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Signals

Definition [The American Heritager Dictionary of the English Language]

Examples

• voltages or currents in circuits
• images, videos

Mathematical Representation
Function of one or more independent variables

x : I → X
t 7→ x(t)
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Examples of Signals

Electrical voltage

Vo : R→ R
t 7→ Vo(t)

Daily temperature

T : I → R
n 7→ T[n]
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Daily high temperatures, Shanghai, January 2019
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Examples of Signals

Speech signal

x : R→ R
t 7→ x(t)

Color Image

P : I × J → R× G× B
(i, j) 7→ (r[i, j], g[i, j], b[i, j])
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Continuous-time vs. Discrete-time Signals

Focus on signals of 1-D independent variable

• x : I → X, with I ⊂ R, often X ⊂ R or C
• independent variable often referred to as “time”

Continuous-time (CT) signal: x(t)

• defined for interval I ⊂ R, often I = R
• called analog signal if X is also continuum
• notation: parentheses for continuous time, e.g. (t)

Discrete-time (DT) signal: x[n]

• defined for discrete set I, often I = Z
• called digital signal if X is also discrete
• notation: square brackets for discrete time, e.g. [n]
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Continuous-time vs. Discrete-time Signals

CT signal

t

x(t)

O 1 2 3 4 5 6 7 8 9 10

DT signal

n

x[n]

O 1 2 3 4 5 6 7 8 9 10

Signals from physical systems often continuous-time

• electrical current, car speed

Signals from computation systems often discrete-time

• mp3, digital image
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Continuous-time vs. Discrete-time Signals

Sampling: converts CT signals to DT signals

CT signal

t

x(t)

0T 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T

T = sampling period

DT signal

n

x[n]

0 1 2 3 4 5 6 7 8 9 10

Important for computer processing of physical signals
• sampled data contains no information about T
• uniform sampling most common
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Continuous-time vs. Discrete-time Signals

Reconstruction: converts DT signals to CT signals

n

x[n]

0 1 2 3 4 5 6 7 8 9 10

T = sampling period

Different T yields different
reconstructed signals

t

x(t)

0T 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T

Zero-order hold

t

x(t)

0T 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T

Linear interpolation
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Time Shift

Time shift (Translation) operator τb : x 7→ τbx

(τbx)(t) = x(t − b) (τbx)[n] = x[n− b]

b ∈ R b ∈ Z

t

x

O t1 t2

τb

t

τbx

O t1 + b t2 + b

Example: Radar, sonar, radio propagation

• b > 0: delay by b, right shift
• b < 0: advance by |b|, left shift
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Time Reversal

Time reversal (Reflection) operator R : x 7→ Rx

(Rx)(t) = x(−t) (Rx)[n] = x[−n]

t

x

t1 t2

R

t

Rx

−t1−t2

Example: Tape recording played backward
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Time Scaling

Time scaling operator Sa : x 7→ Sax

(Sax)(t) = x(at) (Sax)[n] = x[an]

a ∈ R+ a ∈ Z+

need more
work for
a ∈ R+ \ Z+

t

x

O t1 t2

Sa

t

Sax

O t1
a

t2
a

Example: Audio played back at different speed

• a > 1: fast forward, compressed
• 0 < a < 1: slow forward, stretched
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General Affine Transformation of Time

Affine transformation Aa,b : x 7→ Aa,bx

(Aa,bx)(t) = x(at + b) (Aa,bx)[n] = x[an + b]

a ∈ R \ {0}, b ∈ R a ∈ Z \ {0}, b ∈ Z

t

x

t1 t2

Aa,b

t

Aa,bx

t1−b
a

t2−b
a

a = 1
2 , b = 1

Can decompose as product of shift, reversal, scaling

• a > 0: Aa,b = Sa ◦ τ−b

• a < 0: Aa,b = S|a| ◦ R ◦ τ−b

not unique
easier if shift first
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Example of Affine Transformation

