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Supervised Learning Example Revisited
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Supervised Learning Example Revisited
Let’s consider a richer dataset in which we also know the number of 
bedrooms in each apartment

Size #bedrooms Price 
(million￥)

40 0 1.2

65 1 1.9

80 2 2.2

89 2 3.3

120 3 5.3

… … …

• x: two-dimensional vectors in R2


• x1
(i): the size of the i-th apartment 

in the training set

• x2

(i): the number of bedrooms of 
the i-th apartment in the training 
set


• We decide hypothesis h as a 
linear function: hθ(x) = θ0 + θ1x1 + 
θ2x2


• θi: parameters/weights of h

• By letting x0 = 1, we rewrite h as 

h(x) =
nX

i=0

✓ixi = ✓TxWhy a linear function?



Supervised Learning Example Revisited
Let’s consider a richer dataset in which we also know the number of 
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(million￥)
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• By letting x0 = 1, we rewrite h as 


• How can we learn θ? Making h(x) 
close to y for the training 
examples!


• cost function (损失函数)：

h(x) =
nX

i=0

✓ixi = ✓Tx

J(✓) =
1

2

mX

i=1

(h✓(x
(i))� y(i))2

Why a least-squares cost?



Least-Mean Square Alg
• How to choose θ to minimize J(θ)? Let’s start with some “initial 

guess” for θ, and use gradient descent (梯度下降) alg. repeatedly to 
make J(θ) smaller:


• What is the partial derivative (偏导数) term? 

✓j := ✓j � ↵
@J(✓)

✓j
𝛼: learning rate

direction of steepest 

decrease of J

least mean square update rule:

error term



Least-Mean Square Alg
• Two ways to modify the method:


• batch gradient descent: scan through the entire training set 
before taking a single step


• stochastic gradient descent: update parameters according to the 
gradient of the error w.r.t. a single training example



Convergence
• In most cases, gradient descent converges to local minima. Linear 

regression only has one global minima, which the gradient descent 
always converges to. This is because the cost function J is a convex 
quadratic function (⼆二次凸函数).

x

θ

contour (等⾼高线) 

shows the cost

global minima is reached!



Normal Equations (标准⽅方程)
• Gradient descent gives one way of minimizing J. How about others?


• We minimize J by explicitly taking derivatives w.r.t. θ and setting 
them to 0s. And solve the equations!

f: Rmxn ⟼ R

A: m x n matrix



Normal Equations (标准⽅方程)
1. trace (迹):                             , the trace of a real number is itself


2.  trace of a matrix = trace of its transpose (转置矩阵)


3.                                             ，


4.                                      


5.



Normal Equations (标准⽅方程)

Property 1

Property 2, 3

Property 4, 5

= 0



Probabilistic View
• The target variables and the inputs are related by 


• Assume          are distributed IID (independently and identically 
distributed 独⽴立同分布) and 


• Implies 


• Given X and θ, what is the distribution of y(i)’s? Likelihood function:

y(i) = ✓Tx(i) + ✏(i) error term

✏(i)

✏(i) ⇠ N (0,�2)

p(y(i)|x(i); ✓) =
1p
2⇡�

exp
⇣
� (y(i) � ✓Tx(i))2

2�2

⌘



Probabilistic View
• Maximum likelihood: we should choose θ to make the data as high 

probability as possible


• Equivalently, we maximize the log likelihood:

minimizing this term instead!

original least-squares cost



Underfitting & Overfitting
• Fitting to different hypotheses: 

y = ✓0 + ✓1x y = ✓0 + ✓1x+ ✓2x
2 y =

5X

j=0

✓jx
j

The more features we add, the better. However, there is also a risk in 
adding too many features.

underfitting overfitting



Locally Weighted Linear Regression
• The choice of features is important to learning performance!


• Locally weighted linear regression


1. Fit θ to minimize 


2. Output 


• larger w(i) -> try harder to make (y(i) - θTx(i))2 small; otherwise, ignore 
the corresponding error term


• Standard choice for the weight:

X

i

w(i)(y(i) � ✓Tx(i))2

✓Tx

w(i) = exp
⇣
� (x(i) � x)2

2⌧2

⌘

θ is giving a higher weight to the training 
examples close to the testing data x

Non-parametric Alg: 
keep the entire training 
dataset when making 

predictions



Summary
• Linear regression


• Linear hypothesis class 


• Cost function


• Least mean square algorithm: 


• Batch/stochastic gradient descent


• Probabilistic view:


