CS257 Linear and Convex Optimization Lecture 9

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

November 2, 2020

Recap: Gradient Descent, L-Lipschitz, L-smoothness

Gradient descent

- 1: initialization $x \leftarrow x_0 \in \mathbb{R}^n$
- 2: while $\|\nabla f(\mathbf{x})\| > \delta$ do
- 3: $\boldsymbol{x} \leftarrow \boldsymbol{x} t \nabla f(\boldsymbol{x})$
- 4: end while
- 5: **return** *x*

L-Lipschitz

$$\|f(\mathbf{x}) - f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|, \quad \forall \mathbf{x}, \mathbf{y}$$

L-smoothness

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \le L \|\mathbf{x} - \mathbf{y}\|, \quad \forall \mathbf{x}, \mathbf{y}$$

A twice continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ is *L*-smooth iff $|\lambda| \leq L$ for all eigenvalues λ of $\nabla^2 f(\mathbf{x})$ at all \mathbf{x} . If f is convex, then the condition becomes $\lambda_{\max}(\nabla^2 f(\mathbf{x})) \leq L$.

Recap: Consequences of L-smoothness

• Quadratic upper bound

$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

• Gradient descent with constant step size $t \in (0, \frac{1}{L}]$ satisfies

$$f(\boldsymbol{x}_k) - f(\boldsymbol{x}_{k+1}) \geq \frac{t}{2} \|\nabla f(\boldsymbol{x}_k)\|^2$$

• If
$$f^* = \inf f(x)$$
 is finite,

$$\sum_{k=0}^{N} \|\nabla f(\mathbf{x}_k)\|^2 \le \frac{2}{t} [f(\mathbf{x}_0) - f^*)] < \infty, \quad \forall N$$

so

$$\lim_{k\to\infty}\nabla f(\boldsymbol{x}_k) = \boldsymbol{0}$$

Note. No assertion about the convergence of $f(x_k)$ and x_k .

Today

- convergence analysis
- strong convexity
- condition number

Convergence Analysis

Theorem. If *f* is convex and *L*-smooth, and x^* is a minimum of *f*, then for step size $t \in (0, \frac{1}{L}]$, the sequence $\{x_k\}$ produced by the gradient descent algorithm satisfies

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2tk}$$

Notes.

- $f(\mathbf{x}_k) \downarrow f^*$ as $k \to \infty$.
- Any limiting point of *x*^{*k*} is an optimal solution.
- The rate of convergence is O(1/k), i.e. # of iterations to guarantee $f(\mathbf{x}_k) f(\mathbf{x}^*) \le \epsilon$ is $O(1/\epsilon)$. For $\epsilon = 10^{-p}$, $k = O(10^p)$, exponential in the number of significant digits!
- Faster convergence with larger *t*; best $t = \frac{1}{L}$, but *L* is unknown.
- Good initial guess helps.

Proof

1. By the basic gradient step $\mathbf{x}_{k+1} = \mathbf{x}_k - t \nabla f(\mathbf{x}_k)$,

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 = \|\mathbf{x}_k - t\nabla f(\mathbf{x}_k) - \mathbf{x}^*\|^2$$

= $\|\mathbf{x}_k - \mathbf{x}^*\|^2 + t^2 \|\nabla f(\mathbf{x}_k)\|^2 + 2t\nabla f(\mathbf{x}_k)^T (\mathbf{x}^* - \mathbf{x}_k)$

2. By the first-order condition for convexity,

$$\nabla f(\boldsymbol{x}_k)^T(\boldsymbol{x}^* - \boldsymbol{x}_k) \leq f(\boldsymbol{x}^*) - f(\boldsymbol{x}_k)$$

3. Plugging 2 into 1,

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \le \|\mathbf{x}_k - \mathbf{x}^*\|^2 + t^2 \|\nabla f(\mathbf{x}_k)\|^2 + 2t[f(\mathbf{x}^*) - f(\mathbf{x}_k)]$$

