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1. Filtering



|deal Frequency-selective Filters

Ideal lowpass filter

H(jw) — {1, lw] < w,

0, otherwise

w,.: cutoff frequency

yH(jw)

w

_wc O w()
<— stopband —>|<— passband stopband —



|deal Frequency-selective Filters

Ideal highpass filter

H(jw) = {1, lw| > w,

0, otherwise

w,: cutoff frequency

H(jw)




|deal Frequency-selective Filters
Ideal bandpass filter

17 Wel S ’Cx)’ S We2
0, otherwise

H(jw) = {

w1 lower cutoff frequency
we: upper cutoff frequency

—We2 —Wel 0 Wel



Simple RC Lowpass Filter

ODE + VR(t) _
| M|
RCdv;t(t) Fve(t) = vs(1) R

For input vs(t) TC) C

Vs<t) = e/'wt

]+

output

ve(t) = H(jw)e™

1
1 + RCjw

Frequency response  H(jw) =

Vc<f)



Simple RC Lowpass Filter

Frequency response I |H (jw)|
H) =+
<) T T+ RGjw | |
| 0 &
Ul = =Ry
\ arg H(jw
arg H(jw) = — arctan(RCw)

Nonideal lowpass filter L

passes lower frequencies _ 1

IS

attenuates higher frequencies

Larger RC — passes smaller range of lower frequencies



Simple RC Lowpass Filter

Impulse response

Step response
s(t) = (hxu)(r) = (1 — """ )u(r)

Time constant 7 = RC
e larger T, more sluggish response

Tradeoff

e |arger 7, passes fewer higher frequencies, more sluggish
response

e smaller 7, passes more higher frequencies, faster response



Simple RC Highpass Filter

Vc<f)

ODE + VR(t) _
1
dvR<t) - dVS(t)
RC— = +vg(t) = RC— R
+
For input vs(1) TC rol—
Vs<t) = ei“”
output

ve(t) = H(jw)e"

JwRC
1 4 jwRC

Frequency response  H(jw) =



Simple RC Highpass Filter

Frequency response \1%
H(]w) ﬂ | |

~ 1+ jwRC 0 & "
RC RC
_ |w|RC
H(jw)| = ——=; H(jw)
[+ (RCw)? parg H(jw

e

) 1
arg H(jw) = arctan RCo

INE

)
1 .
RC !
T
1
1

Nonideal highpass filter . o
RC

passes higher frequencies \\ "

attenuates lower frequencies L

Larger RC — passes larger range of lower frequencies




Simple RC Highpass Filter

Step response
il
s(t) = e /RCu(r)
0 RC t
Impulse response o /
1 ~1
h(t) = s'(1) = 8(1) — —=e "/RCu(r)
( /=0 ke ys(0)
Time constant 7 = RC 1
e larger 7, more sluggish response 1 \
RC ¢

Observations
e larger 7, passes more lower frequencies, more sluggish
response
e smaller 7, passes fewer lower frequencies, faster response
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2. DT Fourier Series



DT Periodic Signals
Recall DT signal is periodic with period N if
x=1yx Of x[n]=x[n+N],VneZ
e fundamental period N: smallest positive period

ImoifN > 1
e fundamental frequency ¢ V’ I ~
0, ifN=1
Complex exponential ¢k [n] = ¢*%" = e is periodic with

e period N and fundamental period {5

e fundamental frequency

0, ifN |k
W, =
¢ wp - ged(k,N), otherwise

always integer multiple of w, = %



Finiteness of DT Fourier Basis

Fourier series represent N-periodic signals in terms of
harmonically related complex exponentials ¢%

X = Z ckgb,k\,, or Z ckng Z cke’kh
k

Key difference with CT case
VN — @k s0 only N distinct ¢f,, Fourier basis is finite, i.e.

N

{oh ke Z} = {¢y : k€ [N]}
where [N] = {0,1,...,N — 1} (can think [N] = {0,1,...,N — 1})
Proof. For r € Z,

1;]+rN[n] — AN FEn kS pr2mn kST fv[”]



Finiteness of DT Fourier Basis
¢k forN=4andk=0,1,...,8

X X X

1 il 14

I TR T T[T T

#%[n] =cos(0-n) =1 o) [n] = cos(mn/4)

8% [n] = cos(3mn/2) #%[n] = cos(Tmn/4) @Y [n] = cos(2mn) = 1



Orthonormality of Harmonics
DT Fourier series
x=> ikeh, or xln] = ikle*F"
kE[N] ke[N]
Summation can also be taken over any N successive integers.
Find coefficients x[k] using orthonormality of harmonics.

Define inner product between two signals with period N by
1 N
(ey) = > Alnln]
ne(N|
Same as inner product in C up to factor N~!
{¢% : k € [N]} is orthonormal system of functions

(&N ON) = Oon = Olk — m]



Proof of Orthonormality of Harmonics

{¢% : k € [N]} is orthonormal system of functions, i.e.

(O, ON) = Ok = Olk — m]

N—
¢N7¢N Ze]kzﬂn —]m Tn o ]lvz (k m)27T
n=0

ne[N

Proof.

