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1. Analytic Functions



Derivative and Differential of Complex Functions

Suppose w = f(z) is defined on a domain D ¢ C and z, € D. If
the limit

lim f(z) —f(z0) ~ lim flzo 4+ Az) — f(z0)

720 Z— 20 Az—0 AZ

exists, then we call it the derivative of f at z,, and write

AN )

dzlz=zy =20 Z— 29

f(20) =

If the increment of f(z) at z, can be written as
Af(20) = f(z0+ Az) = f(20) = ADz + a(z) Az

where A € C is a constant, and a(z) — 0 as Az — 0, we say f is
differentiable at zy, and call AAz the differential of f at z.



Analytic Functions

If f is differentiable for every z in an open disk B(zo, ), then we
say f is analytic at z.

If £ is differentiable for every z in a domain D, then we say f is
an analytic (or holomorphic) function on D.

Example. f(z) = z* analytic on C.

Example. f(z) = 1 is differentiable at every z # 0 with derivative
f'(z) = —%, so f is analytic on C \ {0}.

For a complex function f, the following entailments hold

analytic at r, = differentiable at 7, = continuous at ¢,

Example. f(z) = z is continuous on C but nowhere differentiable.

Example. f(z) = (Rez)? is differentiable but not analytic at
points on the imaginary axis.



Analytic Functions

Example. f(z) = (Rez)? is differentiable but not analytic on the
imaginary axis.

Proof. Let zo = xo + jyo, Az = Ax + jAy and z = zg + Az.
1. If xo = 0, since Ax < Az

2
]f >—0H% <1Ad = Flz) =0

Z—20
2. If xog # 0, let Az — 0 along the real and imaginary axes,

(@) =f(z0)  2x0Ax+ (Ax)* acso | 2x0 #0, along Ay =0
Z— 20 Ax + jAy "o, along Ax =0

So f'(zo) does not exist if xy # 0.

3. Since any open disk B(zp, §) contains points z with Re z # 0,
f is not analytic at any point z, € C.



Analytic Functions

The rules for taking derivatives imply the following theorems.
Theorem. If f and g are analytic at z,, then so are f + g, fg and

f/g (if g(z0) # 0).

NB. By definition, f and g are differentiable on some B(z, d;)
and B(z, 6,), respectively. For f + g, fg and f/g, we can always
take B(zo, ), where § = min{d;, 9, }.

Theorem. If h = g(z) is analytic at zo, w = f(h) is analytic at
ho = g(z0), then w = f o g(z) is analytic at z.

Example. A polynomial P(z) = an a;7" is analytic on C.

k=0
: . P(z) . :
Example. A rational function R(z) = —— is analytic on

0(z)
C\ {z: Q(z) = 0}, where P, Q are polynomials.



Cauchy-Riemann Equations

Recall the continuity of f(z) = u(x,y) + jv(x,y) at zo = xo + jyo iS
equivalent to the continuity of u(x, y) and v(x,y) at (xo, yo).

The differentiability of f(z) = u(x,y) +jv(x,y) at zo = xo +jyo is not
equivalent to the differentiability of u(x,y) and v(x,y) at (xo, yo)-

Example. u(x,y) = x> and v(x,y) = 0 are differentiable on the
entire R?, but f(z) = (Rez)? = u(x,y) + jv(x,y) is differentiable
only on the imaginary axis.

Cauchy-Riemann equations

Let Az — 0 along the real and imaginary axes, i.e. Az = Ax and
Az = jAy, respectively,

£2) = Oulx,y)  .Ovlxy) _ _.Qulxy)  0vx,y)

. Ou(x,y) _ Ov(x,y)  Ou(x,y) ov(x,y)

Ox T ox / ady ady

Ox oy oy Ox




Necessary & Sufficient Conditions for Differentiability

Theorem. A function f(z) = u(x,y) + jv(x,y) defined on a domain
D is differentiable at zo = xo + jyo € D if and only if

1. u(x,y) and v(x,y) are (real) differentiable at (xo, yo)
2. the partial derivatives satisfy the Cauchy-Riemann
equations at (xo, o),

au(-x07y0) o aV(XOJO) 8”(?507)’0) o 8V(x0=y0)