4. Plugging in $\frac{t}{2} \|\nabla f(\mathbf{x}_k)\|^2 \le f(\mathbf{x}_k) - f(\mathbf{x}_{k+1})$ from slide 2,

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \le \|\mathbf{x}_k - \mathbf{x}^*\|^2 + 2t[f(\mathbf{x}^*) - f(\mathbf{x}_{k+1})]$$

Proof (cont'd)

5. Rearranging,

$$f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*) \le \frac{\|\mathbf{x}_k - \mathbf{x}^*\|^2 - \|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2}{2t}$$

6. Summing over k from 0 to N - 1,

$$\sum_{k=0}^{N-1} [f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}^*)] \le \frac{\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2 - \|\boldsymbol{x}_N - \boldsymbol{x}^*\|^2}{2t} \le \frac{\|\boldsymbol{x}_0 - \boldsymbol{x}^*\|^2}{2t}$$

7. Recalling the descent property $f(\mathbf{x}_{k+1}) \leq f(\mathbf{x}_k)$,

$$f(\mathbf{x}_N) - f(\mathbf{x}^*) \le \frac{1}{N} \sum_{k=0}^{N-1} [f(\mathbf{x}_{k+1}) - f(\mathbf{x}^*)] \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|^2}{2tN}$$

Fast Convergence

The following f is 12-smooth,

$$f(x) = 6x^2$$

For small enough step size t (e.g. 0.1),

$$f(x_k) = 6x_0^2(1 - 12t)^{2k}$$

Need $O(\log \frac{1}{\epsilon})$ iterations to get within ϵ from optimal.

Slow Convergence

The following f is also 12-smooth,

For $x_0 \in (0, 1)$, small enough step size t (e.g. 0.1), and large k,

$$x_k \sim \frac{1}{\sqrt{8tk}}, \quad f(x_k) \sim \frac{1}{(8tk)^2}$$

Need $O(1/\sqrt{\epsilon})$ iterations to get within ϵ from optimal value (i.e. 0).

Strong Convexity

A function f is strongly convex with parameter m > 0, or simply *m*-strongly convex, if

$$\tilde{f}(\boldsymbol{x}) = f(\boldsymbol{x}) - \frac{m}{2} \|\boldsymbol{x}\|^2$$

is convex.

Note. $f(\mathbf{x}) = \frac{m}{2} ||\mathbf{x}||^2 + \tilde{f}(\mathbf{x})$, i.e. f is $\frac{m}{2} ||\mathbf{x}||^2$ plus an extra convex term. Informally, "*m*-strongly convex" means at least as "convex" as $\frac{m}{2} ||\mathbf{x}||^2$.

Example. $f(\mathbf{x}) = \frac{a}{2} ||\mathbf{x}||^2$ is *m*-strongly convex iff $a \ge m$

Strong Convexity (cont'd)

Example. $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ is not *m*-strongly convex for any m > 0, as $\tilde{f}(\mathbf{x}) = \mathbf{a}^T \mathbf{x} - \frac{m}{2} \|\mathbf{x}\|^2$ is concave.

Example. $f(x) = x^4$ is not *m*-strongly convex for any m > 0, as $\tilde{f}(x) = x^4 - \frac{m}{2}x^2$ is not convex,

$$\tilde{f}''(x) = 12x^2 - m < 0$$

First-order Condition

A differentiable *f* is *m*-strongly convex iff

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{m}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \forall \mathbf{x}, \mathbf{y}$$

• strong convexity \implies strict convexity \implies convexity

m-strong convexity and *L*-smoothness together imply

$$\frac{m}{2} \|\mathbf{x} - \mathbf{y}\|^2 \le f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \le \frac{L}{2} \|\mathbf{x} - \mathbf{y}\|^2$$

Proof

1. By definition,

f is *m*-strongly convex $\iff \tilde{f}(\mathbf{x}) = f(\mathbf{x}) - \frac{m}{2} \|\mathbf{x}\|^2$ is convex

2. By first-order condition for convexity,

$$\iff \widetilde{f}(\mathbf{y}) \ge \widetilde{f}(\mathbf{x}) + \nabla \widetilde{f}(\mathbf{x})^T (\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{x}, \mathbf{y}$$