If kK = m, | N
— 1=
(O &) = N;

. T m n n
If k # m, since [k —m| <N — 1, JEF £1. By Y a" = 020,
n=ni

11— ej(kfm)%rN

1N 1
e] 27rn _ - T :0
(bN?(bN ; N l_e/(k_m)%r



Fourier Coefficients
Suppose x has period N and Fourier series representation

x=Y i[kl¢k

k€[N]
For m € [N],
(x om) = (> slklek, om) = > x[k](¢h. o)

ke[N] Sl

= ik = x[m]

ke[N]

?V‘

Can thick of x as N-periodic signal, since

i[m+rN] £ (x, o) = (x, ¢y) = X[m]

but use only N successive values in Fourier series!



DT Fourier Series

Synthesis equation

Analysis equation

K] = (x0h) = o D xinle B

né€[N]

No convergence issue since all sums are finite!



Example

s period N =5
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x[k] repeats with period N = 5
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Example: Periodic Square Wave

Periodic square wave with period N, in one period

IIINH IIIII TII0T,

Fourier coefficients



Example: Periodic Square Wave

If k is not integer multiple of N, then e 7% = 1. Using

M
L am—at!

D d'=
C1-a

n=m
we obtain
N KN _ ik 3 (Ni+1)
R S AR e
N Bt N 1 — e *%
1 %5 WNi+3) o=k (Nit3)
B N e]k% — e*jk%

1 sin(k3F (N + )
N sin(k%)




Example: Periodic Square Wave

. 1 sin(k2(N; + 3))
ik = N sin(ky)

Ni=2
N=20
k



DT Fourier Series: Matrix Form

Synthesis equation

ke[N] k=0
Aqop L
x[1] 1 W Wi
| L We o Wy
AN=2] [ 1 Wy o
XN=1]) 1wt w2V

F= (0% 6} ..

= =
=

=
TN =

=> =

2=
| -

— N




DT Fourier Series: Matrix Form

Synthesis equation
N—1

xln] = 3 Ak F =S wialk],  where Wy = ¥

ke[N] k=0
Matrix form
x:Fj\C’ Whel’eFZ (¢?V7¢]1\/77 ]}\\i_])

Analysis equation

. 1 PR it
K = 5 D e = =S Wi

nelN] n=0

Matrix form .
i=F'x= —Fx
N

where F# = (F)T is Hermitian transpose of F
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3. Properties of DT Fourier Series



DT Fourier Series

2

DT Fourier series for x with period N and w, = 7,

xfn] = s[k]eM

k€E[N]
Correspondence between two N-periodic functions

DIFS DIFS
X or x[n] <—— x[k]
Two equivalent representations of same signal
e time domain: x[n|
e frequency domain: x[k]|



Properties of DT Fourier Series
Linearity
If x,y have same period N,

ax/ﬁy =ax + by

Time and frequency shifting
If x has period N and wy = 27,

TugX = E_ X or x[n — no) JREEEN e Kooz k]
and
Epox =k OF  &™x[n] <25 ik — m)

where (E,&)[k] = ¢™3[k] and (E.x)[n] = e*"x[n]



Properties of DT Fourier Series

Assume x has period N

Time reversal

Re=Rt or  x[-n] & ik
Conjugation
F =Rt or  x[n] &5 (3[-k)

Symmetry
® xeven < xeven, xodd < xodd
o xreal < x[—k|] = x[k]
x real and even <= xreal and even
x real and odd <= x purely imaginary and odd




Time Scaling
Define x,,y by

] x[n/m], if nis multiple of m
X(my[n] = ,
(m) 0, otherwise

If x has period N, then x,, has period mN, and

o 1 DITFS

. 1.
Xm) = % or Xy [n] —— %x[k]
Proof.
— 1 —jk2p 1 —jkEL [
X(m) k] = N Z X(m) ()™ " = N x[lJe vt = Ex[k]
ne[mN) Le[N]
1 27

NB. x(x) and X, have period mN, S0 x(u[n] = > —i[k]e/"

ke[mN]



First Difference and Running Sum
First (backward) difference (analog of derivative for CT signals)
Ax = x — 11X
If x has period N, so does Ax, and

Av=(1-E )% or  xln]—xn—1] <75 (1— )ik

Running sum (analog of integration for CT signals)

m=ny

e y periodic iff x[0] = 0, i.e. x has no DC component
e if x[0] = 0, y also has period N,
Sk = — %] fork £0

)
| — e %



Multiplication

If x and y have same period N, so does their product xy, and

=xxy or  xINDIN S mlplk — m]

mée[N]

NB. Frequency domain: periodic convolution in DT case vs.
aperiodic convolution in CT case

Proof.

x[n]y[n] = (Z *[m]ejmw(’") (Z ?[g]eim(’")
me|N] ¢e([N]
_ Z Z e](m+€ won

- N N ikwon k=m-+/, use
- (Z x[m]ylk — m]) e <arithrr’:1etic mod N>



Periodic Convolution
Periodic convolution x x y of x and y with same period N
(x5 )] = x[m]y[n — m]
me[N]
Properties

e Commutativity
X*y=Yy*xXx

¢ Associativity
(xxy)xz=x%(y*2z)
¢ Bilinearity

(Zax,) (Z ) > aiby(xixy)

i iy



Periodic Convolution

Fourier coefficients satisfy

Fy = Nip or (x# y)[n] 225 Na[K]5[K]

convolution in time < multiplication in frequency

Proof.
(5 y)[k] = (xxy, &)

= () alm]ry, &)

mée(N|

= D alml(my, &)

= D xlm]ylk]e7 " = Nx[k]j[K]
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