
状态关系单子与霍尔逻辑

1 状态关系单子程序

下面用 StateRelMonad 表示带有程序状态的非确定性计算。

Module StateRelMonad.

Definition M (Σ A: Type): Type :=
Σ -> A -> Σ -> Prop.

Definition bind (Σ A B: Type) (f: M Σ A) (g: A -> M Σ B): M Σ B :=
fun (s1: Σ) (b: B) (s3: Σ) =>

exists (a: A) (s2: Σ),
(s1, a, s2) P f /\ (s2, b, s3) P g a.

Definition ret (Σ A: Type) (a0: A): M Σ A :=
fun (s1: Σ) (a: A) (s2: Σ) => a = a0 /\ s1 = s2.

End StateRelMonad.

#[export] Instance state_rel_monad (Σ: Type): Monad (StateRelMonad.M Σ) :=
{|

bind := StateRelMonad.bind Σ;
ret := StateRelMonad.ret Σ;

|}.

以下可以再定义一些额外的算子。

Definition assume {Σ: Type} (P: Σ -> Prop): StateRelMonad.M Σ unit :=
fun s1 _ s2 => P s1 /\ s1 = s2.

Definition choice {Σ A: Type} (f g: StateRelMonad.M Σ A): StateRelMonad.M Σ A :=
f Y g.

Definition any {Σ: Type} (A: Type): StateRelMonad.M Σ A :=
fun s1 _ s2 => s1 = s2.

1



Definition repeat_break_f
{Σ A B: Type}
(body: A -> StateRelMonad.M Σ (ContinueOrBreak A B))
(W: A -> StateRelMonad.M Σ B)
(a: A): StateRelMonad.M Σ B :=

x <- body a;;
match x with
| by_continue a' => W a'
| by_break b => ret b
end.

Definition repeat_break
{Σ A B: Type}
(body: A -> StateRelMonad.M Σ (ContinueOrBreak A B)):

A -> StateRelMonad.M Σ B :=
Kleene_LFix (repeat_break_f body).

Definition continue {Σ A B: Type} (a: A):
StateRelMonad.M Σ (ContinueOrBreak A B) :=
ret (by_continue a).

Definition break {Σ A B: Type} (b: B):
StateRelMonad.M Σ (ContinueOrBreak A B) :=
ret (by_break b).

2 霍尔逻辑

在 StateRelMonad 上的霍尔逻辑是一个关于霍尔三元组的逻辑。

Definition Hoare {Σ A: Type}
(P: Σ -> Prop)
(c: StateRelMonad.M Σ A)
(Q: A -> Σ -> Prop): Prop :=

forall s1 a s2, P s1 -> (s1, a, s2) P c -> Q a s2.

Theorem Hoare_bind {Σ A B: Type}:
forall (P: Σ -> Prop)

(f: StateRelMonad.M Σ A)
(Q: A -> Σ -> Prop)
(g: A -> StateRelMonad.M Σ B)
(R: B -> Σ -> Prop),

Hoare P f Q ->
(forall a, Hoare (Q a) (g a) R) ->
Hoare P (bind f g) R.

Theorem Hoare_ret {Σ A: Type}:
forall (P: A -> Σ -> Prop) (a0: A),

Hoare (P a0) (ret a0) P.

2



Theorem Hoare_choice {Σ A: Type}:
forall P (f g: StateRelMonad.M Σ A) Q,

Hoare P f Q ->
Hoare P g Q ->
Hoare P (choice f g) Q.

Theorem Hoare_assume_bind {Σ A: Type}:
forall P (Q: Σ -> Prop) (f: StateRelMonad.M Σ A) R,

Hoare (fun s => Q s /\ P s) f R ->
Hoare P (assume Q;; f) R.

Theorem Hoare_any_bind {Σ A B: Type}:
forall P Q (f: A -> StateRelMonad.M Σ B),

(forall a, Hoare P (f a) Q) ->
(Hoare P (bind (any A) f) Q).

