
Supervised Learning
Liyao Xiang

http://xiangliyao.cn/

Shanghai Jiao Tong University

EE226 Big Data Mining Lecture 4

Reference and Acknowledgement

• Most of the course materials are credited to Andrew Ng’s CS229
lecture notes.

Outline

• Linear Regression (线性回归)

• Classification and Logistic Regression (逻辑回归)

• Generalized Linear Models

Outline

• Linear Regression (线性回归)

• Classification and Logistic Regression (逻辑回归)

• Generalized Linear Models

Supervised Learning Example Revisited

0 50 100 150 200 250
0

1

2

3

4

Size in m2

Price
in

million
RMB

75

x(i)∈X: input variables

y(i)∈Y: output variables

(x(i), y(i)): a training example

{(x(i), y(i)); i = 1,…, m}: training set

h:X⟼Y hypothesis (假设函数)

testing example

predicted

 value

Supervised Learning Example Revisited
Let’s consider a richer dataset in which we also know the number of
bedrooms in each apartment

Size #bedrooms Price
(million￥)

40 0 1.2

65 1 1.9

80 2 2.2

89 2 3.3

120 3 5.3

… … …

• x: two-dimensional vectors in R2

• x1
(i): the size of the i-th apartment

in the training set

• x2

(i): the number of bedrooms of
the i-th apartment in the training
set

• We decide hypothesis h as a
linear function: hθ(x) = θ0 + θ1x1 +
θ2x2

• θi: parameters/weights of h

• By letting x0 = 1, we rewrite h as

h(x) =
nX

i=0

✓ixi = ✓TxWhy a linear function?

Supervised Learning Example Revisited
Let’s consider a richer dataset in which we also know the number of
bedrooms in each apartment

Size #bedrooms Price
(million￥)

40 0 1.2

65 1 1.9

80 2 2.2

89 2 3.3

120 3 5.3

… … …

• By letting x0 = 1, we rewrite h as

• How can we learn θ? Making h(x)
close to y for the training
examples!

• cost function (损失函数)：

h(x) =
nX

i=0

✓ixi = ✓Tx

J(✓) =
1

2

mX

i=1

(h✓(x
(i))� y(i))2

Why a least-squares cost?

Least-Mean Square Alg
• How to choose θ to minimize J(θ)? Let’s start with some “initial

guess” for θ, and use gradient descent (梯度下降) alg. repeatedly to
make J(θ) smaller:

• What is the partial derivative (偏导数) term?

✓j := ✓j � ↵
@J(✓)

✓j
𝛼: learning rate

direction of steepest

decrease of J

least mean square update rule:

error term

Least-Mean Square Alg
• Two ways to modify the method:

• batch gradient descent: scan through the entire training set
before taking a single step

• stochastic gradient descent: update parameters according to the
gradient of the error w.r.t. a single training example

Convergence
• In most cases, gradient descent converges to local minima. Linear

regression only has one global minima, which the gradient descent
always converges to. This is because the cost function J is a convex
quadratic function (⼆二次凸函数).

x

θ

contour (等⾼高线)

shows the cost

global minima is reached!

Normal Equations (标准⽅方程)
• Gradient descent gives one way of minimizing J. How about others?

• We minimize J by explicitly taking derivatives w.r.t. θ and setting
them to 0s. And solve the equations!

f: Rmxn ⟼ R

A: m x n matrix

Normal Equations (标准⽅方程)
1. trace (迹): , the trace of a real number is itself

2. trace of a matrix = trace of its transpose (转置矩阵)

3. ，

4.

5.

Normal Equations (标准⽅方程)

Property 1

Property 2, 3

Property 4, 5

= 0

Probabilistic View
• The target variables and the inputs are related by

• Assume are distributed IID (independently and identically
distributed 独⽴立同分布) and

• Implies

• Given X and θ, what is the distribution of y(i)’s? Likelihood function:

y(i) = ✓Tx(i) + ✏(i) error term

✏(i)

✏(i) ⇠ N (0,�2)

p(y(i)|x(i); ✓) =
1p
2⇡�

exp
⇣
� (y(i) � ✓Tx(i))2

2�2

⌘

Probabilistic View
• Maximum likelihood: we should choose θ to make the data as high

probability as possible

• Equivalently, we maximize the log likelihood:

minimizing this term instead!

original least-squares cost

Underfitting & Overfitting
• Fitting to different hypotheses:

y = ✓0 + ✓1x y = ✓0 + ✓1x+ ✓2x
2 y =

5X

j=0

✓jx
j

The more features we add, the better. However, there is also a risk in
adding too many features.

underfitting overfitting

Locally Weighted Linear Regression
• The choice of features is important to learning performance!