3. Noting $\nabla \tilde{f}(\mathbf{x}) = \nabla f(\mathbf{x}) - m\mathbf{x}$,

$$\iff f(\mathbf{y}) - \frac{m}{2} \|\mathbf{y}\|^2 \ge f(\mathbf{x}) - \frac{m}{2} \|\mathbf{x}\|^2 + (\nabla f(\mathbf{x}) - m\mathbf{x})^T (\mathbf{y} - \mathbf{x}), \quad \forall \mathbf{x}, \mathbf{y}$$

4. Rearranging and using $y^T y - x^T x - 2x^T (y - x) = (y - x)^T (y - x)$,

$$\iff f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{m}{2} \|\mathbf{x} - \mathbf{y}\|^2, \quad \forall \mathbf{x}, \mathbf{y}$$

Second-order Condition

A twice continuously differentiable f is m-strongly convex iff

$$\nabla^2 f(\boldsymbol{x}) \succeq m \boldsymbol{I}, \quad \forall \boldsymbol{x}$$

or equivalently, the smallest eigenvalue of $\nabla^2 f(x)$ satisfies

$$\lambda_{\min}(\nabla^2 f(\boldsymbol{x})) \ge m, \quad \forall \boldsymbol{x}$$

Proof.
$$\tilde{f}(\mathbf{x}) = f(\mathbf{x}) - \frac{m}{2} \|\mathbf{x}\|^2$$
 is convex iff $\nabla^2 \tilde{f}(\mathbf{x}) = \nabla^2 f(\mathbf{x}) - m\mathbf{I} \succeq \mathbf{0}$

Example. With
$$\boldsymbol{Q} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
, we obtain $f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T\boldsymbol{Q}\boldsymbol{x} = \frac{1}{2}x_1^2 + x_2^2$ is 1-strongly convex.

More generally, $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{Q}\mathbf{x}$ with $\mathbf{Q} \succ \mathbf{O}$ is $\lambda_{\min}(\mathbf{Q})$ -strongly convex, where $\lambda_{\min}(\mathbf{Q})$ is the smallest eigenvalue of \mathbf{Q} .

Convergence: 1D Example

 $f(x) = \frac{1}{2}mx^2$ with m > 0 is both *m*-smooth and *m*-strongly convex..

Recall the gradient descent step is

$$x_{k+1} = x_k - tf'(x_k) = (1 - mt)x_k$$

and $x_k \rightarrow x^* = 0$ iff $t \in (0, \frac{2}{m})$.

If $t = \frac{1}{m}$, it gets to x^* in one step. For $t \in (0, \frac{1}{m}) \cup (\frac{1}{m}, \frac{2}{m})$, $x_k = (1 - mt)^k x_0$

so both $x_k \to x^*$ and $f(x_k) \to f(x^*)$ exponentially fast,

$$|x_k - x^*| = (1 - mt)^k \cdot |x_0 - x^*|$$
$$|f(x_k) - f(x^*)| = \frac{m(1 - mt)^{2k}}{2} |x_0 - x^*|^2$$

Convergence Analysis

Theorem. If *f* is *m*-strongly convex and *L*-smooth, and x^* is a minimum of *f*, then for step size $t \in (0, \frac{1}{L}]$, the sequence $\{x_k\}$ produced by the gradient descent algorithm satisfies

$$f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{L(1 - mt)^k}{2} \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$
$$\|\mathbf{x}_k - \mathbf{x}^*\|^2 \le (1 - mt)^k \|\mathbf{x}_0 - \mathbf{x}^*\|^2$$

Notes.

