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Supervised Learning Example Revisited

(x), y ) atralnlng example
{(x0, y0); i =1,..., m}: training set

ey output variables
yve P h:X+—Y hypothesis (ﬁylx 5{)

4
Price 3
in
million 2
RMB
1 x0eX: input variables
0

0 50 " 100
75

testing example

150 200 250

Size in m2



Supervised Learning Example Revisited

Let’s consider a richer dataset in which we also know the number of
bedrooms in each apartment

. . . . 2
Size #bedrooms  Frice e Xx: two-dimensional vectors in ‘R,

(million ¥)

 x1": the size of the i-th apartment
in the training set

65 1 1.9 * x.": the number of bedrooms of

80 5 55 the i-th apartment in the training
set

89 2 3.3 * We decide hypothesis h as a
linear function: he(x) = 80 + B1x1 +

120 3 5.3 Boxo

* Oi: parameters/weights of h
e By letting xo= 1, we rewrite h as

Why a linear function? > h(x) = Z 0;z; = 0%z
1=0



Supervised Learning Example Revisited

Let’s consider a richer dataset in which we also know the number of

bedrooms in each apartment

Price
(million ¥)

Size #bedrooms

40 0 1.2
65 1 1.9
80 2 2.2 .
89 2 3.3
120 3 5.3 o

Why a least-squares cost? —

By letting xo= 1, we rewrite h as
h(z) = Z O;x; = 0" x
1=0

How can we learn 87 Making h(x)
close to y for the training
examples!

cost function (FRSKLEKEN)

70) = 5 (o) — y9)?



Least-Mean Square Alg

e How to choose 0 to minimize J(6)? Let’s start with some “initial
guess” for 6, and use gradient descent (1%/Z T [F) alg. repeatedly to
make J(0) smaller:

direction of steepest

= - decrease of J
«: learning rate —

e What is the partial derivative ({g5£Y) term?

0 0 1

—J(0) = ——=(he(x) —y)”
00, (9) ()02('”() y)

9 least mean square update rule:
= 25 (ho(x) —y) - - (ho(z) — )

00 Q)
* 0; =0, +« T
= (hg(x) —y) ()0 (Z O;x; — 1/)

error term

l\.«lb—

= (hg(x) —y) Ly



Least-Mean Square Alg

e Two ways to modify the method:

* Dbatch gradient descent: scan through the entire training set
before taking a single step

Repeat until convergence {

0;:=0;+a X" () —ho(x?))z}”  (for every j)

J

}

e stochastic gradient descent: update parameters according to the
gradient of the error w.r.t. a single training example

Loop {
for i=1 to m, {

0; =0, + a (y@ — hy(z?)) ;1.'5” (for every 7)



Convergence

e |n most cases, gradient descent converges to local minima. Linear
regression only has one global minima, which the gradient descent
always converges to. This is because the cost function J is a convex

quadratic function (Z X hE&£X).

fa IS reached!

contour (& 5%)
shows the cost




Normal Equations (#5/&E5FE)

e (Gradient descent gives one way of minimizing J. How about others?

 We minimize J by explicitly taking derivatives w.r.t. 8 and setting
them to O0s. And solve the equations!

f: Rmxn — R - Of of
0A11 S OA1n
Vaf(A) = f f
_or ... _9f
A: m x n matrix L 0A,,1 0Amn 4
A A
A _ 11 12
A21 A22 3

= 104
* Vaf(4) = [ A222 Azl12 ]

3
f(A) = 51411 + 5A%, + Ag1 Agy



Normal Equations (x5 TE)

1. trace (). trA = ZA“ the trace of a real number is itself
1=1

2. trace of a matrix = trace of its transpose ($5E465%) trA = trA’
53 tr(A+ B) =trA+trB | trAB = trBA

4. VptrAB = BT

5. VartrABAT'C = BYATCT + BATC

_ _ _ _ (2070 y
— ()T — y X0—j = : —
2N\T 2 )
v | (z®)T — i y? (x<m>37;9 ) e
: : he(z1) — 41
g (™)) — ()




Normal Equations (#5/&E5FE)

