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Derivative and Differential of Complex Functions

Suppose w = f (z) is defined on a domain D ⊂ C and z0 ∈ D. If
the limit

lim
z→z0

f (z)− f (z0)

z− z0
= lim

∆z→0

f (z0 + ∆z)− f (z0)

∆z

exists, then we call it the derivative of f at z0, and write

f ′(z0) =
df
dz

∣∣∣
z=z0

= lim
z→z0

f (z)− f (z0)

z− z0
.

If the increment of f (z) at z0 can be written as

∆f (z0) = f (z0 + ∆z)− f (z0) = A∆z + α(z)∆z

where A ∈ C is a constant, and α(z)→ 0 as ∆z→ 0, we say f is
differentiable at z0, and call A∆z the differential of f at z0.
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Analytic Functions
If f is differentiable for every z in an open disk B(z0, δ), then we
say f is analytic at z0.

If f is differentiable for every z in a domain D, then we say f is
an analytic (or holomorphic) function on D.

Example. f (z) = z2 analytic on C.

Example. f (z) = 1
z is differentiable at every z 6= 0 with derivative

f ′(z) = − 1
z2 , so f is analytic on C \ {0}.

For a complex function f , the following entailments hold

analytic at t0 =⇒ differentiable at t0 =⇒ continuous at t0

Example. f (z) = z̄ is continuous on C but nowhere differentiable.

Example. f (z) = (Re z)2 is differentiable but not analytic at
points on the imaginary axis.
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Analytic Functions
Example. f (z) = (Re z)2 is differentiable but not analytic on the
imaginary axis.

Proof. Let z0 = x0 + jy0, ∆z = ∆x + j∆y and z = z0 + ∆z.

1. If x0 = 0, since ∆x ≤ ∆z∣∣∣∣ f (z)− f (z0)

z− z0
− 0
∣∣∣∣ =

∣∣∣∣(∆x)2

∆z

∣∣∣∣ ≤ |∆z| =⇒ f ′(z0) = 0

2. If x0 6= 0, let ∆z→ 0 along the real and imaginary axes,

f (z)− f (z0)

z− z0
=

2x0∆x + (∆x)2

∆x + j∆y
∆z→0−−−→

{
2x0 6= 0, along ∆y = 0
0, along ∆x = 0

So f ′(z0) does not exist if x0 6= 0.

3. Since any open disk B(z0, δ) contains points z with Re z 6= 0,
f is not analytic at any point z0 ∈ C.
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Analytic Functions

The rules for taking derivatives imply the following theorems.

Theorem. If f and g are analytic at z0, then so are f ± g, fg and
f/g (if g(z0) 6= 0).

NB. By definition, f and g are differentiable on some B(z0, δ1)
and B(z0, δ2), respectively. For f ± g, fg and f/g, we can always
take B(z0, δ), where δ = min{δ1, δ2}.

Theorem. If h = g(z) is analytic at z0, w = f (h) is analytic at
h0 = g(z0), then w = f ◦ g(z) is analytic at z0.

Example. A polynomial P(z) =
n∑

k=0
akzk is analytic on C.

Example. A rational function R(z) =
P(z)
Q(z)

is analytic on

C \ {z : Q(z) = 0}, where P, Q are polynomials.
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Cauchy-Riemann Equations
Recall the continuity of f (z) = u(x, y) + jv(x, y) at z0 = x0 + jy0 is
equivalent to the continuity of u(x, y) and v(x, y) at (x0, y0).

The differentiability of f (z) = u(x, y) + jv(x, y) at z0 = x0 + jy0 is not
equivalent to the differentiability of u(x, y) and v(x, y) at (x0, y0).

Example. u(x, y) = x2 and v(x, y) = 0 are differentiable on the
entire R2, but f (z) = (Re z)2 = u(x, y) + jv(x, y) is differentiable
only on the imaginary axis.

Cauchy-Riemann equations
Let ∆z→ 0 along the real and imaginary axes, i.e. ∆z = ∆x and
∆z = j∆y, respectively,

f ′(z) =
∂u(x, y)

∂x
+ j

∂v(x, y)

∂x
= −j

∂u(x, y)

∂y
+
∂v(x, y)

∂y

=⇒ ∂u(x, y)

∂x
=
∂v(x, y)

∂y
,

∂u(x, y)

∂y
= −∂v(x, y)

∂x
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Necessary & Sufficient Conditions for Differentiability
Theorem. A function f (z) = u(x, y) + jv(x, y) defined on a domain
D is differentiable at z0 = x0 + jy0 ∈ D if and only if

1. u(x, y) and v(x, y) are (real) differentiable at (x0, y0)

2. the partial derivatives satisfy the Cauchy-Riemann
equations at (x0, y0),

∂u(x0, y0)

∂x
=
∂v(x0, y0)

