
EI331 Signals and Systems
Homework 6

Due: Thursday, April 11

April 5, 2019

1. In this problem, we show that not all norms can be induced by an inner product.

(a). Show that in an inner product space V with inner product ⟨·, ·⟩ and induced norm ∥ · ∥, the follow
parallelogram law holds for any x, y ∈ V

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2

(You should be able to visualize what this means geometrically when V = R2.)

(b). Show that the parallelogram law fails for 1-norm by considering x = (1, 0)T and y = (0, 1)T in R2.
Conclude that 1-norm on R2 cannot be induced by an inner product.

Remark. The parallelogram law turns out to be also sufficient for a norm to be the induced norm of an
inner product. In fact, you can verify that the following so-called polarization identity defines an inner
product in terms of the norm

⟨x, y⟩ = 1

4

3∑
n=0

jn∥x+ jny∥2

2. (OWN 3.22) Find the Fourier coefficients of the CT periodic signals in Figure 1. Hint: use the
differentiation and integration properties.
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Figure 1: Problem 2.

1



3. (OWN 3.11) Suppose we are given the following information about a DT signal x[n],

(a). x[n] is even

(b). x[n] has period N = 10 and Fourier coefficients x̂[k]

(c). x̂[11] = 5

(d). 1
10

∑9
n=0 |x[n]|2 = 50

Show that x[n] = A cos(Bn+ C) and find the numerical values of A, B and C.

4. (OWN 3.14) Recall the system function of a DT system with impulse response h[n] is

H(z) =

∞∑
n=−∞

h[n]z−n.

The frequency response is obtained when z = ejω, i.e.

H(ejω) =

∞∑
n=−∞

h[n]e−jωn,

which is the eigenvalue of the system associated with the eigenfunction ejωn. When the DT impulse train

x[n] =

∞∑
k=−∞

δ[n− 4k]

is the input to a particular LTI system with frequency response H(ejω), the output of the system is found
to be

y[n] = cos

(
5π

2
n+

π

4

)
.

Determine the values of H(ejkπ/2) for k = 0, 1, 2, 3.

5. (OWN 3.12) Consider two DT signals x1, x2 with period N = 4. Their Fourier coefficients are

x̂1[0] = x̂1[3] =
1

2
x̂1[1] =

1

2
x̂1[2] = 1

x̂2[0] = x̂2[1] = x̂2[2] = x̂2[3] = 1

Use the multiplication property to find the Fourier coefficients of y[n] = x1[n]x2[n].

6. Given a finite sequence x = (x[0], x[1], . . . , x[N − 1]), its discrete Fourier transform (DFT) is
defined by

X[k] = DFT(x)[k] =

N−1∑
n=0

x[n]e−jk 2π
N n, k = 0, 1, 2, . . . , N − 1.

The inverse discrete Fourier transform (IDFT) is given by

x[n] = IDFT(X)[n] =
1

N

N−1∑
k=0

X[k]ejk
2π
N n, n = 0, 1, 2, . . . , N − 1.
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The sequence x can be considered as one period of a periodic signal xN . Another way to say this is that we
can extend x periodically with period N , i.e. define xN [n+ rM ] = x[n], for n = 0, 1, . . . , N − 1 and r ∈ Z,

(a). How is the DFT X of x related to the DT Fourier series coefficients x̂N of xN?

(b). Given two finite sequences x, y of length N , the so-called circular convolution x⊛N y of x and y is
defined by

(x⊛N y)[n] = (xN ∗ yN )[n], n = 0, 1, . . . , N − 1.

where xN ∗ yN is the periodic convolution of xN and yN .

Show the following identity using part (a) and the property of Fourier series coefficient for periodic
convolution,

DFT(x⊛N y) = DFT(x)DFT(y)

(c). DFT and IDFT can be computed using a fast algorithm called Fast Fourier Transform (FFT). For
example, you can compute DFT(x) and IDFT(X) using the python library numpy,

X = numpy.fft.fft(x)
x = numpy.fft.ifft(X)

The circular convolution x ⊛ y can be computed using x ⊛N y = IDFT(DFT(x)DFT(y)). Use numpy
(or your favorite programming language; do not use Matlab, which seems to have a bug for FFT) to
compute the circular convolution of x = [2,-2,-2,-1,0] and y=[-3,-3,-2,1,-1] with N = 5.

(d). The finite sequence x can also be naturally considered as an infinite sequence, also denoted by x, by
assuming x[n] = 0 for n < 0 and n ≥ N . Then we can define the aperiodic convolution of two finite
sequences x and y in the usual way, i.e.

(x ∗ y)[n] ≜
∞∑

m=−∞
x[m]y[n−m] =

N−1∑
m=0

x[m]y[n−m]

Compute x ∗ y using numpy.convolve for the two sequences in part (c); see Lecture 5 for an example.

(e). Note that the periodic extension xN is related to the infinite sequence x by the following

xN [n] =

∞∑
r=−∞

x[n− rN ].

Given two finite sequences of length N , show

(x⊛N y)[n] =

∞∑
r=−∞

(x ∗ y)[n− rN ], n = 0, 1, . . . , N − 1.

You should be able to verify this relation using the results in parts (c) and (d).

(f). Part (e) shows that in general x⊛N y ̸= x ∗ y. In order to leverage the fast algorithm FFT to compute
x∗y, we can do the following. Recall from Problem 1 of Homework 3, supp(x∗y) ⊂ [0, 2N−2]. Instead

3



of extending x with period N , we extend it with period M ≥ 2N − 1, i.e.

xM [n] =

∞∑
r=−∞

x[n− rM ].

In one period,

xM [n+ rM ] =

x[n], n = 0, 1, . . . , N − 1

0, n = N, . . . ,M − 1

This is called zero padding. We can compute the circular convolution of x and y with period M ,

(x⊛M y)[n] = (xM ∗ yM )[n], n = 0, 1, . . . ,M − 1.

The same reasoning in (e) (you don’t have to write it down, but think about it) gives

(x⊛M y)[n] =

∞∑
r=−∞

(x ∗ y)[n− rM ], n = 0, 1, . . . ,M − 1.

Since supp(x ∗ y) ⊂ [0, 2N − 2] and M ≥ 2N − 2, it follows that

(x⊛M y)[n] = (x ∗ y)[n], n = 0, 1, . . . , 2N − 2.

Use fft and ifft in numpy to compute the aperiodic convolution of x and y in part (c). You should
recover the result in (d) up to some numerical errors.

You should email us your source code for parts (c), (d) and (f).
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