Theorem Hoare_conseq {Σ A: Type}:
forall (P1 P2: Σ -> Prop) f (Q1 Q2: A -> Σ -> Prop),

(forall s, P1 s -> P2 s) ->
(forall b s, Q2 b s -> Q1 b s) ->
Hoare P2 f Q2 ->
Hoare P1 f Q1.

Theorem Hoare_conseq_pre {Σ A: Type}:
forall (P1 P2: Σ -> Prop) f (Q: A -> Σ -> Prop),

(forall s, P1 s -> P2 s) ->
Hoare P2 f Q ->
Hoare P1 f Q.

Theorem Hoare_conseq_post {Σ A: Type}:
forall (P: Σ -> Prop) f (Q1 Q2: A -> Σ -> Prop),

(forall b s, Q2 b s -> Q1 b s) ->
Hoare P f Q2 ->
Hoare P f Q1.

Theorem Hoare_conj {Σ A: Type}:
forall (P: Σ -> Prop) f (Q1 Q2: A -> Σ -> Prop),

Hoare P f Q1 ->
Hoare P f Q2 ->
Hoare P f (fun a s => Q1 a s /\ Q2 a s).

Theorem Hoare_forall {Σ A: Type}:
forall (X: Type) (P: Σ -> Prop) f (Q: X -> A -> Σ -> Prop),

(forall x, Hoare P f (Q x)) ->
Hoare P f (fun a s => forall x, Q x a s).

Theorem Hoare_pre_ex {Σ A: Type}:
forall (X: Type) (P: X -> Σ -> Prop) f (Q: A -> Σ -> Prop),

(forall x, Hoare (P x) f Q) ->
Hoare (fun s => exists x, P x s) f Q.

3



Theorem Hoare_ret ' {Σ A: Type}:
forall (P: Σ -> Prop) (Q: A -> Σ -> Prop) (a0: A),

(forall s, P s -> Q a0 s) ->
Hoare P (ret a0) Q.

Theorem Hoare_repeat_break {Σ A B: Type}:
forall (body: A -> StateRelMonad.M Σ (ContinueOrBreak A B))

(P: A -> Σ -> Prop)
(Q: B -> Σ -> Prop),

(forall a, Hoare (P a) (body a) (fun x s => match x with
| by_continue a => P a s
| by_break b => Q b s
end)) ->

(forall a, Hoare (P a) (repeat_break body a) Q).

3 定义有向图和图上的程序

可以如下定义有向图。

Record PreGraph (Vertex Edge: Type) := {
vvalid : Vertex -> Prop;
evalid : Edge -> Prop;
src : Edge -> Vertex;
dst : Edge -> Vertex

}.

基于此就能定义“从 x 点经过一条边可以到达 y 点”。

Record step_aux {V E: Type} (pg: PreGraph V E) (e: E) (x y: V): Prop :=
{

step_evalid: pg.(evalid) e;
step_src_valid: pg.(vvalid) x;
step_dst_valid: pg.(vvalid) y;
step_src: pg.(src) e = x;
step_dst: pg.(dst) e = y;

}.

Definition step {V E: Type} (pg: PreGraph V E) (x y: V): Prop :=
exists e, step_aux pg e x y.

进一步，单步可达关系的自反传递闭包就是多步可达关系。

Definition reachable {V E: Type} (pg: PreGraph V E) :=
clos_refl_trans (step pg).

自反传递闭包 clos_refl_trans 是 SetsClass 库提供的定义，该库还提供了相应的证明方式。

• reflexivity ：利用其自反性证明；

• transitivity ：利用其传递性证明；

• transitivity_1n ：利用其传递性证明并专门支持前一步是单步的情况；

• transitivity_1n ：利用其传递性证明并专门支持后一步是单步的情况；

4



• induction_1n ：从前往后对步数归纳；

• induction_n1 ：从后往前对步数归纳；

5