• Errors ∼ I.I.D. Gaussian distribution


• Maximum likelihood


• Overfitting & Underfitting


• Locally weighted linear regression

J(✓) =
1

2

mX

i=1

(h✓(x
(i))� y(i))2

h(x) =
nX

i=0

✓ixi = ✓Tx
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Binary Classification
• The target y can only take two values: y ∈ {-1, +1}. y = 1 if the 

example belongs to the positive class, otherwise, it is a member of 
the negative class


• Hypothesis: h(x) = θTx. Given x, we classify it as positive or negative 
depending on the sign of θTx, i.e., sign(θTx) = y ⟺ yθTx > 0


• Margin for the example (x, y): yθTx — the more θTx is negative (or 
positive), the stronger the belief that y is negative (or positive)


• loss function: should penalize the θ for which y(i)θTx(i) < 0 frequently 
in the training data. Loss value should be small if y(i)θTx(i) > 0 and 
large if y(i)θTx(i) < 0 


• We expect the loss function to be continuous and convex (easy to 
converge to the global minima!)



Binary Classification
• Expect the loss to satisfy: Loss_func ( y(i)θTx(i) ) → 0 as  y(i)θTx(i) →∞ 

and Loss_func ( y(i)θTx(i) ) → ∞ as  y(i)θTx(i) →-∞

Losslogistic(z) = log(1 + e�z)

Lossexp = e�z

Losshinge = max{1� z, 0}

logistic regression

support vector machines

boosting



Logistic Regression
• Choose θ to minimize 


   which hopefully yields θ that y(i)θTx(i) > 0 for most training examples

J(✓) =
1

m

mX

i=1

Losslogistic(y
(i)✓Tx(i)) =

1

m

mX

i=1

log(1 + exp(�y(i)✓Tx(i)))

g(z) =
1

1 + e�z

• Alternative view: Logistic (Sigmoid) 
function                             


    →1 as z → ∞ and g(z) → 0 as z → -∞


• g(z) + g(-z) = 1 we could use it to 
define the probability model for 
binary classification.



Probabilistic View
• For y ∈ {-1, +1}, we define the logistic model as


                                                                 , & refine hypothesis class as


• The likelihood of the training data is


• The log-likelihood is


• maximizing likelihood in the logistic model = minimizing the average 
logistic loss

p(Y = y|x; ✓) = g(yxT ✓) =
1

1 + e�yxT ✓

h✓(x) =
1

1 + e�xT ✓



Gradient Descent
• For the                                               , the derivative is 


• For a single training example (x, y):


• Update rule for stochastic gradient descent:

Losslogistic(z) = log(1 + e�z)

d

dz
Losslogistic(z) =

1

1 + e�z
· d

dz
e�z = � e�z

1 + e�z
= �g(�z)

Sigmoid function

@

@✓k
Losslogistic(yx

T ✓) = �g(�yxT ✓)
@

@✓k
(yxT ✓) = �g(�yxT ✓)yxk

✓t+1 = ✓t � ↵t ·r✓Losslogistic(�y(i)x(i)T ✓t) incorrect label



Update Rule when y∈{0,1} 
P (y = 1|x; ✓) = h✓(x) =

1

1 + e�✓T x

P (y = 0|x; ✓) = 1� h✓(x)
p(y|x; ✓) = (h✓(x))

y(1� h✓(x))
1�y

gradient ascent:

similar to least mean square

 update rule, but h is non-linear!



Another Update Rule to Maximize l(θ) 
• Newton’s method for finding a zero of a function: f(θ) = 0


• Update rule: θ := θ - f(θ)/f’(θ)



Another Update Rule to Maximize l(θ) 
• Newton’s method for finding a zero of a function: f(θ) = 0


• What if we want to maximize some loss function? The maxima of 
the loss corresponds to points where its first derivative is 0


• Update rule: 


• Multidimensional setting: 


• Advantage: Newton’s method typically enjoys faster convergence 
than gradient descent, and requires many fewer iterations to get 
very close to the minimum.


• Disadvantage: more expensive in one iteration

✓ := ✓ � l0(✓)

l00(✓)
✓ := ✓ �H

�1r✓l(✓) Hessian matrix



Summary

• Logistic regression


• Hypothesis h(x) = θTx


• Cost function 


• Update rule:


• Newton’s method


• Probabilistic view:


• maximizing likelihood in the logistic model = minimizing the 
average logistic loss

Losslogistic(z) = log(1 + e�z)

✓t+1 = ✓t � ↵t ·r✓Losslogistic(�y(i)x(i)T ✓t)

✓ := ✓ � l0(✓)

l00(✓)
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Generalized Linear Models
• Given the distributions of y | x, how do we come up with the 

hypothesis?


