EI331 Signals and Systems Homework 12

Due: Thursday, June 6

May 31, 2019

1. (C5.8) For each of the following functions, compute the residues at its finite singularities.

(a).
$$f(z) = \frac{z+1}{z^2 - 2z}$$

(b).
$$f(z) = \frac{1 - e^{2z}}{z^4}$$

(c).
$$f(z) = \frac{1+z^4}{(z^2+1)^3}$$

(d).
$$f(z) = \frac{z}{\cos z}$$

(e).
$$(z) = \cos \frac{1}{1-z}$$

2. (C5.9) Evaluate the following integrals, where all circles are positively oriented.

(a).
$$\int_{|z|=\frac{3}{2}} \frac{\sin z}{z} dz$$

(b).
$$\int_{|z|=2} \frac{e^{2z}}{(z-1)^2} dz$$

(c).
$$\int_{|z|=\frac{3}{2}} \frac{1-\cos z}{z^m} dz, m \in \mathbb{Z}$$

3. (C5.11) For each of the following functions, find the residues at ∞

(a).
$$f(z) = \frac{e^z}{z^2 - 1}$$

(b).
$$f(z) = \frac{1}{z(z+1)^4(z-4)}$$

4. (C5.12) Evaluate the following integrals, where all circles are positively oriented.

1

(a).
$$\int_{|z|=3} \frac{z^{15}}{(z^2+1)^2(z^4+2)^3} dz$$

(b).
$$\int_{|z|=r} \frac{z^{2n}}{z^n+1} dz$$
, where n is a positive integer, and $r > 1$.

5. (C5.13) Evaluate the following integrals.

(a).
$$\int_0^{2\pi} \frac{1}{5 + 3\sin\theta} d\theta$$

(b).
$$\int_0^\infty \frac{x^2}{1+x^4} dx$$

(c).
$$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 4x + 5} dx$$

6. (OWN 10.21) For each of the following signals, find its z-transform and the ROC. Point out the finite zeros and poles, their orders, and whether the DTFT exists.

(a).
$$\delta[n+5]$$

(b).
$$\delta[n-5]$$

(c).
$$(-1)^n u[n]$$

(d).
$$(\frac{1}{2})^{n+1}u[n+3]$$

(e).
$$(-\frac{1}{3})^n u[-n-2]$$

(f).
$$(\frac{1}{4})^n u[3-n]$$

(g).
$$2^n u[-n] + (\frac{1}{4})^n u[n-1]$$

(h).
$$(\frac{1}{3})^{n-2}u[n-2]$$

7. (OWN 10.23) Find the inverse z transforms.

(a).
$$X(z) = \frac{1 - z^{-1}}{1 - \frac{1}{4}z^{-2}}, |z| > \frac{1}{2}$$

(b).
$$X(z) = \frac{1 - z^{-1}}{1 - \frac{1}{4}z^{-2}}, |z| < \frac{1}{2}$$

(c).
$$X(z) = \frac{z^{-1} - \frac{1}{2}}{1 - \frac{1}{2}z^{-1}}, |z| > \frac{1}{2}$$

(d).
$$X(z) = \frac{z^{-1} - \frac{1}{2}}{1 - \frac{1}{2}z^{-1}}, |z| < \frac{1}{2}$$

(e).
$$X(z) = \frac{z^{-1} - \frac{1}{2}}{(1 - \frac{1}{2}z^{-1})^2}, |z| > \frac{1}{2}$$

(f).
$$X(z) = \frac{z^{-1} - \frac{1}{2}}{(1 - \frac{1}{2}z^{-1})^2}, |z| < \frac{1}{2}$$