Vol (0) =

Property 1

Property 2, 3

Property 4, 5

1 . S
Voo (X6 - y)' (X0 — )

1
Vo ("XTXO— 0" Xy — g X0+ 5"

1
5 Vo (tr 0" X" X0 — 2try’ X0)

; (X'X0+ X' X0 —2X"7)

X'xeo—- Xty =

—} o= (XTX)1 X7y

)

1
SVotr (0T XTX0 - 0" X 5 — " X0+ 5"y



Probabilistic View

The target variables and the inputs are related by

y ) = 97 () —|—error term

Assume E( 2 are distributed IID (mdependently and identically

distributed JBI7[E57) and €'’ NN(O o )

Implies

. . 1
p(y(") ‘x(z); 0) =

2To

(y(®) — ng(i>)2>

exp ( B 202

Given X and 0, what is the distribution of yi’s? Likelihood function:

Le) = TIrw® 122:0
=1
moq (y) — T 2()2
- Hmanp(‘ 20° )

1=1




Probabilistic View

e Maximum likelihood: we should choose 6 to make the data as high
probability as possible

e Equivalently, we maximize the log likelihood:

(0) = logL(0)

m 1 (y(i) _ ng(i))2>
= Jo exp | —
5 lel 20 P ( 207
m 1 (y(i) _ QTQ;(@'))Q
= Z log — exp | — 53

1=1

1 1 |1 . |
_ ] _ - (1) _ 9T (1))2
" Vare o [2Z(y "

1=1

minimizing this term instead!
original least-squares cost



Underfitting & Overfitting

e Fitting to different hypotheses:

— Jd
y=90+(9137 y:90+91x+@2$2 y—zeja:

underfitting overfitting

The more features we add, the better. However, there is also a risk in
adding too many features.



Locally Weighted Linear Regression

e The choice of features is important to learning performance!

e Locally weighted linear regression
1. Fit 8 to minimize Y_ v (y" — 07!)?
2. Output 67z Z
* larger wl) -> try harder to make (yi - 87x®)2 small; otherwise, ignore

the corresponding error term

Non-parametric Alg:
| keep the entire training
(1) — $)2> dataset when making
272 predictions

* Standard choice for the weight:

w = exp ( —

0 is giving a higher weight to the training
examples close to the testing data x



Summary

e Linear regression

T
e Linear hypothesis class h(z) = Z Oizi = 0"
1=0

1 — . .
. i — Z (1)) _ 4,(9)2
Cost function J(6) = 5 ;(hg(az ) —y')
* Least mean square algorithm: ¢, := 0, + o (y — ho(2?)) 2"

J
e Batch/stochastic gradient descent

e Probabilistic view:
e Errors ~ I.1.D. Gaussian distribution
e Maximum likelihood

e Overfitting & Underfitting

e Locally weighted linear regression



Outline

e (Classification and Logistic Regression (3Z%&[0]/)3)



Binary Classification

e The target y can only take two values: y € {-1, +1}. y = 1 if the

example belongs to the positive class, otherwise, it is a member of
the negative class

* Hypothesis: h(x) = 87x. Given X, we classify it as positive or negative
depending on the sign of 07x, i.e., sign(6™x) =y < yB8™x > 0

e Margin for the example (x, y): y@Tx — the more 07x is negative (or
positive), the stronger the belief that y is negative (or positive)

e |oss function: should penalize the 6 for which y(i)07x(i) < 0 frequently
in the training data. Loss value should be small if y(i)07x(i) > 0 and
large if y(i)0Tx(i) < O

* We expect the loss function to be continuous and convex (easy to
converge to the global minima!)