Ox dy oy Ox

Proof. For necessity, assume f’(zo) = a +jb exists. By definition,
Af(z0) = f'(z0) Az + a(Az), where a(Az) = o(Az)
Let a(Az) = a1(Az) + jan(Az). Then o;(Az) = 0o(Az). Note
Au(xg,v0) = Re Af(z0) = (aAx — bAy) + a1(Az)
Av(xg,y0) = Im Af(zo) = (aAy + be) + ozg(Az)

so u, v are differentiable and a = g” =X _p=u
X y ox



Necessary & Sufficient Conditions for Differentiability

Proof (cont'd). For sufficiency, assume u, v are differentiable,
and the Cauchy-Riemann equations hold. So

Au(xo, yo) = (aAx — bAy) + a;(Az)
Av(xp, y0) = (aAy + bAx) + ay(Az),

where a — Ou(xg,y0) _ Ov(x0,y0)

ox

Oy
a;(Az) = o(|Az]), i =1,2.
Thus

, _b — au(go&’o) — _aV(XanO), and
y Ox

Af = Au+ jAv = (a + jb)Az + a(Az)
where a(Az) = a1 (Az) + jan(Az). Note a(Az) = o(Az), since

o(Az)| _ |ei(Ag)] | |aa(A)|
Az [ |A7] | Az

So f is differentiable with

— 0, as Az — 0.

f'(20) = ux(x0,y0) — juty(x0,¥0) = vy(x0,Y0) + jvx(x0, Y0)



Example
The Jacobian matrix of f viewed as a mapping (x,y) — (u,v) is

()

Mnemonics for the sign in the Cauchy-Riemann equations:
¢ Entries on the principal diagonal are identical, u, = v,
¢ Entries on the secondary diagonal differ in signs, u, = —v,

Exmaple. f(z) =z = x — jy with u(x,y) = x and v(x,y) = —y.

I = <(1) —01)

Since u, # vy, one of the Cauchy-Riemann equations fails
everywhere, so f is nowhere differentiable.



Examples
Exmaple. f(z) = ¢ = ¢*(cosy + jsiny) with u(x,y) = ¢ cosy and

v(x,y) = €*siny.
_ [e'cosy —e'siny
I = (ex siny e‘cosy >

The partial derivatives are all continuous, so u and v are
differentiable on R2. Since the Cauchy-Riemann equations also
hold, f is differentiable and hence analytic on C with f(z) = f(z).

Exmaple. f(z) = zRe z with u(x,y) = x> and v(x,y) = xy.
2x 0
=3 Y)
u and v are differentiable on R?. Since the Cauchy-Riemann

equations hold only if x =y = 0, f is differentiable only at z = 0
and nowhere analytic on C.



Necessary & Sufficient Conditions for Analyticity

Theorem. A function f(z) = u(x,y) +jv(x,y) is analytic on a
domain D if and only if

1. u(x,y) and v(x, y) are (real) differentiable on D
2. the Cauchy-Riemann equations hold on D

We will see later analytic functions are infinitely differentiable.
Since f” exists, all partial derivatives are continuous.

Theorem. A function f(z) = u(x,y) +jv(x,y) is analytic on a
domain D if and only if
1. u(x,y) and v(x,y) are continuously differentiable on D
2. the Cauchy-Riemann equations hold on D

Corollary. If f(z) = u(x,y) + jv(x,y) is analytic on D, then u and v
are harmonic functions on D, i.e. uy, + uy, = 0, vy + vy, = 0.

Corollary. If f has vanishing derivative on a domain D, i.e.
f'(z) = 0 on D, then f is a constant on D.



Analytic Function as “True” Function of z

Recall

x= %(Z +32)

y=5(z-2)
If we view z and z as two independent variables, then by the
chain rule,

of _1of 1of of _19f 19

8z 20x 20y’ 0z 20x 2jdy

Since f = u+jv,

O 1 (0w v\ (0 0
0z 2 \0ox Oy 2 \0y Ox

The Cauchy-Riemann equations are equivalent to g—f; = 0. Thus

an analytic function depends only on z and not on z.