∂y
,

∂u(x0, y0)

∂y
= −∂v(x0, y0)

∂x

Proof. For necessity, assume f ′(z0) = a + jb exists. By definition,

∆f (z0) = f ′(z0)∆z + α(∆z), where α(∆z) = o(∆z)

Let α(∆z) = α1(∆z) + jα2(∆z). Then αi(∆z) = o(∆z). Note

∆u(x0, y0) = Re ∆f (z0) = (a∆x− b∆y) + α1(∆z)
∆v(x0, y0) = Im ∆f (z0) = (a∆y + b∆x) + α2(∆z)

so u, v are differentiable and a = ∂u
∂x = ∂v

∂y , −b = ∂u
∂y = −∂v

∂x .
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Necessary & Sufficient Conditions for Differentiability
Proof (cont’d). For sufficiency, assume u, v are differentiable,
and the Cauchy-Riemann equations hold. So

∆u(x0, y0) = (a∆x− b∆y) + α1(∆z)
∆v(x0, y0) = (a∆y + b∆x) + α2(∆z),

where a = ∂u(x0,y0)
∂x = ∂v(x0,y0)

∂y , −b = ∂u(x0,y0)
∂y = −∂v(x0,y0)

∂x , and
αi(∆z) = o(|∆z|), i = 1, 2.

Thus
∆f = ∆u + j∆v = (a + jb)∆z + α(∆z)

where α(∆z) = α1(∆z) + jα2(∆z). Note α(∆z) = o(∆z), since∣∣∣∣α(∆z)
∆z

∣∣∣∣ ≤ |α1(∆z)|
|∆z|

+
|α2(∆z)|
|∆z|

→ 0, as ∆z→ 0.

So f is differentiable with

f ′(z0) = ux(x0, y0)− juy(x0, y0) = vy(x0, y0) + jvx(x0, y0)
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Example
The Jacobian matrix of f viewed as a mapping (x, y) 7→ (u, v) is

J[f ] =

(
ux uy

vx vy

)
Mnemonics for the sign in the Cauchy-Riemann equations:
• Entries on the principal diagonal are identical, ux = vy

• Entries on the secondary diagonal differ in signs, uy = −vx

Exmaple. f (z) = z̄ = x− jy with u(x, y) = x and v(x, y) = −y.

J[f ] =

(
1 0
0 −1

)
Since ux 6= vy, one of the Cauchy-Riemann equations fails
everywhere, so f is nowhere differentiable.
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Examples
Exmaple. f (z) = ez = ex(cos y + j sin y) with u(x, y) = ex cos y and
v(x, y) = ex sin y.

J[f ] =

(
ex cos y −ex sin y
ex sin y ex cos y

)
The partial derivatives are all continuous, so u and v are
differentiable on R2. Since the Cauchy-Riemann equations also
hold, f is differentiable and hence analytic on C with f ′(z) = f (z).

Exmaple. f (z) = zRe z with u(x, y) = x2 and v(x, y) = xy.

J[f ] =

(
2x 0
y x

)
u and v are differentiable on R2. Since the Cauchy-Riemann
equations hold only if x = y = 0, f is differentiable only at z = 0
and nowhere analytic on C.
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Necessary & Sufficient Conditions for Analyticity
Theorem. A function f (z) = u(x, y) + jv(x, y) is analytic on a
domain D if and only if

1. u(x, y) and v(x, y) are (real) differentiable on D
2. the Cauchy-Riemann equations hold on D

We will see later analytic functions are infinitely differentiable.
Since f ′′ exists, all partial derivatives are continuous.

Theorem. A function f (z) = u(x, y) + jv(x, y) is analytic on a
domain D if and only if

1. u(x, y) and v(x, y) are continuously differentiable on D
2. the Cauchy-Riemann equations hold on D

Corollary. If f (z) = u(x, y) + jv(x, y) is analytic on D, then u and v
are harmonic functions on D, i.e. uxx + uyy = 0, vxx + vyy = 0.

Corollary. If f has vanishing derivative on a domain D, i.e.
f ′(z) = 0 on D, then f is a constant on D.
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Analytic Function as “True” Function of z

Recall {
x = 1

2(z + z̄)
y = 1

2j(z− z̄)

If we view z and z̄ as two independent variables, then by the
chain rule,

∂f
∂z

=
1
2
∂f
∂x

+
1
2j
∂f
∂y
,

∂f
∂z̄

=
1
2
∂f
∂x
− 1

2j
∂f
∂y

Since f = u + jv,

∂f
∂z̄

=
1
2

(
∂u
∂x
− ∂v
∂y

)
+

j
2

(
∂u
∂y

+
∂v
∂x

)
The Cauchy-Riemann equations are equivalent to ∂f

∂ z̄ = 0. Thus
an analytic function depends only on z and not on z̄.
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Analytic Function as “True” Function of z

Theorem. A function f (z) = u(x, y) + jv(x, y) is analytic on a
domain D if and only if

1. u(x, y) and v(x, y) are (real) differentiable on D

2.
∂f
∂z̄

= 0 on D

Example. f (z) = (Re z)2.

f (z) =

(
z + z̄

2

)2

=⇒ ∂f
∂z̄

=
z + z̄

2
6= 0 if Re z 6= 0

So f is nowhere analytic.