Affine transformation A 1
2 ,1

= S 1
2
◦ τ−1 = τ−2 ◦ S 1

2

t

x(t)

−2 −1 1 2 3 4 5 6 7 8

τ−1

t

x(t + 1)

−2 −1 1 2 3 4 5 6 7 8

S 1
2

t

x(1
2 t + 1)

−2 −1 1 2 3 4 5 6 7 8

S 1
2

t

x(1
2 t)

−2 −1 1 2 3 4 5 6 7 8

A 1
2 ,1

τ−2
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More Identities

Sa ◦ τ−b = τ− b
a
◦ Sa

x(t) x(t + b)

x(at) x(at + b)

τ−b

Sa Sa

τ− b
a

Sa ◦ R = R ◦ Sa

x(t) x(−t)

x(at) x(−at)

Sa

R

Sa

R

R ◦ τ−b = τb ◦ R

x(t) x(t + b)

x(−t) x(−t + b)

τ−b

R R

τb
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Signal Energy and Power

v(t): voltage across 1Ω resistor

Instantaneous power p(t) = |v(t)|2

Energy over [t1, t2] E(t1, t2) =
∫ t2

t1
|v(t)|2dx

Average power over [t1, t2] P(t1, t2) = 1
t2−t1

∫ t2
t1
|v(t)|2dx

Total energy

E(x) =

∫ ∞
−∞
|x(t)|2dt E(x) =

∞∑
n=−∞

|x[n]|2

Average power

P(x) = lim
T→∞

1
2T

∫ T

−T
|x(t)|2dt P(x) = lim

N→∞

1
2N + 1

N∑
n=−N

|x[n]|2
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Finite-energy and Finite-power Signals

Finite-energy signal E(x) <∞

e.g. x(t) = 1 for t ∈ [0, 1] and x(t) = 0 elsewhere

Finite-power signal P(x) <∞

e.g. x(t) = sin t for t ∈ (−∞,∞)

Some implications
• E(x) <∞ =⇒ P(x) = 0
• P(x) > 0 =⇒ E(x) =∞

Caution
• P(x) = 0 does not imply E(x) <∞
• E(x) =∞ does not imply P(x) > 0

e.g. x(t) = t−1/2 for t ≥ 1 and x(t) = 0 elsewhere
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Periodicity: Continuous-time Signal

CT signal is periodic with period T ∈ R iff τTx = x, i.e.

x(t + T) = x(t), ∀t ∈ R

Example: x(t) = sin t has period T = 2π

t

x

O−4π −2π 2π 4π

Example: sawtooth signal x(t) = t − btc has period T = 1

t

x

O−4 −3 −2 −1 1 2 3 4
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Periodicity: Continuous-time Signal

Fundamental period: smallest positive period (if exists)

T0 = min{T > 0 : x = τTx}

Example: x(t) = sin t has fundamental period T0 = 2π

t

x

O−4π −2π 2π 4π

Example: constant signal x(t) = 1 has no well-defined
fundamental period, {T > 0 : x = τTx} = R+

t

x

O
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Periodicity: Continuous-time Signal

Question. What’s period of x(t) = x1(t) + x2(t) if xi has
period Ti?

Answer. Sufficient condition for x to have period T is
T = m1T1 = m2T2 for integers m1 and m2. This requires

T1/T2 = m2/m1 ∈ Q
Examples
• x(t) = sin(t) + sin(2t)has T0 = 2π

I T1 = 2π, T2 = π, T1/T2 = 2; take m1 = 1,m2 = 2.
• x(t) = sin(t) + sin(3t/2)has T0 = 4π

I T1 = 2π, T2 = 4π/3, T1/T2 = 3/2; take m1 = 2,m2 = 3.
• x(t) = sin(t) + sin(πt) is aperiodic!

t

x

O−4π −2π 2π 4π
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Periodicity: Continuous-time Signal

How to prove x(t) = sin(t) + sin(πt) is aperiodic?