Binary Classification

e Expect the loss to satisfy: Loss_func (y(i))0™x(i) ) — 0 as
and Loss_func (y(i)8Tx(i) ) = o0 as y(i)8Tx(i) = -

=

z=yx’h

Lossiogistic(z) = log(1+€e7%)  |ogistic regression

Losspinge = max{l — 2,0}  support vector machines

z

LosSerp = €~ boosting



Logistic Regression

e Choose 0 to minimize

J( Z LOSSlogzstzc( (@) QT (z — Z lOg 1 + eXp( (7) HT.I'(Z)))

7,1 7,1

which hopefully yields 0 that y(i)8Tx(i) > O for most training examples

e Alternative view: Logistic (Sigmoid) |
function g(2) =

I +e~
—1asz > wandg(z) > 0asz — -«

e g(z) + g(-z) = 1 we could use it to
define the probability model for
binary classification. .




Probabilistic View

e Fory e {-1, +1}, we define the logistic model as
p(Y = ylz;0) = g(yz" 0) =
1
ho(x) =

14+e*
e The likelihood of the training data is

H[) _ U(:‘) |.1.(:‘> 0) HI' (7). (:)

e The log-likelihood |s

|+ o—va70 & refine hypothesis class as

o

m m

((6) = Z log he(y'Vz'V) = — Z log (l - (""m”'l."‘m) = —m.J(0)

1=1 1=1

e maximizing likelihood in the logistic model = minimizing the average
logistic loss



Gradient Descent

o Forthe Lossipgistic(?) = log(1 + e~ *), the derivative is
Sigmoid function
d 1 d = '4

— L ogistic — . == = —gl(—
dz 081ogistic(2) 1+e# dz6 1+e# 9(=2)

e For a single training example (x, y):

0 0
—Lasslogistic(yxT9> — _g(_yxTe)_(yxT9> — —9(—3/33T9)y33k
c%k 5’9k

* Update rule for stochastic gradient descent:

ottt — gt — (o - VgLosslogistic(—y(":)as(i)TQt) Incorrect label

— 09 1 0, g9(—y @20 T00)y O 20 — 60 4 o,h x<i>)y<z’>x<z‘>




Update Rule when ye{0,1}

1
P(y = 1|z;0) = he(z) = T,

14e?
» p(y|x;0) = (hg(x))Y(1 — h@(:l?))l_y

P(y = 0[z;0) =1 — he()

L(O) = p(y|X;0) (@) = logL(0)
= [1r? [2"0) = > yPlogh(z?) + (1 — y) log(1 — h(x?))
1=1 =1

m

. (i) . )
= H (he(.%(z)))y (1 — hg(;,;(l)))l y
- similar to least mean square

update rule, but h is non-linear!

» 0; :=0; +a (y") — he(z")) xg_i)

gradient ascent:

0:.=0+ &V@g(e)




Another Update Rule to Maximize 1(0)

e Newton’s method for finding a zero of a function: f(B) = 0

e Update rule: 6 := 0 - f(8)/f’(6)

J?
A

/ o

Funktion
Tangente




Another Update Rule to Maximize 1(0)

Newton’s method for finding a zero of a function: f(B) = 0

What if we want to maximize some loss function? The maxima of
the loss corresponds to points where its first derivative is O
I'(6)
B l”(@)
e Multidimensional setting: 0 :=10 —@1V9l(«9) Hessian matrix

e Updaterule: §:=0

e Advantage: Newton’s method typically enjoys faster convergence
than gradient descent, and requires many fewer iterations to get
very close to the minimum.

e Disadvantage: more expensive in one iteration



Summary

e [ogistic regression
e Hypothesis h(x) = 0Tx
e (Cost function LOSSlogistic<z) — lOg(l - €_Z>

e Update rule: 9!t =9t — ¢, - VgLosslog,,;Sm-c(—y(i)x(i)TQt)
~U'(9)
()

e Newton’s method 60 :=10

e Probabillistic view:

* maximizing likelihood in the logistic model = minimizing the
average logistic loss
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Generalized Linear Models

e Given the distributions of y | x, how do we come up with the
hypothesis?

e linear regression: y|z;0 ~ N(u,o?), hypothesis: hg(z) = 6 =
o logistic regression: y|z;0 ~ Bernoulli(¢) | hypothesis:

1
h@(ﬂ?) — 1 _|_6_9Tx

 We show both of the methods are special cases of generalized
linear models




Generalized Linear Models

* Probabilistic view of  Probabilistic view of

regression: Gaussian, classification:
Bernoull, ...

