EI331 Signals and Systems Homework 10

Due: Thursday, May 23

May 18, 2019

1. (C2.2) For each of the following functions, determine the sets of points at which the function is differentiable and analytic, respectively.

(a). $f(z) = x^2 - jy$

(b).
$$f(z) = 2x^3 + j3y^3$$

(c).
$$f(z) = xy^2 + jx^2y$$

- (d). $f(z) = \sin x \cosh y + j \cos x \sinh y$
- 2. (C2.3) For each of the following functions, determine the set of points at which the function is analytic.

(a).
$$f(z) = (z-1)^5$$

(b).
$$f(z) = z^3 + 2jz$$

(c).
$$f(z) = \frac{1}{z^2 - 1}$$

(d). $f(z) = \frac{az+b}{cz+d}$, where $|c| + |d| \neq 0$

3. (C2.10) Assume f is analytic on a domain D. Show that f is constant if any of the following conditions holds.

- (a). f' = 0 on D
- (b). f is real
- (c). \bar{f} is analytic on D
- (d). |f| is constant on D
- (e). $\arg f$ is constant on D
- (f). au + bv = c, where the constants $a, b, c \in \mathbb{R}$ are not all zero.
- 4. (C2.12) Find all the roots of $\sin z + \cos z = 0$
- 5. Evaluate $Log(-1 + j\sqrt{3})$, and find its principal value.

6. (C2.18) Evaluate 3^{j} and $(1+j)^{j}$.

7. Evaluate $\int_0^{1+j} (x^2 + jy) dz$ along y = x and $y = x^2$

8. Evaluate the integral $\int_{\gamma} \frac{\bar{z}}{|z|} dz$, where γ is a positively oriented circle of radius R centered at z = 0.

9. (C3.7.7) Evaluate the integral $\int_{\gamma} \frac{dz}{(z^2+1)(z^2+4)}$, where γ is a positively oriented circle of radius $\frac{3}{2}$ centered at z = 0.

10. (C3.12) Let $D = \{z : \text{Re } z > 0\}$ be the right half plane and z_0 a point in D with |z| = 1. Let γ be a piecewise smooth curve in D that connects z = 0 and z_0 . Show $\text{Re } \int_{\gamma} \frac{1}{1+z^2} dz = \frac{\pi}{4}$. Hint: Argue that you can replace γ by γ_1 and γ_2 , where γ_1 be the line segment connecting z = 0 and z = 1 and γ_2 the arc on the unit circle connecting z = 1 and z_0 .

11. (C3.17) Let f and g be two analytic functions on a domain D and γ a piecewise smooth Jordan curve in D whose interior D_1 lies in D. If f(z) = g(z) on γ , then f(z) = g(z) on D_1 .

Remark. This shows that the values of an analytic function on a domain are completely determined by its values on the boundary.