El331 Signals and Systems Lecture 13

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

April 9, 2019

Contents

1. Fast Fourier Transform

DT Filters

3. CT Fourier Transform

Discrete Fourier Transform (DFT)

DTFS pair for *N*-periodic sequence

Analysis equation

$$\hat{x}[k] = \frac{1}{N} \sum_{n \in [N]} x[n] e^{-jk\frac{2\pi}{N}n}$$

Synthesis equation

$$x[n] = \sum_{k \in [N]} \hat{x}[k] e^{jk\frac{2\pi}{N}n}$$

DFT pair for finite sequence of length *N*

DFT

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-jk\frac{2\pi}{N}n}$$

Inverse DFT

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{jk\frac{2\pi}{N}n}$$

Both pairs of equations essentially the **same** up to constant factor $\frac{1}{N}$; efficient computation by Fast Fourier Transform (FFT)

DFT in Matrix Form

With $W_N = e^{-j\frac{2\pi}{N}}$ (note sign change from last lecture)

$$\begin{bmatrix} X[0] \\ X[1] \\ X[2] \\ X[3] \\ X[4] \\ X[5] \\ X[6] \\ X[7] \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^1 & W_8^2 & W_8^3 & W_8^4 & W_8^5 & W_8^6 & W_8^7 \\ W_8^0 & W_8^2 & W_8^4 & W_8^6 & W_8^0 & W_8^3 & W_8^4 & W_8^6 \\ W_8^0 & W_8^3 & W_8^6 & W_8^1 & W_8^4 & W_8^7 & W_8^2 & W_8^5 \\ W_8^0 & W_8^4 & W_8^0 & W_8^4 & W_8^0 & W_8^4 & W_8^0 & W_8^4 \\ W_8^0 & W_8^5 & W_8^2 & W_8^7 & W_8^4 & W_8^1 & W_8^6 & W_8^3 \\ W_8^0 & W_8^6 & W_8^4 & W_8^2 & W_8^0 & W_8^4 & W_8^0 & W_8^4 \\ W_8^0 & W_8^6 & W_8^4 & W_8^2 & W_8^0 & W_8^6 & W_8^4 & W_8^2 \\ X[7] \end{bmatrix}$$

Direct matrix multiplication has complexity $O(N^2)$

FFT is divide-and-conquer algorithm (Cooley & Tukey 1965)

Divide and conquer

Assume $N = 2^M$ (radix 2). Divide x into two subsequences

$$x_e[n] = x[2n],$$
 $n = 0, 1, \dots, 2^{M-1} - 1$
 $x_o[n] = x[2n+1],$ $n = 0, 1, \dots, 2^{M-1} - 1$

N-point DFT *X* of *x*. For $k = 0, 1, ..., 2^{M} - 1$,

$$X[k] = \sum_{n=0}^{2^{M-1}} x[n]e^{-jk\frac{2\pi}{2^{M}}n}$$

$$= \sum_{n=0}^{2^{M-1}-1} x_{e}[n]e^{-jk\frac{2\pi}{2^{M}}2n} + \sum_{n=0}^{2^{M-1}-1} x_{o}[n]e^{-jk\frac{2\pi}{2^{M}}(2n+1)}$$

$$= \sum_{n=0}^{2^{M-1}-1} x_{e}[n]e^{-jk\frac{2\pi}{2^{M}-1}n} + e^{-jk\frac{2\pi}{2^{M}}} \sum_{n=0}^{2^{M-1}-1} x_{o}[n]e^{-jk\frac{2\pi}{2^{M}-1}n}$$

Divide and conquer

Divide *X* into two halves. For $k = 0, 1, \dots, 2^{M-1} - 1$

$$X[k] = \sum_{n=0}^{2^{M-1}-1} x_e[n] e^{-jk\frac{2\pi}{2^{M-1}}n} + e^{-jk\frac{2\pi}{2^M}} \sum_{n=0}^{2^{M-1}-1} x_o[n] e^{-jk\frac{2\pi}{2^{M-1}}n}$$

$$X[2^{M-1}+k] = \sum_{n=0}^{2^{M-1}-1} x_e[n] e^{-jk\frac{2\pi}{2^{M-1}}n} - e^{-jk\frac{2\pi}{2^M}} \sum_{n=0}^{2^{M-1}-1} x_o[n] e^{-jk\frac{2\pi}{2^{M-1}}n}$$