Analytic Function as “True” Function of z

Theorem. A function f(z) = u(x,y) + jv(x,y) is analytic on a
domain D if and only if

1. u(x,y) and v(x,y) are (real) differentiable on D

o
2. a—Z_OOnD
Example. f(z) = (Rez)*.
-\ 2 —
f(z) = (%) — g—];:¥¢0imez7éo

So f is nowhere analytic.
Example. f(z) = |z]*.

fo) =2z = g—J;:z#Oifz#O
So f is nowhere analytic.



Relations: Continuity, Differentiability and Analyticity

f is defined on a domain D and z, € D.

analyticonD [ X-- > analytic at z,

“ :

X

Y A 4 1

differentiable on D [Ty | differentiable at z,

? :

X X
by I

continuous on D continuous at z,

«--X----
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2. Elementary Analytic Functions



Exponential

e =expz

e‘(cosy+jsiny), (e°is not e to the power of z)

° &40 e F=¢
o 1R = efle® e periodic ¢ = ¢°

° (&) '=e* * /s analyticon Cand (¢°) = e

y v
argw = yo

X0

5
2 lw| = e

Yo

7777777777777 7777777 7177

argw = yi



Trigonometric Functions

) eiZ _ e*]z eiz + eifz
sing= ———, C0S7= ———
¢ 2 2

Many properties of real sin and cos remain true

¢ sinz and cosz are analytic on C
(sinz)’ = cosz, (cosz) = —sinz
¢ sinz and cos z are periodic with period 27
sin(z+27) =sinz, cos(z+ 27) = cosz
® sinzis odd and cosz is even
sin(—z) = —singz, cos(—z) = cosz

. ., T
J sinz + cos’z = 1, sm(a —2) = oSz



Trigonometric Functions

[ ] . . .
sin(z; 4+ z2) = sinz; coszp + cos zy sin z,

cos(z) + 22) = coszy coszp — sinzy sinzp

In particular, for x,y € R,

sin(x + jy) = sinx cos(jy) + cosxsin(jy)

cos(x + jy) = cosxcos(jy) — sinxsin(jy)
By definition,

- _ pYy -y y
sin(jy) = % — jsinhy, cos(jy) = 2+e

= coshy
SO
sin(x + jy) = sinxcoshy + jcosxsinhy

cos(x + jy) = cosxcoshy — jsinxsinhy



Trigonometric Functions

® sinz and cos z are unbounded on C. In particular, for z = jy,
asy — oo,

|sin(jy)| = | sinhy| — oo, |cos(jy)| = coshy — oo

® sing=0iff z=kn(k € Z), cosz=0iff z =T + kn(k € Z)

» sin(x +jy) = sinxcoshy — jcosxsinhy =0
» sinxcoshy=0and cosh>1 = sinx=0 = x=knx
» cosxsinhy=0andx =kr = sinhy=0 = y=0

e Other trigonometric functions

sin z CcoS Z
tanz = , cotz = —
CcoSs Z sin z
1 1
secy = ——, (€SCZ=—

COS Z SN zg



Hyperbolic Functions

& — e ¢ e+ et
COSZ =
2 2

sinhz =
¢ sinh z and cosh z are analytic on C
(sinhz)’ = coshz, (coshz)’ =sinhz
¢ sinh z and cosh z are periodic with period j27
sinh(z 4+ j2m) = sinhz, cosh(z +j27) = coshz
e Many properties are similar to those of sinz and cosz
cosh(jz) = cosz, cos(jz) = coshz

sinh(jz) = jsinz, sin(jz) =jsinhz



Logarithm
Logarithm w = Log z is the inverse of exponential.
e By definition, w = Log z is the root of ¢” = z
e Since ¢” # 0, Logz is defined only for z # 0
o letz=ré®, w=u+jv. Then e = re? — r=¢" " ="

Thus
w=logr+j(0+2kr), keZ

or
Logz = log|z| +jArgz

Log z is a multivalued function. Each z # 0 has infinitely many
logarithms that differ by multiples of j27.