• Locally weighted linear regression

1. Fit θ to minimize

2. Output

• larger w(i) -> try harder to make (y(i) - θTx(i))2 small; otherwise, ignore
the corresponding error term

• Standard choice for the weight:

X

i

w(i)(y(i) � ✓Tx(i))2

✓Tx

w(i) = exp
⇣
� (x(i) � x)2

2⌧2

⌘

θ is giving a higher weight to the training
examples close to the testing data x

Non-parametric Alg:
keep the entire training
dataset when making

predictions

Summary
• Linear regression

• Linear hypothesis class

• Cost function

• Least mean square algorithm:

• Batch/stochastic gradient descent

• Probabilistic view:

• Errors ∼ I.I.D. Gaussian distribution

• Maximum likelihood

• Overfitting & Underfitting

• Locally weighted linear regression

J(✓) =
1

2

mX

i=1

(h✓(x
(i))� y(i))2

h(x) =
nX

i=0

✓ixi = ✓Tx

Outline

• Linear Regression (线性回归)

• Classification and Logistic Regression (逻辑回归)

• Generalized Linear Models

Binary Classification
• The target y can only take two values: y ∈ {-1, +1}. y = 1 if the

example belongs to the positive class, otherwise, it is a member of
the negative class

• Hypothesis: h(x) = θTx. Given x, we classify it as positive or negative
depending on the sign of θTx, i.e., sign(θTx) = y ⟺ yθTx > 0

• Margin for the example (x, y): yθTx — the more θTx is negative (or
positive), the stronger the belief that y is negative (or positive)

• loss function: should penalize the θ for which y(i)θTx(i) < 0 frequently
in the training data. Loss value should be small if y(i)θTx(i) > 0 and
large if y(i)θTx(i) < 0

• We expect the loss function to be continuous and convex (easy to
converge to the global minima!)

Binary Classification
• Expect the loss to satisfy: Loss_func (y(i)θTx(i)) → 0 as y(i)θTx(i) →∞

and Loss_func (y(i)θTx(i)) → ∞ as y(i)θTx(i) →-∞

Losslogistic(z) = log(1 + e�z)

Lossexp = e�z

Losshinge = max{1� z, 0}

logistic regression

support vector machines

boosting

Logistic Regression
• Choose θ to minimize

 which hopefully yields θ that y(i)θTx(i) > 0 for most training examples

J(✓) =
1

m

mX

i=1

Losslogistic(y
(i)✓Tx(i)) =

1

m

mX

i=1

log(1 + exp(�y(i)✓Tx(i)))

g(z) =
1

1 + e�z

• Alternative view: Logistic (Sigmoid)
function

 →1 as z → ∞ and g(z) → 0 as z → -∞

• g(z) + g(-z) = 1 we could use it to
define the probability model for
binary classification.

Probabilistic View
• For y ∈ {-1, +1}, we define the logistic model as

 , & refine hypothesis class as

• The likelihood of the training data is

• The log-likelihood is

• maximizing likelihood in the logistic model = minimizing the average
logistic loss

p(Y = y|x; ✓) = g(yxT ✓) =
1

1 + e�yxT ✓

h✓(x) =
1

1 + e�xT ✓

Gradient Descent
• For the , the derivative is

• For a single training example (x, y):

• Update rule for stochastic gradient descent:

Losslogistic(z) = log(1 + e�z)

d

dz
Losslogistic(z) =

1

1 + e�z
· d

dz
e�z = � e�z

1 + e�z
= �g(�z)

Sigmoid function

@

@✓k
Losslogistic(yx

T ✓) = �g(�yxT ✓)
@

@✓k
(yxT ✓) = �g(�yxT ✓)yxk

✓t+1 = ✓t � ↵t ·r✓Losslogistic(�y(i)x(i)T ✓t) incorrect label

Update Rule when y∈{0,1}
P (y = 1|x; ✓) = h✓(x) =

1

1 + e�✓T x

P (y = 0|x; ✓) = 1� h✓(x)
p(y|x; ✓) = (h✓(x))

y(1� h✓(x))
1�y

gradient ascent:

similar to least mean square

 update rule, but h is non-linear!

Another Update Rule to Maximize l(θ)
• Newton’s method for finding a zero of a function: f(θ) = 0

• Update rule: θ := θ - f(θ)/f’(θ)

Another Update Rule to Maximize l(θ)
• Newton’s method for finding a zero of a function: f(θ) = 0

• What if we want to maximize some loss function? The maxima of
the loss corresponds to points where its first derivative is 0

• Update rule:

• Multidimensional setting:

• Advantage: Newton’s method typically enjoys faster convergence
than gradient descent, and requires many fewer iterations to get
very close to the minimum.

