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1. Fast Fourier Transform



Discrete Fourier Transform (DFT)

DTFS pair for N-periodic DFT pair for finite sequence

sequence of length N
Analysis equation + DFT
1 J2m E N—1 s
ik = 5 > alnle S XK = 3 afn]e 5
ne(N| ! n=0
Synthesis equation . Inverse DFT
o A 'k%rn : Nl iy
)C[I’l] = Z X[k]é’ ! X[l’l] _ l ZX[k]elkWﬂn
ke[N] ! N P

Both pairs of equations essentially the same up to constant
factor +; efficient computation by Fast Fourier Transform (FFT)



DFT in Matrix Form

With Wy = e~/ (note sign change from last lecture)

X[0]]  [Wo WO wo owo owo wo w? WO\ [x[0]]
X[1] wo owlow2 owE owEown owe wl| |1
X[2] WO w2z Wi owe wl owi owE owe| [x[2]
X[ _ |ws W oWy Wy Wi Wi W W |x(3]
X[@l| Wy W Wy Wy Wy Wy Wy W |x(4]
X|5] wo ows w2 owl owEowl owe wi| |x[5]
X[6] WO oWe wi owZz owd we wE w2| |x[6]
X7 LW Wy Wy owR Wy Wg Wy Wy (X7

Direct matrix multiplication has complexity O(N?)

FFT is divide-and-conquer algorithm (Cooley & Tukey 1965)



Fast Fourier Transform (FFT)

Divide and conquer
Assume N = 2M (radix 2). Divide x into two subsequences

x.[n] = x[2n], n=0,1,...,2"" -1
X[n]=x2n+1], n=0,1,....2"M" 1

N-point DFT X of x. Fork=0,1,...,2" — 1,
2M_q

X[k =" xlne 5"
n=0
M-l M=l

_ Z —jk—zn+ Z x —]k;{; (2n+1)
0

2M—1 1 2M 1 -1
ik 2m ik 2m —jk =2
= Xe[n|e =T 4 @TIoM E Xo[n]e ="

n=0 n=0



Fast Fourier Transform (FFT)

Divide and conquer
Divide X into two halves. Fork =0,1,...,2M-! 1

:2M—171 : :2M—171 :
X[k] :: Z xe[n]e szMflni-{— e_]kz%: Z xo[n]e szléilni
; n=0 " ; n=0 :
M—1 52M71_1 k nE f'kL"EZMil_l ik =22 nE
X2 + k] =i Z X, [ne AT o e x,[n)e T
i n=0 ; 1 n=0 :

¥-point DFT of x, ¥-point DFT of x,

Recursive algorithm

DFT(x)[k] = DFT(x,)[k] + ¢ ¥ DFT(x,)[k]
DFT(x)[2"~" + k] = DFT(x,)[k] — e ¥ DFT(x,)[K]



Fast Fourier Transform (FFT)

Naive implementation of radix-2 FFT for N = 2

X.Size

28
np.array([x[0] + x[1], x[e] - x[1]])

Xe = FFT(x[0::2])
Xo = FFT(x[1::2])

K = np.arange(N/2)
phase = np.exp(-1j + K * 2 % np.pi / N)
Xo_phase = phase * Xo

X = np.append(Xe + Xo_phase, Xe - Xo_phase)
X




Fast Fourier Transform (FFT)
Time complexity
Denote by T(N) time complexity of N-point FFT

N

T(N)=2T (3) + O(N)

Let T(M) = T(2¥) and assume O(N) = ¢N for contant c,
T(M)=2T(M — 1)+ 2" — T(M) = o(M2")

or
T(N) = O(NlogN)

Much lower than O(N?) for direct matrix multiplication!
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2. DT Filters



Frequency Response

Recall response of DT LTI system to exponential input z”

T (Z akzZ> = aH(z)%

where H(s) is system function

When restricted to z = ¢, H(¢) as function of w is called
frequency response of the system

[e.o]

H(e™) = Y hln)e "

n=—00



Frequency Response

Periodic input x in Fourier series representation

. 2
aln] = 3 kKR, where wy = ﬁ”

k€E[N]
Output of LTI system with frequency response H(e™)
y[n] -7 Z e]kwon Z H e]kwo e]kwon
k€[N] k€[N]
periodic with same periodic, Fourier coefficients related by

y[k] = H(e"“)x[K]



