El331 Signals and Systems Lecture 12

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

April 4, 2019

Contents

1. Filtering

2. DT Fourier Series

3. Properties of DT Fourier Series

Ideal Frequency-selective Filters

Ideal lowpass filter

$$H(j\omega) = egin{cases} 1, & |\omega| \leq \omega_c \ 0, & ext{otherwise} \end{cases}$$

 ω_c : cutoff frequency

Ideal Frequency-selective Filters

Ideal highpass filter

$$H(j\omega) = egin{cases} 1, & |\omega| \geq \omega_c \ 0, & ext{otherwise} \end{cases}$$

 ω_c : cutoff frequency

Ideal Frequency-selective Filters

Ideal bandpass filter

$$H(j\omega) = egin{cases} 1, & \omega_{c1} \leq |\omega| \leq \omega_{c2} \ 0, & ext{otherwise} \end{cases}$$

 ω_{c1} : lower cutoff frequency ω_{c2} : upper cutoff frequency

Simple RC Lowpass Filter

ODE

$$RC\frac{dv_C(t)}{dt} + v_C(t) = v_S(t)$$

For input

$$v_S(t) = e^{j\omega t}$$

output

$$v_C(t) = H(j\omega)e^{j\omega t}$$

Frequency response
$$H(j\omega) = \frac{1}{1 + RCj\omega}$$

Simple RC Lowpass Filter

Frequency response

$$H(j\omega) = \frac{1}{1 + RCj\omega}$$

$$|H(j\omega)| = \frac{1}{\sqrt{1 + (RC\omega)^2}}$$

 $\arg H(j\omega) = -\arctan(RC\omega)$

Nonideal lowpass filter
passes lower frequencies
attenuates higher frequencies

Larger $RC \implies$ passes smaller range of lower frequencies

Simple RC Lowpass Filter

Impulse response

$$h(t) = \frac{1}{RC}e^{-t/RC}u(t)$$

Step response

$$s(t) = (h * u)(t) = (1 - e^{-t/RC})u(t)$$

Time constant $\tau = RC$

• larger τ , more sluggish response

Tradeoff

- larger τ , passes fewer higher frequencies, more sluggish response
- smaller au, passes more higher frequencies, faster response

Simple RC Highpass Filter

ODE

$$RC\frac{dv_R(t)}{dt} + v_R(t) = RC\frac{dv_S(t)}{dt}$$

For input

$$v_S(t) = e^{j\omega t}$$

output

$$v_R(t) = H(j\omega)e^{j\omega t}$$

Frequency response
$$H(j\omega) = \frac{j\omega RC}{1 + j\omega RC}$$

Simple RC Highpass Filter

Frequency response

$$H(j\omega) = \frac{j\omega RC}{1 + j\omega RC}$$

$$|H(j\omega)| = \frac{|\omega|RC}{\sqrt{1 + (RC\omega)^2}}$$

$$\arg H(j\omega) = \arctan \frac{1}{RC\omega}$$

Nonideal highpass filter passes higher frequencies attenuates lower frequencies

Larger $RC \implies$ passes larger range of lower frequencies

Simple RC Highpass Filter

Step response

$$s(t) = e^{-t/RC}u(t)$$

Impulse response

$$h(t) = s'(t) = \delta(t) - \frac{1}{RC}e^{-t/RC}u(t)$$

Time constant $\tau = RC$

• larger τ , more sluggish response

Observations

- larger τ , passes more lower frequencies, more sluggish response
- smaller τ , passes fewer lower frequencies, faster response

Contents

1. Filtering

2. DT Fourier Series

3. Properties of DT Fourier Series

DT Periodic Signals

Recall DT signal is periodic with period N if

$$x = \tau_N x$$
 or $x[n] = x[n+N], \forall n \in \mathbb{Z}$

- fundamental period N: smallest positive period
- fundamental frequency $\begin{cases} \frac{2\pi}{N}, & \text{if } N > 1 \\ 0, & \text{if } N = 1 \end{cases}$

Complex exponential $\phi_N^k[n] = e^{ik\frac{2\pi}{N}n} = e^{ik\omega_0 n}$ is periodic with

