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Magnitude-phase Representation of Fourier Transform

X(jω) = |X(jω)|ej arg X(jω), X(ejω) = |X(ejω)|ej arg X(ejω)

Recall Fourier transform is decomposition of signal into
superposition of complex exponentials (“waves”)
• |X| gives magnitudes of components
• arg X gives phases of components

Phase arg X contains substantial information about signal
• determines whether components add constructively or

destructively
• small change can lead to very differential-looking signals

for same magnitude spectrum
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Importance of Phase Information

x(t) = 1 +
1
2

cos(2πt + φ1) + cos(4πt + φ2) +
2
3

cos(6πt + φ3)

φ1 = 0, φ2 = 0, φ3 = 0 t

x1(t)

φ1 = 4, φ2 = 8, φ3 = 12 t

x2(t)

φ1 = 6, φ2 = −2.7, φ3 = 0.93 t

x3(t)

φ1 = 1.2, φ2 = 4.1, φ3 = −7.02 t

x4(t)
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Magnitude vs. Phase

Waveform x for Chinese word “ ”

Magnitude and phase spectra |X|, arg X (DFT)

0 5000 10000 15000 20000
0

1000000

2000000

3000000

4000000

5000000

6000000

0 5000 10000 15000 20000
frequency (Hz)

4

3

2

1

0

1

2

3

4

0 200 400 600 800
0

1000000

2000000

3000000

4000000

5000000

6000000

0 200 400 600 800
frequency (Hz)

4

3

2

1

0

1

2

3

4


null

1.1232649

Chinese-zh.mp3
Media File (audio/x-mp3)



4/22

Magnitude vs. Phase

Waveform x for Chinese word “ ”

Magnitude and phase spectra |X|, arg X (DFT)
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Magnitude vs. Phase

Waveform x for Chinese word “ ”

Waveform reconstructed by magnitude spectra only F−1{|X|}

Waveform reconstructed by phase spectra only F−1{ej arg X}
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Magnitude vs. Phase

Top row
X, |X|, arg X

Bottom row
F−1{|X|}
F−1{ej arg X}
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Magnitude-phase Representation of Frequency Response

For LTI systems

Y(jω) = H(jω)X(jω), Y(ejω) = H(ejω)X(ejω)

Thus
|Y| = |H| · |X|, |H| called gain of system

and

arg Y = arg H + arg X, arg H called phase shift of system

Effects of LTI system may or may not be desirable
• want specific effects for filtering
• if undesirable, effects called distortion

Example. Distortionless transmission

• ideally, H(jω) = 1, but noncausal
• H(jω) = Ke−jωt0, preserves shape, only scaling + delay
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Linear Phase

For CT LTI system with unit gain and linear phase

H(jω) = e−jωt0 =⇒ y(t) = x(t − t0)

output is delayed version of input

For DT LTI system with unit gain and linear phase

H(ejω) = e−jωn0 ,
output

y[n] =
1

2π

∫ π

−π
X(ejω)e−jωn0ejωndω =

∞∑
m=−∞

x[m] sinc(n− n0 − m)

• for integer n0, y[n] = x[n− n0] is delayed version of input
• for non-integer n0, y[n] = yc(n− n0) is sample of delayed

version of envelope yc(t) =
∞∑

m=−∞
x[m] sinc(t − m) of x
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Linear Phase
H(jω) = e−jω/2

For input

x(t) =
3∑

k=0

cos(2kπt) = 1 + cos(2πt) + cos(4πt) + cos(6πt)

output is

y(t) =
3∑

k=0

cos(2kπt − kπ) = x(t − 1
2

)

t

x(t)

t

y(t)
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Linear Phase

Half-sample delay H(ejω) = e−jω/2

For input
x[n] = cos(

π

3
n)

output is

y[n] =
∞∑

m=−∞

cos(
π

3
m) sinc(n− n0 − m) = cos(

π

3
[n− 1

2
)]

n

x[n]

n

y[n]
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Nonlinear Phase
H(jω) = e−j arctanω

For input

x(t) =
3∑

k=0

cos(2kπt) = 1 + cos(2πt) + cos(4πt) + cos(6πt)

output is

y(t) =
3∑

k=0

cos[2kπt − arctan(2kπ)]

t

x(t)

t

y(t)
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Group Delay

For narrowband input x centered at ω0, i.e.

X(jω) = 0, for |ω − ω0| > ∆ω, where ∆ω � 1

Use linear approximation for phase

arg H(jω) ≈ arg H(jω0)− τ(ω0)(ω − ω0) = φ0 − τ(ω0)ω

where group delay at ω is

τ(ω) = − d
dω

arg H(jω)

If |H(jω)| ≈ |H(jω0)| for |ω − ω0| ≤ ∆ω,

Y(jω) ≈ |H(jω0)|X(jω)ejφ0−jτ(ω0)ω =⇒ y(t) ≈ |H(jω0)|ejφ0x(t−τ(ω0))
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Group Delay
H(jω) = e−j arctanω =⇒ τ(ω) =

d
dω

arctan(ω) =
1

1 + ω2

For input (sum of two narrowband signals z, z̄ centered at ±π)

x(t) =
11∑

k=9

cos(
kπ
10

t) = Re z(t) =
1
2

z(t)+
1
2

z̄(t),where z(t) =
11∑

k=9

ej kπ
10 t

output

y(t) ≈ 1
2

ejφ0z(t − τ0) +
1
2

e−jφ0 z̄(t − τ0) = Re
[
ejφ0z(t − τ0)