Filtering

Filtering changes relative amplitudes of frequency components
or eliminates some frequency components entirely

Frequency-shaping vs frequency-selective filters as in CT case

LTI systems as filters
e cannot create new frequency components

e can only scale magnitudes or shift phases of existing
components

Examples of nonlinear filter

e max filter: y[n] = max x[n + k]
e median filter: y[n] = median{xjn — ny], ..., x[n + ny|}

Recall for DT signals, suffices to consider frequencies on an
interval of length 2, e.g. [0,27) or (—m, 7]



High vs. Low Frequencies for DT Signals

High frequencies around (2k + 1), low frequencies around 2krw

o X ) X X
3 e O
5[] = cos(0-n) =1 o\ [n] = cos(wn/4) @%[n] = cos(mn/2)

#%[n] = cos(3mn/2) @4 [n] = cos(Tmn/4) @Y [n] = cos(2mn) = 1



DT Frequencies

Discrete frequencies of N-periodic signals
e evenly spaced points on unit circle
¢ |low frequencies close to 1; high frequencies close to —1




|deal Frequency-selective Filters
Ideal lowpass filter

H(e]“’) o 17 ’w’ ch
0, w<|wl <m

w,.: cutoff frequency

-2 -7 —Wwe 0 We m 2w



|deal Frequency-selective Filters
Ideal highpass filter

H(ew) = I, w<|wl <7
0, |w| <lwel

w,: cutoff frequency

1 T




|deal Frequency-selective Filters

Ideal bandpass filter

H(e]w> _ 17 wcl S ’w’ S Wc2
0, |w|<weOlrwe < |w <7

w1 lower cutoff frequency
we: upper cutoff frequency

Sh==-=-====

27 — T —We —Wel 0 Wel We2

2



First-order Recursive DT Filters

yln] — ayln — 1] = x[n]
For input x[n] = ¢“", output y[n] = H(e")e™"
Frequency response (well-defined if |a| < 1)

- 1

For a = |ale”?,

H(e™) :

N V14 la]* = 2|a| cos(w — ¢)

—lafsin(w — ¢)
1 —|a| cos(w — ¢)

arg H(e/) = arctan



First-order Recursive DT Filters

For a > 0, lowpass filter
(exponential smoothing)

a=0.73
a=0.6

|H(e™)]

For a < 0, highpass filter

—a=-03

a=—0.6

A

SIE]

A

SE




First-order Recursive DT Filters

Impulse response (IIR filter) S 4=06
= | l l [
. 1 1 l
jwy —jwyn _
HE) =3 0™ =tmam s
Need |a| < 1 for convergence 1] ] l l ] l l l
Step response
1 — gt 4 a=-06
s} = (hxu)[n] = ————uln]
Tradeoff IfTTTTTTT=n
e larger |a|, narrower passband, 4SS a=-03
slower response
e smaller |a|, faster response, EEEEEREER

broader passband n



Moving Average as Lowpass Filter

M;

1
= —k
= s 2 i H
=]
Impulse response (FIR filter)
1 &
) M1+M2+1k_ZM In =&
—— M
Frequency response
M, ML —Mp < MM+
) 1 . é w o sin(SE T w
H(e/w> - - Z efjkw _ 2 ( ‘ 2w
M1+M2—|—1k M+ M, +1 sin £



Moving Average as Lowpass Filter

M]ZO,MZII,

=27 —T 0 m 2

Verify y = x if x = K" and y = 0 if x = K™ = K(—1)".



Moving Average as Lowpass Filter

MIZMZZL

yin] = 5 (aln -+ 1] + ] + <l — 1]

hln] = %(5[,1 1) + 8[n] + 8n — 1)

~ 3sin¥ 3 3

2

H(e")

[H (e")]




Moving Average as Lowpass Filter

M —My .
@ sin(

:M1+M2+1 sin %

()]
M] +M2 +1=11 2
l_ Mi+Ma+1
0

o T W

L IH(E)
M+ M+ 1 =41 +
L — v

- 0 T W

Mi+M>+1
7 w)

H(e")