When Arg z is restricted to its principal value argz € (—m, 7],
(logz)o = logz = log |z| 4+ jarg z is the principal branch of Log z.

The other branches are (log z); = log z + j2km, k € Z.



Logarithm
Example. Log2 = log?2 + j2kw, k € Z, its principal value is log 2

Example. Log(—1) = log| — 1| +jArg(—1) = jm + j2km, k € Z,
its principal value is jr

Example. Logj = log|j| +jArgj = j5 + j2km, k € Z, its principal
value is j5

Example. Log(2¢/%) = log 2 + jZ + j2km, k € Z, its principal
value is log 2 +j§
NB.

¢ Negative real numbers have logarithms.

o ologr — 7 put Loge® =z + j21Z # z

e loget # zin general, e.g. log €™ = log(—1) = jr # j37



Logarithm
Some properties of real logarithm are still true

Log(z1z2) = Logz; + Log 2,
21
Log P = Logz; — Logz,
2

e Equality should be interpreted as equality of sets

» Log(z1z2) = Logzi + Logzo = log |z122| +jarg(ziz2) + j2nZ
e Equality holds for Log, not for log in general

» log(—1) = jm, log(—1)> = 0 # log(—1) + log(—1) = j27

The following property of real logarithm is no longer true

Log7" #nlogz,

® e.g. Logj* = Log(—1) = jm + j2km # 2 Logj = jm + jdkr
e Logz> = Logz+ Logz, but Logz + Logz # 2 Logz



Logarithm

Forn e N,
Log/z = —Logz
Let z = re/?
° Jz= \/ed“f” k=01,....n—1

0+ 2k
e Logv/z= logr+] ok =0,....n—1,meZ

k
{]—C—i—m:k:O,...,n—l;mEZ}:{S:kGZ}

0+ 2k
Logv/z = logr+] i W, keZ

Logz = logr+](6’+2k7r), keZ
Log/z = %Logz

+j2mm,




Logarithm

Consider the principal branch log z = log |z| + jargz

e argz is discontinuous on the negative real axis

limarg(x +iy) =7, limarg(x+iy)=—m
im arg(x + iy) im arg(x +iy)

® log z is continuous on
D=C\(-00,0] ={z:2#0,|argz| <7}

e Forze D,logz€e E={w:|Imw| < =}. ltsinverse z = ¢" is
single valued on E, so

(082) = oor— = s = 7

ev ,lwzlogz elogz z

e Thus logz is analytic on D with derivative 1/z.

The other branches (log z), = log z + j2km are also analytic on
D with derivative (logz);, = (logz + j2km)" = 1/z.



Power Function
Fora € C, z € C\ {0}, define z* by

Za = “ Logz

Since Log z is multivalued, z* is in general also multivalued.
We can define branches of z* by

(z%) = e*loede  where (logz); = logz + j2km

® (z%) = e*'°87 is called the principal branch of z*. Note
(Za)k — ejaka(Zoc)O

e Depending on «, different k may yield identical (z*);

» If n € Z, 7" is single valued. Only one branch ("), = (z")o

» If « =m/n € Q, where ged(m,n) = 1, z% is n-valued, i.e.
there are n branches, (z%)i, = (z*)x, <= ki — ks € nZ

» If « € C\ Q, z* has infinitely many values. Infinitely many
branches: (z%), are all different for different k € Z



Power Function
Example. 1V2 = ¢V2Llogl — o227 | c 7,
Example. j = e/lo8) = U3 H2%m) — o= (5+27) | c 7,

Analyticity of z~

e Since log z is analytic on D = C\ (—o0, 0] and exp is analytic
on C, the chain rule yields

(z%) = (e*18%) = ealogzg = qele™Dlez — g (z271),
The principal branch (z*), is analytic on D.
e Other branches are also analytic on D with (z%), = a(z*™");.
» Recall (Za)k = ejaZkﬂ-(Za)o
> (Zoz);c — ejaka(Za)6 — e/‘aana(Za—l)o — a(za—l)k
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