- period N and fundamental period $\frac{N}{\gcd(N,k)}$
- fundamental frequency

$$\omega_k = egin{cases} 0, & ext{if } N \mid k \ \omega_0 \cdot \gcd(k,N), & ext{otherwise} \end{cases}$$

always integer multiple of $\omega_0=rac{2\pi}{N}$

Finiteness of DT Fourier Basis

Fourier series represent N-periodic signals in terms of harmonically related complex exponentials ϕ_N^k

$$x = \sum_k c_k \phi_N^k$$
, or $x[n] = \sum_k c_k \phi_N^k[n] = \sum_k c_k e^{jk\frac{2\pi}{N}n}$

Key difference with CT case

 $\phi_N^{k+rN}=\phi_N^k$, so only N distinct ϕ_N^k , Fourier basis is finite, i.e.

$$\{\phi_N^k : k \in \mathbb{Z}\} = \{\phi_N^k : k \in [N]\}$$

where $[N]=\{0,1,\ldots,N-1\}$ (can think $[N]=\{ar{0},ar{1},\ldots,\overline{N-1}\}$)

Proof. For $r \in \mathbb{Z}$,

$$\phi_N^{k+rN}[n] = e^{j(k+rN)\frac{2\pi}{N}n} = e^{jk\frac{2\pi}{N}n}e^{jr2\pi n} = e^{jk\frac{2\pi}{N}n} = \phi_N^k[n]$$

Finiteness of DT Fourier Basis

$$\phi_N^k$$
 for $N = 4$ and $k = 0, 1, ..., 8$

Orthonormality of Harmonics

DT Fourier series

$$x = \sum_{k \in [N]} \hat{x}[k]\phi_N^k, \quad \text{ or } \quad x[n] = \sum_{k \in [N]} \hat{x}[k]e^{jk\frac{2\pi}{N}n}$$

Summation can also be taken over any N successive integers.

Find coefficients $\hat{x}[k]$ using orthonormality of harmonics.

Define inner product between two signals with period N by

$$\langle x, y \rangle = \frac{1}{N} \sum_{n \in [N]} x[n] \overline{y[n]}$$

Same as inner product in \mathbb{C}^N up to factor N^{-1}

 $\{\phi_N^k : k \in [N]\}$ is orthonormal system of functions

$$\langle \phi_N^k, \phi_N^m \rangle = \delta_{km} = \delta[k - m]$$

Proof of Orthonormality of Harmonics

 $\{\phi_N^k : k \in [N]\}$ is orthonormal system of functions, i.e.

$$\langle \phi_N^k, \phi_N^m \rangle = \delta_{km} = \delta[k-m]$$

Proof.

$$\langle \phi_N^k, \phi_N^m \rangle = \frac{1}{N} \sum_{i=1}^{N} e^{jk\frac{2\pi}{N}n} e^{-jm\frac{2\pi}{N}n} = \frac{1}{N} \sum_{i=1}^{N-1} e^{j(k-m)\frac{2\pi}{N}n}$$

If k = m,

$$\langle \phi_N^k, \phi_N^m \rangle = \frac{1}{N} \sum_{k=1}^{N-1} 1 = 1$$

If
$$k \neq m$$
, since $|k-m| \leq N-1$, $e^{j(k-m)\frac{2\pi}{N}} \neq 1$. By $\sum_{n=n}^{n_2} a^n = \frac{a^{n_1} - a^{n_2+1}}{1-a}$,

$$\langle \phi_N^k, \phi_N^m \rangle = \frac{1}{N} \sum_{n=0}^{N-1} e^{j(k-m)\frac{2\pi}{N}n} = \frac{1}{N} \frac{1 - e^{j(k-m)\frac{2\pi}{N}N}}{1 - e^{j(k-m)\frac{2\pi}{N}}} = 0$$

Fourier Coefficients

Suppose *x* has period *N* and Fourier series representation

$$x = \sum_{k \in [N]} \hat{x}[k] \phi_N^k$$

For $m \in [N]$,

$$\begin{split} \langle x, \phi_N^m \rangle &= \langle \sum_{k \in [N]} \hat{x}[k] \phi_N^k, \phi_N^m \rangle = \sum_{k \in [N]} \hat{x}[k] \langle \phi_N^k, \phi_N^m \rangle \\ &= \sum_{k \in [N]} \hat{x}[k] \delta[m-k] = \hat{x}[m] \end{split}$$

Can thick of \hat{x} as *N*-periodic signal, since

$$\hat{x}[m+rN] \triangleq \langle x, \phi_N^{m+rN} \rangle = \langle x, \phi_N^m \rangle = \hat{x}[m]$$

but use **only** *N* **successive values** in Fourier series!