ylz; 0 ~ N(u, 0?) y|z; 8 ~ Bernoulli(¢)

)=z (307 o= P -

= exp(ylog o + (1 — y)log(l — ¢))

exponential family
distributions

p(y;n) = b(y) exp(n” T(y) — a(n))

A fixed choice of T, a, and b defines a
family of distributions parameterized by n



Construct GLMs

e Knowing the distribution, how to construct GLMs?

e Assumptions about P(y | X) and hypothesis:
1. ylz;0 follows a distribution that belongs to exponential family
2. h(z) =E[T(y)|~]. E.g., in logistic regression,

ho(x) = p(y = 1]x;0) = 0-p(y = 0[z;0) + 1 - p(y = 1]z;0) = Ely|z]

3. parameter n and inputs x are linearly related: n = 8Tx



Construct Linear Regression Model

e Target variable follows Gaussian distribution: y|z; 0 ~ N (u, 0*)

ho(x) = Ely|z;0] Assumption 2

= ylz; 0 ~ N(n, 0%)

Assumption 1: Write the Gaussian distribution in the

— form of exponential family distribution
- 1 ( ].Q)X ( 12>
. — éex — — X -
plyim) = o=exp | — 5 PAHY = SH

s A Assumption 3



Construct Logistic Regression Model

e Target variable is binary-valued. Thus we choose the Bernoulli
family distributions to model the conditional distribution:

y|z; 6 ~ Bernoulli(¢)

ho(x) = Ely|x;0]  Assumption 2

= ¢ Bernoulli distribution .
=1/(1+¢e~") Assumption 1
o ¢
p(y; @) = exp ((Eog (ﬂ) y + log(1 — ¢))

=1/(1+ e_HT“’) Assumption 3



k-Classification

e Target variable takes on any of k values: ¥ € {1,2,...,k}

e \We choose multinomial distribution to model: k parameters ¢1, ..., ¢
denoting the probability of each outcome

k
e ) ¢i=1,k-1parameters
=1 o ] o -
1 0 0 0 0
0 1 0 0 0
e TH=|Y], 7=, @)= ]|, - Tk-1)=| " |, Tk)=| ¥

0 0 | 0 ] 1 0



k-Classification

e Multinomial is a member of the exponential family.

ply; 9) = V=V =2 L TR " g/ ]
_ _ 1 log(¢2/¢
g g2y oS =) n — | 8l 22/ k)
_ p T T 1= 5 (T ()i | log(dk-1/¢%) |
- 2 k a(n) = —log(¢w)
bly) = 1.

= exp((T(y))11og(¢1) + (T (y))2log(¢2) + -
. (1 - Zf:‘ll(T(y))i) log(¢r)) ; o

= exp((T(y))1 log(é1/0x) + (T(y))2log(ds/dx) +
-+ (T(y))k—110g(r—1/ ) + log(or)) O; = -

Z?:l e’
_ T
= bly)exp( T'(y) — a(n)) probability of class i!

known as softmax function




Softmax Regression Model

ho(x) = E[T(y)|z;0] Assumption 2
 1{y =1} ] Our hypothesis outputs
{y =2} the estimated probability
= k : ;0 that p(y=i | x; 8 ) for every
' ie{1,...k}.
Hy=Fk—1;
i exp (07 x) ] Express the
i O 1 >k exp(6Tx) multinomial
5 kexpw%” z) distribution in
— : _ >_j=1 exp(0j x) the form of
5 : Exponential
i ¢k—1 il exp(Qg_lac) A fam”};.& .
i Z?:l eXp(QJT:B) | ssumption

Multinomial distribution



Softmax Regression

e Training by maximizing the log-likelihood by gradient ascent or
Newton’s method

(o) = > logp(y@z;0)
1=1




Summary

* (Generalized Linear Models
e distribution of the target variable —> hypothesis

1. rewrite the distribution in the form of exponential family
distributions

2. find the relation between the expected value of the target
variable and the natural parameter n

3. express the natural parameter n in terms of inputs x (linear
IN most cases)