 $\frac{N}{2}$ -point DFT of x_e

 $\frac{N}{2}$ -point DFT of x_o

Recursive algorithm

$$DFT(x)[k] = DFT(x_e)[k] + e^{-jk\frac{2\pi}{N}} DFT(x_o)[k]$$
$$DFT(x)[2^{M-1} + k] = DFT(x_e)[k] - e^{-jk\frac{2\pi}{N}} DFT(x_o)[k]$$

Naive implementation of radix-2 FFT for $N = 2^M$

```
import numpy as np
def FFT(x):
    N = x.size
    if N == 2:
        return np.array([x[0] + x[1], x[0] - x[1]])
    Xe = FFT(x[0::2])
    Xo = FFT(x[1::2])
    K = np.arange(N/2)
    phase = np.exp(-1j * K * 2 * np.pi / N)
    Xo phase = phase * Xo
    X = np.append(Xe + Xo_phase, Xe - Xo_phase)
    return X
```

Time complexity

Denote by T(N) time complexity of N-point FFT

$$T(N) = 2T\left(\frac{N}{2}\right) + O(N)$$

Let $\tilde{T}(M) = T(2^M)$ and assume O(N) = cN for contant c,

$$\tilde{T}(M) = 2\tilde{T}(M-1) + c2^M \implies \tilde{T}(M) = O(M2^M)$$

or

$$T(N) = O(N \log N)$$

Much lower than $O(N^2)$ for direct matrix multiplication!

Contents

1. Fast Fourier Transform

2. DT Filters

3. CT Fourier Transform

Frequency Response

Recall response of DT LTI system to exponential input z^n

$$T\left(\sum_{k} a_{k} z_{k}^{n}\right) = \sum_{k} a_{k} H(z_{k}) z_{k}^{n}$$

where H(s) is system function

$$H(z) = \sum_{n = -\infty}^{\infty} h[n]z^{-n}$$

When restricted to $z=e^{j\omega}$, $H(e^{j\omega})$ as function of ω is called frequency response of the system

$$H(e^{j\omega}) = \sum_{n=-\infty}^{\infty} h[n]e^{-j\omega n}$$

Frequency Response

Periodic input *x* in Fourier series representation

$$x[n] = \sum_{k \in [N]} \hat{x}[k]e^{jk\omega_0 n}, \quad ext{where } \omega_0 = rac{2\pi}{N}.$$

Output of LTI system with frequency response $H(e^{j\omega})$

$$y[n] = T\left(\sum_{k \in [N]} \hat{x}[k]e^{jk\omega_0 n}\right) = \sum_{k \in [N]} H(e^{jk\omega_0})\hat{x}[k]e^{jk\omega_0 n}$$

periodic with same periodic, Fourier coefficients related by

$$\hat{\mathbf{y}}[k] = H(e^{jk\omega_0})\hat{\mathbf{x}}[k]$$

Filtering

Filtering changes relative amplitudes of frequency components or eliminates some frequency components entirely

Frequency-shaping vs frequency-selective filters as in CT case

LTI systems as filters

- cannot create new frequency components
- can only scale magnitudes or shift phases of existing components

Examples of nonlinear filter

- max filter: $y[n] = \max_{-n_1 \le k \le n_2} x[n+k]$
- median filter: $y[n] = median\{x[n-n_1], \dots, x[n+n_2]\}$

Recall for DT signals, suffices to consider frequencies on an interval of length 2π , e.g. $[0,2\pi)$ or $(-\pi,\pi]$

High vs. Low Frequencies for DT Signals

High frequencies around $(2k+1)\pi$, low frequencies around $2k\pi$

DT Frequencies

Discrete frequencies of N-periodic signals

- evenly spaced points on unit circle
- low frequencies close to 1; high frequencies close to -1

Ideal Frequency-selective Filters

Ideal lowpass filter

$$H(e^{j\omega}) = egin{cases} 1, & |\omega| \leq \omega_c \ 0, & \omega_c < |\omega| \leq \pi \end{cases}$$

 ω_c : cutoff frequency

Ideal Frequency-selective Filters

Ideal highpass filter

$$H(e^{j\omega}) = egin{cases} 1, & \omega_c \leq |\omega| \leq \pi \ 0, & |\omega| < |\omega_c| \end{cases}$$

ω_c : cutoff frequency

Ideal Frequency-selective Filters

Ideal bandpass filter

$$H(e^{j\omega}) = egin{cases} 1, & \omega_{c1} \leq |\omega| \leq \omega_{c2} \ 0, & |\omega| < \omega_{c1} ext{ or } \omega_{c2} < |\omega| \leq \pi \end{cases}$$