DT Fourier Series

Synthesis equation

$$x[n] = \sum_{k \in [N]} \hat{x}[k] \phi_N^k[n] = \sum_{k \in [N]} \hat{x}[k] e^{ik\frac{2\pi}{N}n}$$

Analysis equation

$$\hat{x}[k] = \langle x, \phi_N^k \rangle = \frac{1}{N} \sum_{n \in [N]} x[n] e^{-jk\frac{2\pi}{N}n}$$

No convergence issue since all sums are finite!

Example

$$x[n] = \cos(\frac{6\pi}{5}n + \frac{\pi}{5}) = \frac{e^{j\frac{\pi}{5}}}{2}e^{j3\frac{2\pi}{5}n} + \frac{e^{-j\frac{\pi}{5}}}{2}e^{-j3\frac{2\pi}{5}n}$$
, period $N = 5$

$$\hat{x}[3] = \frac{1}{2}e^{j\frac{\pi}{5}}; \quad \hat{x}[2] = \hat{x}[-3] = \frac{1}{2}e^{-j\frac{\pi}{5}}; \quad \hat{x}[0] = \hat{x}[1] = \hat{x}[4] = 0$$

 $\hat{x}[k]$ repeats with period N=5

Example: Periodic Square Wave

Periodic square wave with period N, in one period

$$x[n] = \begin{cases} 1, & -N_1 \le n \le N_1 \\ 0, & N_1 < n < N - N_1 \end{cases}$$

Fourier coefficients

$$\hat{x}[k] = \frac{1}{N} \sum_{n = -N}^{N_1} e^{-jk\frac{2\pi}{N}n}$$

If k is integer multiple of N, $\hat{x}[k] = \frac{2N_1+1}{N}$

Example: Periodic Square Wave

If k is not integer multiple of N, then $e^{-jk\frac{2\pi}{N}} \neq 1$. Using

$$\sum_{n=m}^{M} a^n = \frac{a^m - a^{M+1}}{1 - a}$$

we obtain

$$\hat{x}[k] = \frac{1}{N} \sum_{n=-N_1}^{N_1} e^{-jk\frac{2\pi}{N}n} = \frac{1}{N} \frac{e^{jk\frac{2\pi}{N}N_1} - e^{-jk\frac{2\pi}{N}(N_1+1)}}{1 - e^{-jk\frac{2\pi}{N}}}$$

$$= \frac{1}{N} \frac{e^{jk\frac{2\pi}{N}(N_1+\frac{1}{2})} - e^{-jk\frac{2\pi}{N}(N_1+\frac{1}{2})}}{e^{jk\frac{\pi}{N}} - e^{-jk\frac{\pi}{N}}}$$

$$= \frac{1}{N} \frac{\sin(k\frac{2\pi}{N}(N_1+\frac{1}{2}))}{\sin(k\frac{\pi}{N})}$$

Example: Periodic Square Wave

 $N_1=2$

$$\hat{x}[k] = \frac{1}{N} \frac{\sin(k\frac{2\pi}{N}(N_1 + \frac{1}{2}))}{\sin(k\frac{\pi}{N})}$$

$$N_1 = 2$$

$$N = 10$$

$$N_1 = 2$$

$$N = 20$$

DT Fourier Series: Matrix Form

Synthesis equation

$$x[n] = \sum_{k \in [N]} \hat{x}[k] e^{jk\frac{2\pi}{N}n} = \sum_{k=0}^{N-1} W_N^{kn} \hat{x}[k], \quad \text{ where } W_N = e^{jk\frac{2\pi}{N}}$$