• linear regression:                              , hypothesis:


• logistic regression:                                   , hypothesis: 


• We show both of the methods are special cases of  generalized 
linear models

y|x; ✓ ⇠ N (µ,�2) h✓(x) = ✓Tx

y|x; ✓ ⇠ Bernoulli(�)

h✓(x) =
1

1 + e�✓T x



Generalized Linear Models
• Probabilistic view of 

regression: 

y|x; ✓ ⇠ N (µ,�2) y|x; ✓ ⇠ Bernoulli(�)

exponential family 
distributions

p(y; ⌘) = b(y) exp(⌘TT (y)� a(⌘))

A fixed choice of T, a, and b defines a 
family of distributions parameterized by η 

• Probabilistic view of 
classification: 

p(y;�) = �y(1� �)1�y

= exp(y log �+ (1� y) log(1� �))

= exp
⇣⇣

log
� �

1� �

�⌘
y

+ log(1� �)
⌘

p(y;µ) =
1p
2⇡

exp
⇣
� 1

2
(y � µ)2

⌘

Gaussian, 
Bernoulli, …

=
1p
2⇡

exp
⇣
� 1

2
y2
⌘
⇥

exp
⇣
µy � 1

2
µ2

⌘

b(y)

ηT T(y)
-a(η)

ηT T(y)

-a(η)



Construct GLMs
• Knowing the distribution, how to construct GLMs?


• Assumptions about P(y | x) and hypothesis:


1.            follows a distribution that belongs to exponential family 


2.                            . E.g., in logistic regression, 


3. parameter η and inputs x are linearly related: η = θTx

y|x; ✓

h(x) = E[T (y)|x]

h✓(x) = p(y = 1|x; ✓) = 0 · p(y = 0|x; ✓) + 1 · p(y = 1|x; ✓) = E[y|x]



Construct Linear Regression Model
• Target variable follows Gaussian distribution: y|x; ✓ ⇠ N (µ,�2)

h✓(x) = E[y|x; ✓] Assumption 2

= µ y|x; ✓ ⇠ N (µ,�2)

= ⌘

p(y;µ) =
1p
2⇡

exp
⇣
� 1

2
y2
⌘
⇥ exp

⇣
µy � 1

2
µ2

⌘

Assumption 1: Write the Gaussian distribution in the

 form of exponential family distribution

= ✓Tx Assumption 3



Construct Logistic Regression Model
• Target variable is binary-valued. Thus we choose the Bernoulli 

family distributions to model the conditional distribution:
y|x; ✓ ⇠ Bernoulli(�)

h✓(x) = E[y|x; ✓] Assumption 2

= � Bernoulli distribution

= 1/(1 + e�⌘) Assumption 1

p(y;�) = exp
⇣⇣

log
� �

1� �

�⌘
y + log(1� �)

⌘

= η

= 1/(1 + e�✓T x) Assumption 3



k-Classification
• Target variable takes on any of k values:


• We choose multinomial distribution to model: k parameters               
denoting the probability of each outcome


•                 , k - 1 parameters 


•

y 2 {1, 2, . . . , k}

�1, . . . ,�k

kX

i=1

�i = 1

(T (y))i = 1{y = i} E[(T (y))i] = P (y = i) = �i



k-Classification
• Multinomial is a member of the exponential family.

p(y;�) = �1{y=1}
1 �1{y=2}

2 . . .�1{y=k}
k

= �1{y=1}
1 �1{y=2}

2 . . .�
1�

Pk�1
i=1 1{y=i}

k

kX

i=1

�i = 1

probability of class i!

known as softmax function



Softmax Regression Model
Assumption 2

Multinomial distribution

Express the 
multinomial 

distribution in 
the form of 
Exponential 

family &

Assumption 3

Our hypothesis outputs 
the estimated probability 
that p(y=i | x; θ ) for every 

i∈{1,…k}.



Softmax Regression
• Training by maximizing the log-likelihood by gradient ascent or 

Newton’s method



Summary

• Generalized Linear Models


• distribution of the target variable —> hypothesis


1. rewrite the distribution in the form of exponential family 
distributions


2. find the relation between the expected value of the target 
variable and the natural parameter η


3. express the natural parameter η in terms of inputs x (linear 
in most cases)