 ω_{c1} : lower cutoff frequency ω_{c2} : upper cutoff frequency

First-order Recursive DT Filters

$$y[n] - ay[n-1] = x[n]$$

For input $x[n] = e^{j\omega n}$, output $y[n] = H(e^{j\omega})e^{j\omega n}$

Frequency response (well-defined if |a| < 1)

$$H(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}, \quad |a| < 1$$

For
$$a = |a|e^{j\phi}$$
,

$$|H(e^{i\omega})| = \frac{1}{\sqrt{1 + |a|^2 - 2|a|\cos(\omega - \phi)}}$$

$$\arg H(e^{i\omega}) = \arctan \frac{-|a|\sin(\omega - \phi)}{1 - |a|\cos(\omega - \phi)}$$

First-order Recursive DT Filters

For a > 0, lowpass filter (exponential smoothing)

For a < 0, highpass filter

First-order Recursive DT Filters

Impulse response (IIR filter)

$$h[n] = a^{n}u[n]$$

$$H(e^{j\omega}) = \sum_{n=0}^{\infty} (ae^{-j\omega})^{n} = \frac{1}{1 - ae^{-j\omega}}$$

Need |a| < 1 for convergence

Step response

$$s[n] = (h * u)[n] = \frac{1 - a^{n+1}}{1 - a}u[n]$$

Tradeoff

- larger |a|, narrower passband, slower response
- smaller |a|, faster response, broader passband

$$y[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k = -M_1}^{M_2} x[n - k]$$

Impulse response (FIR filter)

$$h[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k = -M_1}^{M_2} \delta[n - k]$$

Frequency response

$$H(e^{j\omega}) = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} e^{-jk\omega} = \frac{e^{j\frac{M_1 - M_2}{2}\omega}}{M_1 + M_2 + 1} \frac{\sin(\frac{M_1 + M_2 + 1}{2}\omega)}{\sin\frac{\omega}{2}}$$

$$M_1 = 0, M_2 = 1,$$

$$y[n] = \frac{1}{2}(x[n] + x[n-1])$$

$$h[n] = \frac{1}{2}(\delta[n] + \delta[n-1])$$

$$H(e^{j\omega}) = e^{-j\frac{\omega}{2}}\cos\frac{\omega}{2}$$

Verify y = x if $x = Ke^{j0 \cdot n}$ and y = 0 if $x = Ke^{j\pi n} = K(-1)^n$.

$$M_1 = M_2 = 1$$
,

$$y[n] = \frac{1}{3}(x[n+1] + x[n] + x[n-1])$$

$$h[n] = \frac{1}{3}(\delta[n+1] + \delta[n] + \delta[n-1])$$

$$H(e^{j\omega}) = \frac{\sin(\frac{3}{2}\omega)}{3\sin\frac{\omega}{2}} = \frac{1}{3} + \frac{2}{3}\cos\omega$$

$$H(e^{j\omega}) = rac{e^{jrac{M_1-M_2}{2}\omega}}{M_1+M_2+1} rac{\sin(rac{M_1+M_2+1}{2}\omega)}{\sinrac{\omega}{2}}$$

Larger $M_1 + M_2$, narrower passband, smoother output

$$y_1[n] = \frac{1}{2M+1} \sum_{k=-M}^{M} x[n-k]$$

$$y_2[n] = \frac{1}{2M+1} \sum_{k=0}^{2M} x[n-k]$$

Note $y_2 = \tau_M y_1$

For real-time system

- noncausal version not realizable
- causal version realizable
- larger M, narrower passband, smoother output, but longer delay, more sluggish response

First Difference as Highpass Filter

Scaled first difference

$$y[n] = \frac{1}{2}(x[n] - x[n-1])$$

Impulse response (FIR filter)

$$h[n] = \frac{1}{2}(\delta[n] - \delta[n-1])$$

Frequency response

$$H(e^{j\omega}) = \frac{1}{2}(1 - e^{-j\omega}) = je^{-j\frac{\omega}{2}}\sin\frac{\omega}{2}$$
$$|H(e^{j\omega})| = \left|\sin\frac{\omega}{2}\right|$$

Verify y = 0 if $x = Ke^{j0 \cdot n}$ and y = x if $x = Ke^{j\pi n} = K(-1)^n$.