$$\begin{pmatrix} x[0] \\ x[1] \\ x[2] \\ \vdots \\ x[N-2] \\ x[N-1] \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 1 & W_N & W_N^2 & \dots & W_N^{N-1} \\ 1 & W_N^2 & W_N^4 & \dots & W_N^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & W_N^{N-2} & W_N^{2(N-2)} & \dots & W_N^{(N-1)(N-2)} \\ 1 & W_N^{N-1} & W_N^{2(N-1)} & \dots & W_N^{(N-1)^2} \end{pmatrix} \begin{pmatrix} \hat{x}[0] \\ \hat{x}[1] \\ \hat{x}[2] \\ \vdots \\ \hat{x}[N-2] \\ \hat{x}[N-1] \end{pmatrix}$$

$$\mathbf{F} = (\phi_N^0, \phi_N^1, \dots, \phi_N^{N-1})$$

DT Fourier Series: Matrix Form

Synthesis equation

$$x[n] = \sum_{k \in [N]} \hat{x}[k] e^{ik\frac{2\pi}{N}n} = \sum_{k=0}^{N-1} W_N^{kn} \hat{x}[k], \quad \text{where } W_N = e^{ik\frac{2\pi}{N}}$$

Matrix form

$$x = \mathbf{F}\hat{x}$$
, where $\mathbf{F} = (\phi_N^0, \phi_N^1, \dots, \phi_N^{N-1})$

Analysis equation

$$\hat{x}[k] = \frac{1}{N} \sum_{n \in [N]} x[n] e^{-jk\frac{2\pi}{N}n} = \frac{1}{N} \sum_{n=0}^{N-1} \bar{W}_N^{kn} x[n]$$

Matrix form

$$\hat{x} = \mathbf{F}^{-1} x = \frac{1}{N} \mathbf{F}^H x$$

where $\mathbf{F}^H = (\bar{\mathbf{F}})^T$ is Hermitian transpose of \mathbf{F}

Contents

1. Filtering

DT Fourier Series

3. Properties of DT Fourier Series

DT Fourier Series

DT Fourier series for x with period N and $\omega_0 = \frac{2\pi}{N}$,

$$x[n] = \sum_{k \in [N]} \hat{x}[k]e^{ik\omega_0 n}$$

Correspondence between two *N*-periodic functions

$$x \overset{\mathfrak{DTFS}}{\longleftrightarrow} \hat{x}$$
 or $x[n] \overset{\mathfrak{DTFS}}{\longleftrightarrow} \hat{x}[k]$

Two equivalent representations of same signal

- time domain: x[n]
- frequency domain: $\hat{x}[k]$

Properties of DT Fourier Series

Linearity

If x, y have same period N,

$$\widehat{ax + by} = a\hat{x} + b\hat{y}$$

Time and frequency shifting

If x has period N and $\omega_0 = \frac{2\pi}{N}$,

$$\widehat{ au_{n_0}x} = E_{-\omega_0 n_0}\hat{x}$$
 or $x[n-n_0] \overset{ extstyle exts$

and

$$\widehat{E_{m\omega_0}x} = au_m \hat{x}$$
 or $e^{im\omega_0 n} x[n] \stackrel{ ext{ text{DTFS}}}{\longleftrightarrow} \hat{x}[k-m]$

where
$$(E_a\hat{x})[k] = e^{jak}\hat{x}[k]$$
 and $(E_ax)[n] = e^{jan}x[n]$

Properties of DT Fourier Series

Assume x has period N

Time reversal

$$\widehat{Rx} = R\hat{x}$$
 or $x[-n] \stackrel{\text{DTFS}}{\longleftrightarrow} \hat{x}[-k]$

Conjugation

$$\widehat{x^*} = R\widehat{x}^*$$
 or $x^*[n] \stackrel{\mathfrak{DTF8}}{\longleftrightarrow} (\widehat{x}[-k])^*$

Symmetry

- x even $\iff \hat{x}$ even, x odd $\iff \hat{x}$ odd
- $x \text{ real} \iff \hat{x}[-k] = \overline{\hat{x}[k]}$
- x real and even $\iff \hat{x}$ real and even
- x real and odd $\iff \hat{x}$ purely imaginary and odd

Time Scaling

Define $x_{(m)}$ by

$$x_{(m)}[n] = egin{cases} x[n/m], & ext{if } n ext{ is multiple of } m \ 0, & ext{otherwise} \end{cases}$$