Proof. By contradiction. Suppose x(t) has period T > 0.

1. sin(t + T) + sin(π(t + T)) = sin(t) + sin(πt)
2. t = 1 =⇒ sin(1 + T)− sin(πT) = sin(1)

3. t = −1 =⇒ sin(−1 + T)− sin(πT) = − sin(1)

4. subtract 3. from 2.

2 sin(1) cos(T) = sin(T + 1)− sin(T − 1) = 2 sin(1)

5. 4. =⇒ cos(T) = 1 =⇒ T = 2kπ for k ∈ Z+

6. substitute T = 2kπ into 2.

sin(1)− sin(2kπ2) = sin(1) =⇒ sin(2kπ2) = 0

7. 6. =⇒ 2kπ2 = mπ for m ∈ Z =⇒ π = m/(2k) ∈ QE
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Periodicity: Discrete-time Signal

DT signal is periodic with period N ∈ Z iff τNx = x, i.e.

x[n + N] = x[n], ∀n ∈ Z

Example: x[n] = sin(π5 n) has period N = 10

n

x

O

−4π

−2π

2π

4π

Example: x[n] = sin n is aperiodic!

n

x

O−4π −2π 2π 4π
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Periodicity: Discrete-time Signal

Question. When is x[n] = sin(ωn) periodic?

Solution. Suppose x[n] has period N > 0.

sin(ω(n + N)) = sin(ωn) ⇐⇒ ωN = 2kπ for k ∈ Z.

Necessary condition for periodicity

ω

2π
=

k
N
∈ Q.

Also sufficient (check!)

sin(ωn) periodic ⇐⇒ ω is rational multiple of 2π
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Periodicity: Discrete-time Signal

Fundamental period: smallest positive period

N0 = min{N > 0 : x = τNx}

Example: x[n] = sin(π5 n) has N0 = 10

n

x

O

−4π

−2π

2π

4π

Example: constant signal x[n] = 1 has N0 = 1 (cf. x(t) = 1!)

t

x

O
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Periodicity: Discrete-time Signal

Question. What’s fundamental period of x[n] = sin(ωn)?

Solution. Periodic iff ω = 2π k
N for k ∈ Z, N ∈ Z+. In this

case, N is a period.

Fundamental period is N/ gcd(N, k).

Proof. Clearly true for k = 0. Consider k 6= 0. WLOG,
assume gcd(N, k) = 1 and show N is fundamental period.
Proof by contradiction.

1. Suppose 0 < N1 < N also a period
2. ωN1 = 2πm for m ∈ Z \ {0} =⇒ kN1 = mN
3. 2. =⇒ N divides kN1

4. gcd(N, k) = 1 =⇒ N divides N1 E
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Periodicity: Discrete-time Signal

Example. x[n] = sin
(

2π
3 n
)

has N0 = 3; its continuous
counterpart x(t) = sin

(
2π
3 t
)

also has T0 = 3.

n

x

O 1 2 3 4 5 6

Example. x[n] = sin
(

4π
3 n
)

has N0 = 3, but its continuous
counterpart x(t) = sin

(
4π
3 t
)

has T0 = 3/2 (!).

n

x

O 1 2 3 4 5 6
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Even and Odd Signals

Signal is even iff Rx = x

x(−t) = x(t) ∀t
x[−n] = x[n] ∀n

Example: x(t) = cos t, x[n] = cos n

t
n

x

O

Signal is odd iff Rx = −x

x(−t) = −x(t) ∀t
x[−n] = −x[n] ∀n

t
n

x

O

Example: x(t) = sin t, x[n] = sin n

Question: What’s x(0) if x is odd?
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Even-odd Decomposition

Even part

Ev(x) =
1
2

(x + Rx)

Odd part

Od(x) =
1
2

(x− Rx)

Even-odd decomposition

x = Ev(x) +Od(x)

Check:
• x is even iff x = Ev(x)

• x is odd iff x = Od(x)
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