where L > m > 0. f is L-smooth and m-strongly convex. x∗ = 0.

The gradient descent step is

xk+1 = xk − t∇f (xk) = (I − tQ)xk

so

xk = (I − tQ)kx0 =

[
(1− mt)kx01
(1− Lt)kx02

]
and

f (xk) =
m
2
(1− mt)2kx2

01 +
L
2
(1− Lt)2kx2

02

To ensure convergence, t < 2
L . The convergence rate is determined by

the slower of (1− Lt)2k and (1− mt)2k.
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Convergence: 2D Quadratic Function (cont’d)
To maximize convergence rate, solve

min
t

max{|1− Lt|, |1− mt|}

s. t. 0 < t < 2/L

t1
L

2
L

1
m

t1
L

2
L

1
m

Maximum rate achieved by 1−mt = Lt− 1 =⇒ t = 2
m+L , in which case

xk =

(
L− m
L + m

)k [ x01
(−1)kx02

]
=⇒ ‖xk − x∗‖2 =

(
L− m
L + m

)k

‖x0 − x∗‖2

f (xk)− f (x∗) =
(

L− m
L + m

)2k

[f (x0)− f (x∗)]

Depends on κ(Q) = λmax(Q)
λmin(Q) = L

m , the condition number of Q
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Condition Number
For a matrix Q ∈ Rn×n s.t. Q � O, its condition number1 is defined as

κ(Q) =
λmax(Q)

λmin(Q)

It characterizes how stretched the level curves of f (x) = 1
2 xTQx are.

Example. Q = diag{γ, 1}, f (x1, x2) =
γ
2 x2

1 +
1
2 x2

2

Q = diag{1, 1}
κ(Q) = 1

Q = diag{0.01, 1}
κ(Q) = 100

Nondiagonal case reduces to diagonal case in eigenbasis of Q.

For nonquadratic case, κ(∇2f (x)) plays a similar role.

1For a general nonsingular matrix, the condition number is the ratio between its
largest and smallest singular values, κ(A) = σmax(A)/σmin(A).
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Well-conditioned Problem
The problem min

x
1
2 xTQx is well-conditioned if κ(Q) is small.

Example. Q = diag{0.5, 1}, f (x1, x2) =
1
4 x2

1 +
1
2 x2

2, κ(Q) = 2

2 1 0 1 2
x1
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0.5

0.0

0.5

1.0

1.5

x2

0.0 2.5 5.0 7.5 10.0 12.5

iteration (k)

10−9

10−7

10−5

10−3

10−1

er
ro

r f
(x

k)
f(x

* )

Fast convergence: for x0 = (2, 1)T , t = 1.2, and large k,

f (xk) ∼
m
2
(1− mt)2kx2

01 = (0.4)2k
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Ill-conditioned Problem
The problem min

x
1
2 xTQx is ill-conditioned if κ(Q) is large.

Example. Q = diag{0.01, 1}, f (x1, x2) =
1

200 x2
1 +

1
2 x2

2, κ(Q) = 100

10 5 0 5 10
x1

2.5
0.0
2.5

x2

1.4 1.6 1.8 2.0
x1

0.5

0.0

0.5

x2

Slow convergence (relatively): for x0 = (2, 1)T , t = 1.2, and large k,

f (xk) ∼
m
2
(1− mt)2kx2

01 =
1
50

(0.988)2k
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Ill-conditioned Problem (cont’d)

f (x1, x2) =
1
2

xTQx =
1

200
x2

1 +
1
2

x2
2, Q = diag{0.01, 1}, κ(Q) = 100

• 1-smooth =⇒ To guarantee convergence, step size2 t < 2
• This limit is imposed by movement along e2 direction
• Too pessimistic along other directions, e.g. along e1, can use

t < 200

t

f (te1)

t

f (te2)

2We proved convergence for t ∈ (0, 1/L]. The proofs can be modified slightly to
show convergence for t ∈ (0, 2/L).
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Ill-condition Problem (cont’d)
The negative gradient direction is far away from the “ideal” direction for
ill-conditioned problem.

For Q = diag{γ, 1}, f (x1, x2) =
1
2 xTQx = γ

2 x2
1 +

1
2 x2

2,

negative gradient direction

−∇f (x) = −Qx = (−γx1,−x2)
T

“ideal” direction
d = −x

Q = diag{1, 1}
κ(Q) = 1

? ?

Q = diag{0.01, 1}
κ(Q) = 100