• Disadvantage: more expensive in one iteration

✓ := ✓ � l0(✓)

l00(✓)
✓ := ✓ �H

�1r✓l(✓) Hessian matrix

Summary

• Logistic regression

• Hypothesis h(x) = θTx

• Cost function

• Update rule:

• Newton’s method

• Probabilistic view:

• maximizing likelihood in the logistic model = minimizing the
average logistic loss

Losslogistic(z) = log(1 + e�z)

✓t+1 = ✓t � ↵t ·r✓Losslogistic(�y(i)x(i)T ✓t)

✓ := ✓ � l0(✓)

l00(✓)

Outline

• Linear Regression (线性回归)

• Classification and Logistic Regression (逻辑回归)

• Generalized Linear Models

Generalized Linear Models
• Given the distributions of y | x, how do we come up with the

hypothesis?

• linear regression: , hypothesis:

• logistic regression: , hypothesis:

• We show both of the methods are special cases of generalized
linear models

y|x; ✓ ⇠ N (µ,�2) h✓(x) = ✓Tx

y|x; ✓ ⇠ Bernoulli(�)

h✓(x) =
1

1 + e�✓T x

Generalized Linear Models
• Probabilistic view of

regression:

y|x; ✓ ⇠ N (µ,�2) y|x; ✓ ⇠ Bernoulli(�)

exponential family
distributions

p(y; ⌘) = b(y) exp(⌘TT (y)� a(⌘))

A fixed choice of T, a, and b defines a
family of distributions parameterized by η

• Probabilistic view of
classification:

p(y;�) = �y(1� �)1�y

= exp(y log �+ (1� y) log(1� �))

= exp
⇣⇣

log
� �

1� �

�⌘
y

+ log(1� �)
⌘

p(y;µ) =
1p
2⇡

exp
⇣
� 1

2
(y � µ)2

⌘

Gaussian,
Bernoulli, …

=
1p
2⇡

exp
⇣
� 1

2
y2
⌘
⇥

exp
⇣
µy � 1

2
µ2

⌘

b(y)

ηT T(y)
-a(η)

ηT T(y)

-a(η)

Construct GLMs
• Knowing the distribution, how to construct GLMs?

• Assumptions about P(y | x) and hypothesis:

1. follows a distribution that belongs to exponential family

2. . E.g., in logistic regression,

3. parameter η and inputs x are linearly related: η = θTx

y|x; ✓

h(x) = E[T (y)|x]

h✓(x) = p(y = 1|x; ✓) = 0 · p(y = 0|x; ✓) + 1 · p(y = 1|x; ✓) = E[y|x]

Construct Linear Regression Model
• Target variable follows Gaussian distribution: y|x; ✓ ⇠ N (µ,�2)

h✓(x) = E[y|x; ✓] Assumption 2

= µ y|x; ✓ ⇠ N (µ,�2)

= ⌘

p(y;µ) =
1p
2⇡

exp
⇣
� 1

2
y2
⌘
⇥ exp

⇣
µy � 1

2
µ2

⌘

Assumption 1: Write the Gaussian distribution in the

 form of exponential family distribution

= ✓Tx Assumption 3

Construct Logistic Regression Model
• Target variable is binary-valued. Thus we choose the Bernoulli

family distributions to model the conditional distribution:
y|x; ✓ ⇠ Bernoulli(�)

h✓(x) = E[y|x; ✓] Assumption 2

= � Bernoulli distribution

= 1/(1 + e�⌘) Assumption 1

p(y;�) = exp
⇣⇣

log
� �

1� �

�⌘
y + log(1� �)

⌘

= η

= 1/(1 + e�✓T x) Assumption 3

k-Classification
• Target variable takes on any of k values:

• We choose multinomial distribution to model: k parameters
denoting the probability of each outcome

• , k - 1 parameters

•

y 2 {1, 2, . . . , k}

�1, . . . ,�k

kX

i=1

�i = 1

(T (y))i = 1{y = i} E[(T (y))i] = P (y = i) = �i

k-Classification
• Multinomial is a member of the exponential family.

p(y;�) = �1{y=1}
1 �1{y=2}

2 . . .�1{y=k}
k

= �1{y=1}
1 �1{y=2}

2 . . .�
1�

Pk�1
i=1 1{y=i}

k

kX

i=1

�i = 1

probability of class i!

known as softmax function

Softmax Regression Model
Assumption 2

Multinomial distribution

Express the
multinomial

distribution in
the form of
Exponential

family &

Assumption 3

Our hypothesis outputs
the estimated probability
that p(y=i | x; θ) for every

i∈{1,…k}.

Softmax Regression
• Training by maximizing the log-likelihood by gradient ascent or

Newton’s method

Summary

• Generalized Linear Models

• distribution of the target variable —> hypothesis

1. rewrite the distribution in the form of exponential family
distributions

2. find the relation between the expected value of the target
variable and the natural parameter η

3. express the natural parameter η in terms of inputs x (linear
in most cases)