If x has period N, then $x_{(m)}$ has period mN, and

$$\widehat{x_{(m)}} = \frac{1}{m}\hat{x}$$
 or $x_{(m)}[n] \overset{\text{DTFS}}{\longleftrightarrow} \frac{1}{m}\hat{x}[k]$

Proof.

$$\widehat{x_{(m)}}[k] = \frac{1}{mN} \sum_{n \in [mN]} x_{(m)}[n] e^{-jk\frac{2\pi}{mN}n} = \frac{1}{mN} \sum_{\ell \in [N]} x[\ell] e^{-jk\frac{2\pi}{N}\ell} = \frac{1}{m} \widehat{x}[k]$$

NB. $x_{(m)}$ and $\widehat{x_{(m)}}$ have period mN, so $x_{(m)}[n] = \sum_{k \in [mN]} \frac{1}{m} \widehat{x}[k] e^{jk\frac{2\pi}{mN}n}$

First Difference and Running Sum

First (backward) difference (analog of derivative for CT signals)

$$\Delta x = x - \tau_1 x$$

If x has period N, so does Δx , and

$$\widehat{\Delta x} = (1 - E_{-\frac{2\pi}{N}}) \hat{x} \qquad \text{or} \qquad x[n] - x[n-1] \overset{\text{DIFS}}{\longleftrightarrow} (1 - e^{-jk\frac{2\pi}{N}}) \hat{x}[k]$$

Running sum (analog of integration for CT signals)

$$y[n] = \sum_{m=n_0}^{n} x[m]$$

- y periodic iff $\hat{x}[0] = 0$, i.e. x has no DC component
- if $\hat{x}[0] = 0$, y also has period N,

$$\hat{y}[k] = \frac{1}{1 - e^{-jk\frac{2\pi}{N}}}\hat{x}[k] \quad \text{for } k \neq 0$$

Multiplication

If x and y have **same** period N, so does their product xy, and

$$\widehat{xy} = \widehat{x} * \widehat{y}$$
 or $x[N]y[N] \overset{\text{DTFS}}{\longleftrightarrow} \sum_{m \in [N]} \widehat{x}[m]\widehat{y}[k-m]$

NB. Frequency domain: **periodic** convolution in DT case vs. **aperiodic** convolution in CT case

Proof.

$$\begin{split} x[n]y[n] &= \left(\sum_{m \in [N]} \hat{x}[m]e^{jm\omega_0 n}\right) \left(\sum_{\ell \in [N]} \hat{y}[\ell]e^{j\ell\omega_0 n}\right) \\ &= \sum_{m \in [N]} \sum_{\ell \in [N]} \hat{x}[m]\hat{y}[\ell]e^{j(m+\ell)\omega_0 n} \\ &= \sum_{k \in [N]} \left(\sum_{m \in [N]} \hat{x}[m]\hat{y}[k-m]\right) e^{jk\omega_0 n} \quad \binom{k=m+\ell, \text{ use arithmetic mod } N \end{split}$$

Periodic Convolution

Periodic convolution x * y of x and y with same period N

$$(x * y)[n] = \sum_{m \in [N]} x[m]y[n - m]$$

Properties

Commutativity

$$x * y = y * x$$

Associativity

$$(x*y)*z = x*(y*z)$$

Bilinearity

$$\left(\sum_{i} a_{i} x_{i}\right) * \left(\sum_{j} b_{j} y_{j}\right) = \sum_{i,j} a_{i} b_{j} (x_{i} * y_{j})$$

Periodic Convolution

Fourier coefficients satisfy

$$\widehat{x*y} = N\hat{x}\hat{y}$$
 or $(x*y)[n] \stackrel{\mathfrak{DTFS}}{\longleftrightarrow} N\hat{x}[k]\hat{y}[k]$

convolution in time ← multiplication in frequency

Proof.

$$(\widehat{x * y})[k] = \langle x * y, e^{jk\omega_0 n} \rangle$$

$$= \langle \sum_{m \in [N]} x[m] \tau_m y, e^{jk\omega_0 n} \rangle$$

$$= \sum_{m \in [N]} x[m] \langle \tau_m y, e^{jk\omega_0 n} \rangle$$

$$= \sum_{m \in [N]} x[m] \widehat{y}[k] e^{-jk\omega_0 m} = N\widehat{x}[k] \widehat{y}[k]$$