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Module StateRelMonad.

Definition M (L A: Type): Type :=
L ->A ->%X -> Prop.

Definition bind (L A B: Type) (f: M £ A) (g: A -> M Z B): M £ B
fun (s1: ) (b: B) (s3: &) =>
exists (a: A) (s2: %),
(s1, a, s2) € £ /\ (s2, b, s3) € g a.

Definition ret (L A: Type) (a0: A): M £ A :=
fun (s1: I) (a: A) (s2: Z) => a = a0 /\ sil = s2.

End StateRelMonad.

#[export] Instance state_rel_monad (I: Type): Monad (StateRelMonad.M %) :=
{l

bind := StateRelMonad.bind I;

ret := StateRelMonad.ret I;
I}.
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Definition assume {X: Type} (P: T -> Prop): StateRelMonad.M I unit :=
fun s1 _ s2 => P s1 /\ sl = s2.

Definition choice {Z A: Type} (f g: StateRelMonad.M I A): StateRelMonad.M I A :=
fug.

Definition any {Z: Type} (A: Type): StateRelMonad.M I A :=

fun s1 _ s2 => sl = s2.



Definition repeat_break_f

{Z A B: Type}
(body: A -> StateRelMonad.M I (ContinueOrBreak A B))
(W: A -> StateRelMonad.M I B)
(a: A): StateRelMonad.M I B :=

x <- body aj;;

match x with

| by_continue a' => W a'

| by_break b => ret b

end.

Definition repeat_break
{Z A B: Type}
(body: A -> StateRelMonad.M I (ContinueOrBreak A B)):
A -> StateRelMonad.M I B :=
Kleene_LFix (repeat_break_f body).

Definition continue {X A B: Type} (a: A):
StateRelMonad.M I (ContinueOrBreak A B)

ret (by_continue a).

Definition break {X A B: Typel} (b: B):
StateRelMonad.M I (ContinueOrBreak A B)
ret (by_break b).
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Definition Hoare {X A: Typel}
(P: £ -> Prop)
(c: StateRelMonad.M & A)
(Q: A -> £ -> Prop): Prop :=
forall s1 a s2, P s1 -> (s1, a, s2) € ¢ -> Q a s2.

Theorem Hoare_bind {I A B: Typel}:
forall (P: T -> Prop)
(f: StateRelMonad.M T A)
(Q: A -> £ -> Prop)
(g: A -> StateRelMonad.M I B)
(R: B -> £ -> Prop),
Hoare P £ Q ->
(forall a, Hoare (Q a) (g a) R) ->
Hoare P (bind f g) R.

Theorem Hoare_ret {f A: Type}:
forall (P: A -> £ -> Prop) (a0: A4),
Hoare (P a0) (ret a0) P.



Theorem Hoare_choice {I A: Typel}:
forall P (f g: StateRelMonad.M T A) Q,
Hoare P £ Q ->
Hoare P g Q ->
Hoare P (choice f g) Q.

Theorem Hoare_assume_bind {Z A: Type}:
forall P (Q: £ -> Prop) (f: StateRelMonad.M T A) R,
Hoare (fun s => Q s /\ P s) f R ->

Hoare P (assume Q;; f) R.

Theorem Hoare_any_bind {Z A B: Type}:
forall P Q (f: A -> StateRelMonad.M & B),
(forall a, Hoare P (f a) Q) ->
(Hoare P (bind (any A) £) Q).

Theorem Hoare_conseq {I A: Typel}:
forall (P1 P2: T -> Prop) f (Q1 Q2: A -> £ -> Prop),
(forall s, P1 s -> P2 s) ->
(forall b s, 2 b s -> Q1 b s) ->
Hoare P2 f Q2 ->
Hoare P1 f Q1.

Theorem Hoare_conseq_pre {f A: Typel}:
forall (P1 P2: £ -> Prop) f (Q: A -> £ -> Prop),
(forall s, P1 s -> P2 s) ->
Hoare P2 f Q ->
Hoare P1 f Q.

Theorem Hoare_conseq_post {Z A: Typel}:
forall (P: £ -> Prop) f (Q1 Q2: A -> £ -> Prop),
(forall b s, Q2 b s -> Q1 b s) ->
Hoare P f Q2 ->
Hoare P f Q1.

Theorem Hoare_conj {I A: Typel}:
forall (P: £ -> Prop) f (Q1 Q2: A -> £ -> Prop),
Hoare P f Q1 ->
Hoare P f Q2 ->
Hoare P f (fun a s => Q1 a s /\ Q2 a s).

Theorem Hoare_forall {f A: Type}:
forall (X: Type) (P: £ -> Prop) f (Q: X -> A -> £ -> Prop),
(forall x, Hoare P f (Q x)) ->

Hoare P f (fun a s => forall x, Q x a s).

Theorem Hoare_pre_ex {I A: Typel}:
forall (X: Type) (P: X -> £ -> Prop) f (Q: A -> £ -> Prop),
(forall x, Hoare (P x) f Q) ->

Hoare (fun s => exists x, P x s) f Q.



Theorem Hoare_ret' {I A: Typel}:
forall (P: £ -> Prop) (Q: A -> £ -> Prop) (a0: A),
(forall s, P s -> Q a0 s) ->
Hoare P (ret a0) Q.

Theorem Hoare_repeat_break {Z A B: Typel}:
forall (body: A -> StateRelMonad.M I (ContinueOrBreak A B))
(P: A -> T -> Prop)
(Q: B -> £ -> Prop),
(forall a, Hoare (P a) (body a) (fun x s => match x with
| by_continue a => P a s
| by_break b => Q b s
end)) ->
(forall a, Hoare (P a) (repeat_break body a) Q).
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Record PreGraph (Vertex Edge: Type) := {
vvalid : Vertex -> Prop;
evalid : Edge -> Prop;
src : Edge -> Vertex;
dst : Edge -> Vertex
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Record step_aux {V E: Typel} (pg: PreGraph V E) (e: E) (x y: V): Prop :=
{

step_evalid: pg.(evalid) e;

step_src_valid: pg.(vvalid) x;

step_dst_valid: pg.(vvalid) y;

step_src: pg.(src) e = x;

step_dst: pg.(dst) e = y;

Definition step {V E: Type} (pg: PreGraph V E) (x y: V): Prop :=

exists e, step_aux pg e x y.
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Definition reachable {V E: Type} (pg: PreGraph V E) :=
clos_refl_trans (step pg).
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