]
where φ0 = − arctanπ + π

1+π2 , τ0 = 1
1+π2 .

t

x(t)

t

y(t)
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Uncertainty Principle

Assume CT signal x ∈ L2(R), so X = F{x} ∈ L2(R)

Define normalized power density in time and frequency

p(t) =
|x(t)|2∫

R |x(τ)|2dτ
, P(ω) =

|X(jω)|2∫
R |X(jθ)|2dθ

NB. p and P can be interpreted as probability densities, as
done in quantum mechanics

x and X are centered at t0 and ω0 resp. in the sense

t0 =

∫
R

tp(t)dt, ω0 =

∫
R
ωP(ω)dω

“Standard deviation” measures energy spread around center

∆t =

[∫
R
(t − t0)

2p(t)dt
] 1

2

, ∆ω =

[∫
R
(ω − ω0)

2P(ω)dω
] 1

2
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Uncertainty Principle

Theorem. If x(t) ∈ L2(R) with Fourier transform X(jω), then

∆t∆ω ≥ 1
2

with equality iff x is Gaussian

In fact, the following slightly more general relation holds

Da(x)Db(X) ≥ 1
2
‖x‖2 · ‖X‖2

where for g ∈ L2(R) and a ∈ R,

Da(g) =

[∫
R
(ξ − a)2|g(ξ)|2dξ

] 1
2

NB. Roughly speaking, signals cannot be localized in both
time and frequency; short pulse has large bandwidth,
narrowband signal has long duration
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Proof of Uncertainty Principle

First assume a = b = 0.

D0(X) =

[∫
R
ω2|X(jω)|2dt

] 1
2

=

[∫
R
|jωX(jω)|2dω

] 1
2

Since x′(t) F←−−→ jωX(jω), Parseval’s identity yields

D0(X) =

[
2π
∫
R
|x′(t)|2dt

] 1
2

By Cauchy-Schwarz inequality

D0(x)D0(X) =
√

2π
[∫

R
|tx(t)|2dt

] 1
2
[∫

R
|x′(t)|2dt

] 1
2

≥
√

2π
∣∣∣∣∫

R
tx∗(t)x′(t)dt

∣∣∣∣ ≥ √2π
∣∣∣∣Re

∫
R

tx∗(t)x′(t)dt
∣∣∣∣
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Proof of Uncertainty Principle

Note

2Re
∫
R

tx∗(t)x′(t)dt =

∫
R

tx∗(t)x′(t)dt +

∫
R

tx(t)x′(t)dt =

∫
R

td|x(t)|2

Integration by parts yields

2Re
∫
R

tx∗(t)x′(t)dt = t|x(t)|2
∣∣∣∞
−∞
−
∫
R
|x(t)|2dt

Since inequality is trivial if D0(x) =∞, can assume D0(x) <∞,
so t|x(t)|2 → 0 as t→∞. Thus

D0(x)D0(X) ≥
√

2π
2
‖x‖2

2 =
1
2
‖x‖2 · ‖X‖2

For a, b 6= 0, note Da(x) = D0(y) and Db(X) = D0(Y) for
y(t) = x(t + a)e−jbt F←−−→ Y(jω) = X(j(ω + b))ej(ω+b)a
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Four Fourier Representations

CT Fourier series

x̂[k] =
1
T

∫
T

x(t)e−j 2π
T ktdt

x(t) = x(t + T) =
∑
k∈Z

x̂[k]ej 2π
T kt

CT Fourier transform

X(jω) =

∫
R

x(t)e−jωtdt

x(t) =
1

2π

∫
R

X(jω)ejωtdω

DT Fourier series

x̂[k] =
1
N

∑
n∈[N]

x[n]e−j 2π
N kn

x[n] = x[n + N] =
∑
k∈[N]

x̂[k]ej 2π
N kn

DFT is one period of DTFS

DT Fourier transform

X(ejω) =
∑
n∈Z

x[n]e−jωn

x[n] =
1

2π

∫
2π

X(ejω)ejωndω
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Relations among Four Fourier Representations

time frequency

CTFS continuous periodic discrete aperiodic

CTFT continuous aperiodic continuous aperiodic

DTFS discrete periodic discrete periodic

DTFT discrete aperiodic continuous periodic

Observations
• periodic in one domain ⇐⇒ discrete in other domain
• discretization by sampling in one domain ⇐⇒ periodic

extension in other domain
• continualization by interpolation in one domain ⇐⇒

extraction of one period in other domain
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Relations among Four Fourier Representations

CTFS CTFT
T →∞ (extract one period)

periodic extension
(sampling in frequency)

DTFS DTFT
N →∞ (extract one period)

periodic extension
(sampling in frequency)

sample interpolate sample interpolate

NB. Conditions apply in some cases.
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