-

Larger M| + M,, narrower passband, smoother output



Moving Average as Lowpass Filter

ynl, My =M, =1

ynl, My =M, =3

I

0 2 4 6 8 10

). 4 =, =




Moving Average as Lowpass Filter

M
1
| = —k
noncausa yi[n] I > xln— K]
k=—M
1 2M
causal ya[n] = S > xln — K]

Note Y2 = TmY1

For real-time system
e noncausal version not realizable
e causal version realizable

e larger M, narrower passband, smoother output, but
longer delay, more sluggish response



First Difference as Highpass Filter
Scaled first difference

yin] = 3 (o]~ xfn — 1)

Impulse response (FIR filter) hin] l[
21 1
1 0
) = 5 (81a] — &l — 1)) L
Frequency response |H(e™)|
. 1 w 1
wy — _ oW — 5,05 s
H(e*) 2(1 e ) =je /2 sin >
H(e)| = sin%’ g 0 .

Verify y =0 if x = Ke®" and y = x if x = K™ = K(—1)".



First Difference for Edge Detection
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3. CT Fourier Transform



Motivating Example: Periodic Square Wave

In one period,
I, |f|<T
xr(t) = <7
0, T < |l’ < T/2
21 x(2)
| | | | | |
2T -T _T -T'T, T T 2T
2 2
Frequency component at w;, = kw, satisfies
~ 2sin(kwoTy)  2sin(wTy)
N w w=kwy

il = =5
2 2nlh) sampled at

Txr[k] is value of envelope X (jw)

(1)1, — k(.dn



Motivating Example: Periodic Square Wave
X (jwy) for fixed T, and different T

27
W = k7
£ T =4T
T -
O w
AT
s _
/(( n T
. ol L TNy P o e >
s _
T]\ i T = 16T
o—iTii g oI Try P >

As T — oo, discrete frequencies sampled more densely



Motivating Example: Periodic Square Wave

A P i

As T — oo, xr(t) — x(t) = u(t + %) — u(t — 3-), rectangular pulse

[e o] o0

1

xr(t) =) xrlkle = > ?X(iwk)eiwkt (Tx[k] = X(jwr))
k=—00 k=—o00
= i 0 X (o) (w0 = =)
Pt 2m T
1 .
=— X (jowr )€Y Aw (Aw = wy)
2T Pt
— ZL/ X (jw)e™ dw (Aw =wy — 0)
™ —0oQ

Thus



Motivating Example: Periodic Square Wave

For envelope X (jw),

X(jwk) =Tx

*\]
o

=
~

(t)e ¥ dt

I
I

RN PN N RIS

x(t)e Mdt  (xp(t) = x(¢) for |¢| < T/2)

—

= /Oo x(t)e ™ dt (x(r) =0for |¢f| > T/2)

SO

X(jw) = /_ Z x(t)e ™' dt



Motivating Example: Periodic Square Wave

A x(t)

—-T T t
A
F
\/
X(jw)

(
(
C
T
(
(



CT Fourier Transform of Aperiodic Signals

For aperiodic signal x with suppx C [T, T}], define periodic
extension with period T > 2T,

o0

xp(t) = Y x(t—kT)

k=—00

Then T
x(t) = xr(0), il < 5

As T — oo,
xr(t) = x(t), VieR

xr has Fourier series representation
> 2r

xp(t) = Y Srlk]e™,  w = -

k=—00



CT Fourier Transform of Aperiodic Signals

Define ~
X(jw) = / x(t)e " dt

X(jw) is envelope of Txr[k],

N}

1 2 ) 1 z .
xrlk] = —/ xT(t)e_J"wofd; = 7 /2 X(t)e_]k“’o’dt

T ) 1 T
2 2

1 [ - 1. . W )
=7 /_OO x(t)e i dr = ?X(]kwo) = ﬁX(}kwo)

SO

o . o . > ﬂ . 'ka[
H0) = i xrl) = Jim, 3 5 XGkooe!
1 [~ .
=5 - X(jw)e dw



CT Fourier Transform Pair

Fourier transform (analysis equation)

X(jw) = F(x)(jw) = /OO x(t)e ™' dt

X (jw) called spectrum of x(z)

Inverse Fourier transform (synthesis equation)

x(t) = T X) (1) = ;ﬂ / " X(w)e ' du

—0o0

Superposition of complex exponentials at continuum of
frequencies; frequency w has “amplitude” X(jw)‘zi—j;
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