- $0 \le 1 \frac{m}{L} \le 1 mt < 1$, so $x_k \to x^*$ and $f(x_k) \to f(x^*)$ exponentially fast
- The number of iterations to reach $f(\mathbf{x}_k) f(\mathbf{x}^*) \le \epsilon$ is $O(\log \frac{1}{\epsilon})$. For $\epsilon = 10^{-p}$, k = O(p), linear in the number of significant digits!
- Since $\nabla f(\mathbf{x}^*) = 0$, the bounds on slide 11 yield

$$\frac{m}{2} \|\mathbf{x}_k - \mathbf{x}^*\|^2 \le f(\mathbf{x}_k) - f(\mathbf{x}^*) \le \frac{L}{2} \|\mathbf{x}_k - \mathbf{x}^*\|^2$$

relating the bounds on $\|\mathbf{x}_k - \mathbf{x}^*\|^2$ and those on $f(\mathbf{x}_k) - f(\mathbf{x}^*)$

Proof

Similar to proof without strong convexity, with difference highlighted.

1. By the basic gradient step $\mathbf{x}_{k+1} = \mathbf{x}_k - t \nabla f(\mathbf{x}_k)$,

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 = \|\mathbf{x}_k - t\nabla f(\mathbf{x}_k) - \mathbf{x}^*\|^2$$

= $\|\mathbf{x}_k - \mathbf{x}^*\|^2 + t^2 \|\nabla f(\mathbf{x}_k)\|^2 + 2t \nabla f(\mathbf{x}_k)^T (\mathbf{x}^* - \mathbf{x}_k)$

2. By *m*-strong convexity

$$\nabla f(\boldsymbol{x}_k)^T(\boldsymbol{x}^* - \boldsymbol{x}_k) \leq f(\boldsymbol{x}^*) - f(\boldsymbol{x}_k) - \frac{m}{2} \|\boldsymbol{x}_k - \boldsymbol{x}^*\|^2$$

3. Plugging 2 into 1,

 $\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \le (1 - mt) \|\mathbf{x}_k - \mathbf{x}^*\|^2 + t^2 \|\nabla f(\mathbf{x}_k)\|^2 + 2t[f(\mathbf{x}^*) - f(\mathbf{x}_k)]$

4. Plugging $\inf f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \frac{t}{2} \|\nabla f(\mathbf{x}_k)\|^2$ from slide 2, $\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \le (1 - mt) \|\mathbf{x}_k - \mathbf{x}^*\|^2 + 2t[f(\mathbf{x}^*) - f(\mathbf{x}_{k+1})]$

5. Since $f(x^*) \leq f(x_{k+1})$,

$$\|\mathbf{x}_{k+1} - \mathbf{x}^*\|^2 \le (1 - mt) \|\mathbf{x}_k - \mathbf{x}^*\|^2$$

Convergence: 2D Quadratic Function

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x}, \quad \mathbf{Q} = \begin{pmatrix} m & 0 \\ 0 & L \end{pmatrix}$$

where L > m > 0. *f* is *L*-smooth and *m*-strongly convex. $x^* = 0$.

The gradient descent step is

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t \nabla f(\mathbf{x}_k) = (\mathbf{I} - t\mathbf{Q})\mathbf{x}_k$$

SO

$$\boldsymbol{x}_{k} = (\boldsymbol{I} - t\boldsymbol{Q})^{k} \boldsymbol{x}_{0} = \begin{bmatrix} (1 - mt)^{k} x_{01} \\ (1 - Lt)^{k} x_{02} \end{bmatrix}$$

and

$$f(\mathbf{x}_k) = \frac{m}{2}(1 - mt)^{2k}x_{01}^2 + \frac{L}{2}(1 - Lt)^{2k}x_{02}^2$$

To ensure convergence, $t < \frac{2}{L}$. The convergence rate is determined by the slower of $(1 - Lt)^{2k}$ and $(1 - mt)^{2k}$.

