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1. Magnitude-phase Representation of Fourier Transform



Magnitude-phase Representation of Fourier Transform

X(jw) = [X(jo) X0 X(e) = [X(e)] e

Recall Fourier transform is decomposition of signal into
superposition of complex exponentials (“waves”)

* |X| gives magnitudes of components
* arg X gives phases of components

Phase arg X contains substantial information about signal

e determines whether components add constructively or
destructively

¢ small change can lead to very differential-looking signals
for same magnitude spectrum



Importance of Phase Information
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Magnitude vs. Phase

Waveform x for Chinese word “#3¢”

Magnitude and phase spectra |X|, arg X (DFT)
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Magnitude vs. Phase

Waveform x for Chinese word “#3¢”
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Magnitude vs. Phase

Waveform x for Chinese word “#3¢”

Waveform reconstructed by magnitude spectra only 5! {|X|}

o ) %

Waveform reconstructed by phase spectra only F~!{e/*reX}

O
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Magnitude vs. Phase

Top row
X, |X|, arg X

Bottom row
F-HIX[}
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Magnitude-phase Representation of Frequency Response
For LTI systems
Y(jw) = H(jw)X(jw),  Y(e¥) = H(e)X (")

Thus ,
Y| = |H| - |X], |H| called gain of system

and

argY = arg H + arg X, arg H called phase shift of system
Effects of LTI system may or may not be desirable

e want specific effects for filtering

e if undesirable, effects called distortion
Example. Distortionless transmission

e ideally, H(jw) = 1, but noncausal
* H(jw) = Ke™*", preserves shape, only scaling + delay



Linear Phase

For CT LTI system with unit gain and linear phase
H(jw) = e = y(t) = x(t — ty)

output is delayed version of input

For DT LTI system with unit gain and linear phase

H(e¥) = e7m,
output

o

1 " jwY ,—jwng jwn :
yn| = %/_WX(d Je /et dw = Z x[m] sinc(n — ng — m)

e for integer ny, y[n] = x[n — ny| is delayed version of input
e for non-integer ny, y[n] = y.(n — ny) is sample of delayed
version of envelope y (1) = >  x[m|sinc(r — m) of x

m=—0o0



Linear Phase
H(jw) = e /2
For input
3

x(f) =Y cos(2knt) = 1+ cos(2rt) + cos(4t) + cos(6mt)
k=0

output is 3

y(t) = Z cos(2kmt — km) = x(t — %)

k=0



Linear Phase

Half-sample delay H(e) = e7*/?
For input
P x[n] = cos(gn)
output is
o T . - 1
y[n] = :Z Cos(gm) sinc(n — ng —m) = cos(g[n — 5)]




Nonlinear Phase
H(]W) — e—jarctanw
For input
3
x() =Y cos(2knt) = 1+ cos(2rt) + cos(4t) + cos(6mt)
k=0
output is 3
y(t) = Z cos|2kmt — arctan(2km)]

k=0

x(1)
LTI

y(7)
g g g g s




Group Delay

For narrowband input x centered at wy, i.e.
X(jw) =0, for|w —wy| > Aw, where Aw < 1
Use linear approximation for phase
arg H(jw) ~ arg H(jws) — 7(wo) (0 — wo) = o — 7(wo)uw

where group delay at w is

T(w) = —% arg H(jw)

If |H(jw)| =~ |H(jwo)| for |w — wy| < Aw,

Y(jw) 2 |H (juo) [X (jw) @@ 70 = y(1) & |H (jwo) | x(t—T(wo))



Group Delay

. d 1
H(jw) = e/ — 7(w) = o arctan(w) =
w

1+ w?

For input (sum of two narrowband signals z, z centered at +)
11 11

NOEDY cos(%r) =Rez(r) = %Z(I)jt%z(t), where z(r) = > /1"

I . 1 .
y(t) = Ee’¢°z(t —79) + 2e 0zt — 19) = Re [¢”z(t — 70)]
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2. Uncertainty Principle



Uncertainty Principle
Assume CT signal x € L,(R), so X = F{x} € L,(R)
Define normalized power density in time and frequency
(o) |? X ()
plt Pw) = —F7"~F5—
0= Tempar Y LxGora

NB. p and P can be interpreted as probability densities, as
done in quantum mechanics

x and X are centered at 7, and wy resp. in the sense

fo = /Rtp(t)dt, woz/RwP(w)dw

“Standard deviation” measures energy spread around center

At = [ /R (t—to)zp(t)dtr, Aw — [ /R (0 — wp)2P(w)duw :



Uncertainty Principle

Theorem. If x(r) € L,(R) with Fourier transform X(jw), then
AtAw > %

with equality iff x is Gaussian

In fact, the following slightly more general relation holds

1
Dy(x)Dp(X) 2 5 Ix[|2 - [|X]|2

where for g € [,(R) and a € R,

D,(g) = [ [~ a>2|g<s>|zazg}é

NB. Roughly speaking, signals cannot be localized in both
time and frequency; short pulse has large bandwidth,
narrowband signal has long duration



Proof of Uncertainty Principle

Firstassume a = b = 0.

Dy(X) = { /R WX (jw)| Zdr] { / jwX (jw) zdw]

Since x'(1) <L>ij(jw), Parseval’s identity yields

= {2%/R|x’(t)|2dtr

By Cauchy-Schwarz inequality

=V2r { /R |tx(t)|2dt]é [ /R ]x’(t)|2dtr

27 / x* ()X (t)dt| > V27 |Re / x* ()X (¢)dt




Proof of Uncertainty Principle
Note

mg/mwmwz/mmwww/mﬁﬁwz/mmw

Integration by parts yields

2Re/Rt (O (¢)dt = t|x(¢) /|x 1)|*dt

Since inequality is trivial if Dy(x) = oo, can assume Dy(x) < oo,
so t|x(t)|> — 0 as t — oo. Thus

V2T 1
Do(x)Do(X) > T 3 = 5 el - X1

For a,b # 0, note D,(x) = Dy(y) and D,(X) = Dy(Y) for
Y1) = x(t + a)e ™ +Z Y(jw) = X(j(w + b))+t
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3. Relations Among Fourier Representations



Four Fourier Representations

CT Fourier series
1

i = /T x(t)e TRt

=x(t+T) =) ke T"

kEZ

x(1)
DT Fourier series

= o 7 e

n€(N]

x[n] = x[n+ N] =

> ikl

k€[N]

DFT is one period of DTFS

CT Fourier transform
X(jw) = /x(t)e_jw’dt
R

1

x(t) = 7 /X(]w)e’“’dw

DT Fourier transform

X(e¥) = Z x[n]e "

nez

] = 5 /2 X(e)eln gl



Relations among Four Fourier Representations

time frequency

CTFS continuous periodic discrete  aperiodic

CTFT continuous aperiodic continuous aperiodic

DTFS  discrete periodic discrete periodic

DTFT  discrete  aperiodic continuous periodic

Observations
e periodic in one domain <= discrete in other domain

e discretization by sampling in one domain <= periodic
extension in other domain

e continualization by interpolation in one domain <~
extraction of one period in other domain



Relations among Four Fourier Representations

CTFS

T — oo (extract one period)

sample | |interpolate

DTFS

periodic extension
(sampling in frequency)

N — oo (extract one period)

CTFT

sample | |interpolate

periodic extension
(sampling in frequency)

NB. Conditions apply in some cases.

DTFT
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