First Difference for Edge Detection

Contents

1. Fast Fourier Transform

DT Filters

3. CT Fourier Transform

In one period,

$$x_{T}(t) = \begin{cases} 1, & |t| < T_{1} \\ 0, & T_{1} < |t| < T/2 \end{cases}$$

$$x_{T}(t) = \begin{cases} 1, & |t| < T_{1} \\ 0, & T_{1} < |t| < T/2 \end{cases}$$

Frequency component at $\omega_k = k\omega_0$ satisfies

$$T\hat{x}_T[k] = \frac{2\sin(k\omega_0 T_1)}{k\omega_0} = \frac{2\sin(\omega T_1)}{\omega}\Big|_{\omega=k\omega}$$

 $T\hat{x}_T[k]$ is value of envelope $X(j\omega) \triangleq \frac{2\sin(\omega T_1)}{\omega}$ sampled at $\omega_k = k\omega_0$

 $X(j\omega_k)$ for fixed T_1 and different T

As $T \to \infty$, discrete frequencies sampled more densely

As $T \to \infty$, $x_T(t) \to x(t) \triangleq u(t + \frac{T_2}{2}) - u(t - \frac{T_1}{2})$, rectangular pulse

$$x_{T}(t) = \sum_{k=-\infty}^{\infty} \hat{x}_{T}[k]e^{j\omega_{k}t} = \sum_{k=-\infty}^{\infty} \frac{1}{T}X(j\omega_{k})e^{j\omega_{k}t} \qquad (T\hat{x}[k] = X(j\omega_{k}))$$

$$= \sum_{k=-\infty}^{\infty} \frac{\omega_{0}}{2\pi}X(j\omega_{k})e^{j\omega_{k}t} \qquad (\omega_{0} = \frac{2\pi}{T})$$

$$= \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} X(j\omega_{k})e^{j\omega_{k}t}\Delta\omega \qquad (\Delta\omega = \omega_{0})$$

$$\to \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega \qquad (\Delta\omega = \omega_{0} \to 0)$$

Thus

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t} d\omega$$

For envelope $X(j\omega)$,

$$X(j\omega_k) = T\hat{x}_T[k]$$

$$= \int_{-\frac{T}{2}}^{\frac{T}{2}} x_T(t)e^{-j\omega_k t}dt$$

$$= \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)e^{-j\omega_k t}dt \qquad (x_T(t) = x(t) \text{ for } |t| \le T/2)$$

$$= \int_{-\infty}^{\infty} x(t)e^{-j\omega_k t}dt \qquad (x(t) = 0 \text{ for } |t| > T/2)$$

so

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

CT Fourier Transform of Aperiodic Signals

For aperiodic signal x with $\operatorname{supp} x \subset [-T_1, T_1]$, define periodic extension with period $T > 2T_1$,

$$x_T(t) = \sum_{k=-\infty}^{\infty} x(t - kT)$$

Then

$$x(t) = x_T(t), \quad |t| < \frac{T}{2}$$

As $T \to \infty$,

$$x_T(t) \to x(t), \quad \forall t \in \mathbb{R}$$

 x_T has Fourier series representation

$$x_T(t) = \sum_{k=-\infty}^{\infty} \hat{x}_T[k]e^{jk\omega_0 t}, \quad \omega_0 = \frac{2\pi}{T}$$

CT Fourier Transform of Aperiodic Signals

Define

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

 $X(j\omega)$ is envelope of $T\hat{x}_T[k]$,

$$\hat{x}_{T}[k] = rac{1}{T} \int_{-rac{T}{2}}^{rac{T}{2}} x_{T}(t) e^{-jk\omega_{0}t} dt = rac{1}{T} \int_{-rac{T}{2}}^{rac{T}{2}} x(t) e^{-jk\omega_{0}t} dt$$

$$= rac{1}{T} \int_{-\infty}^{\infty} x(t) e^{-jk\omega_{0}t} dt = rac{1}{T} X(jk\omega_{0}) = rac{\omega_{0}}{2\pi} X(jk\omega_{0})$$

SO

$$x(t) = \lim_{T \to \infty} x_T(t) = \lim_{T \to \infty} \sum_{k = -\infty}^{\infty} \frac{\omega_0}{2\pi} X(jk\omega_0) e^{jk\omega_0 t}$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

CT Fourier Transform Pair

Fourier transform (analysis equation)

$$X(j\omega) = \mathcal{F}(x)(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt$$

 $X(j\omega)$ called spectrum of x(t)

Inverse Fourier transform (synthesis equation)

$$x(t) = \mathcal{F}^{-1}(X)(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega)e^{j\omega t}d\omega$$

Superposition of complex exponentials at **continuum** of frequencies; frequency ω has "amplitude" $X(j\omega)\frac{d\omega}{2\pi}$