Convergence: 2D Quadratic Function (cont'd)

To maximize convergence rate, solve

Maximum rate achieved by $1 - mt = Lt - 1 \implies t = \frac{2}{m+L}$, in which case

$$\boldsymbol{x}_{k} = \left(\frac{L-m}{L+m}\right)^{k} \begin{bmatrix} x_{01} \\ (-1)^{k} x_{02} \end{bmatrix} \implies \|\boldsymbol{x}_{k} - \boldsymbol{x}^{*}\|_{2} = \left(\frac{L-m}{L+m}\right)^{k} \|\boldsymbol{x}_{0} - \boldsymbol{x}^{*}\|_{2}$$
$$f(\boldsymbol{x}_{k}) - f(\boldsymbol{x}^{*}) = \left(\frac{L-m}{L+m}\right)^{2k} [f(\boldsymbol{x}_{0}) - f(\boldsymbol{x}^{*})]$$

Depends on $\kappa(Q) = \frac{\lambda_{\max}(Q)}{\lambda_{\min}(Q)} = \frac{L}{m}$, the condition number of Q

18/23

Condition Number

For a matrix $Q \in \mathbb{R}^{n \times n}$ s.t. $Q \succ O$, its condition number¹ is defined as

$$\kappa(\boldsymbol{\mathcal{Q}}) = rac{\lambda_{\max}(\boldsymbol{\mathcal{Q}})}{\lambda_{\min}(\boldsymbol{\mathcal{Q}})}$$

It characterizes how stretched the level curves of $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x}$ are.

Example. $Q = \text{diag}\{\gamma, 1\}, f(x_1, x_2) = \frac{\gamma}{2}x_1^2 + \frac{1}{2}x_2^2$

Nondiagonal case reduces to diagonal case in eigenbasis of Q. For nonquadratic case, $\kappa(\nabla^2 f(\mathbf{x}))$ plays a similar role.

¹For a general nonsingular matrix, the condition number is the ratio between its largest and smallest singular values, $\kappa(A) = \sigma_{\max}(A)/\sigma_{\min}(A)$.

Well-conditioned Problem

The problem $\min_{x} \frac{1}{2} x^{T} Q x$ is well-conditioned if $\kappa(Q)$ is small.

Example. $Q = \text{diag}\{0.5, 1\}, f(x_1, x_2) = \frac{1}{4}x_1^2 + \frac{1}{2}x_2^2, \kappa(Q) = 2$

Fast convergence: for $x_0 = (2, 1)^T$, t = 1.2, and large k,

$$f(\mathbf{x}_k) \sim \frac{m}{2} (1 - mt)^{2k} x_{01}^2 = (0.4)^{2k}$$

Ill-conditioned Problem

The problem $\min_{x} \frac{1}{2} x^{T} Q x$ is ill-conditioned if $\kappa(Q)$ is large.

Example. $\boldsymbol{Q} = \text{diag}\{0.01, 1\}, f(x_1, x_2) = \frac{1}{200}x_1^2 + \frac{1}{2}x_2^2, \kappa(\boldsymbol{Q}) = 100$

Slow convergence (relatively): for $x_0 = (2, 1)^T$, t = 1.2, and large k,

$$f(\mathbf{x}_k) \sim \frac{m}{2} (1 - mt)^{2k} x_{01}^2 = \frac{1}{50} (0.988)^{2k}$$

Ill-conditioned Problem (cont'd)

$$f(x_1, x_2) = \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} = \frac{1}{200} x_1^2 + \frac{1}{2} x_2^2, \quad \mathbf{Q} = \text{diag}\{0.01, 1\}, \ \kappa(\mathbf{Q}) = 100$$

- 1-smooth \implies To guarantee convergence, step size² t < 2
- This limit is imposed by movement along e₂ direction
- Too pessimistic along other directions, e.g. along e_1 , can use t < 200

²We proved convergence for $t \in (0, 1/L]$. The proofs can be modified slightly to show convergence for $t \in (0, 2/L)$.

Ill-condition Problem (cont'd)

The negative gradient direction is far away from the "ideal" direction for ill-conditioned problem.

For
$$Q = \text{diag}\{\gamma, 1\}, f(x_1, x_2) = \frac{1}{2} \mathbf{x}^T Q \mathbf{x} = \frac{\gamma}{2} x_1^2 + \frac{1}{2} x_2^2$$
,

negative gradient direction

$$-\nabla f(\boldsymbol{x}) = -\boldsymbol{Q}\boldsymbol{x} = (-\gamma x_1, -x_2)^T$$

"ideal" direction

$$d = -x$$