Example. f (z) = |z|2.

f (z) = zz̄ =⇒ ∂f
∂z̄

= z 6= 0 if z 6= 0

So f is nowhere analytic.
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Relations: Continuity, Differentiability and Analyticity

f is defined on a domain D and z0 ∈ D.

analytic on D analytic at z0X

differentiable on D differentiable at z0X

continuous on D continuous at z0X

X

X X
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Exponential
ez = exp z = ex(cos y + j sin y), (ez is not e to the power of z)

• ez 6= 0
• ez1+z2 = ez1ez2

• (ez)−1 = e−z

• ez = ez̄

• periodic ez+j2π = ez

• ez is analytic on C and (ez)′ = ez

x

y

j2π

Re z = x0

Im z = y0

Im z = y1

j2π

u

v

ex0

|w| = ex0

argw = y0

y0

argw = y1
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Trigonometric Functions

sin z =
ejz − e−jz

2j
, cos z =

ejz + e−jz

2

Many properties of real sin and cos remain true

• sin z and cos z are analytic on C

(sin z)′ = cos z, (cos z)′ = − sin z

• sin z and cos z are periodic with period 2π

sin(z + 2π) = sin z, cos(z + 2π) = cos z

• sin z is odd and cos z is even

sin(−z) = − sin z, cos(−z) = cos z

• sin2 z + cos2 z = 1, sin(
π

2
− z) = cos z
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Trigonometric Functions
• sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2

In particular, for x, y ∈ R,

sin(x + jy) = sin x cos(jy) + cos x sin(jy)

cos(x + jy) = cos x cos(jy)− sin x sin(jy)

By definition,

sin(jy) =
e−y − ey

2j
= j sinh y, cos(jy) =

e−y + ey

2
= cosh y

so
sin(x + jy) = sin x cosh y + j cos x sinh y

cos(x + jy) = cos x cosh y− j sin x sinh y
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Trigonometric Functions

• sin z and cos z are unbounded on C. In particular, for z = jy,
as y→∞,

| sin(jy)| = | sinh y| → ∞, | cos(jy)| = cosh y→∞

• sin z = 0 iff z = kπ(k ∈ Z), cos z = 0 iff z = π
2 + kπ(k ∈ Z)

I sin(x + jy) = sin x cosh y− j cos x sinh y = 0
I sin x cosh y = 0 and cosh ≥ 1 =⇒ sin x = 0 =⇒ x = kπ
I cos x sinh y = 0 and x = kπ =⇒ sinh y = 0 =⇒ y = 0

• Other trigonometric functions

tan z =
sin z
cos z

, cot z =
cos z
sin z

sec z =
1

cos z
, csc z =

1
sin z
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Hyperbolic Functions

sinh z =
ez − e−z

2
, cos z =

ez + e−z

2

• sinh z and cosh z are analytic on C

(sinh z)′ = cosh z, (cosh z)′ = sinh z

• sinh z and cosh z are periodic with period j2π

sinh(z + j2π) = sinh z, cosh(z + j2π) = cosh z

• Many properties are similar to those of sin z and cos z

cosh(jz) = cos z, cos(jz) = cosh z

sinh(jz) = j sin z, sin(jz) = j sinh z
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Logarithm

Logarithm w = Log z is the inverse of exponential.

• By definition, w = Log z is the root of ew = z
• Since ew 6= 0, Log z is defined only for z 6= 0
• Let z = rejθ, w = u + jv. Then eu+jv = rejθ =⇒ r = eu, ejv = ejθ

Thus
w = log r + j(θ + 2kπ), k ∈ Z

or
Log z = log |z|+ j Arg z

Log z is a multivalued function. Each z 6= 0 has infinitely many
logarithms that differ by multiples of j2π.

When Arg z is restricted to its principal value arg z ∈ (−π, π],
(log z)0 = log z = log |z|+ j arg z is the principal branch of Log z.

The other branches are (log z)k = log z + j2kπ, k ∈ Z.
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Logarithm

Example. Log 2 = log 2 + j2kπ, k ∈ Z, its principal value is log 2

Example. Log(−1) = log | − 1|+ j Arg(−1) = jπ + j2kπ, k ∈ Z,
its principal value is jπ

Example. Log j = log |j|+ j Arg j = jπ2 + j2kπ, k ∈ Z, its principal
value is jπ2

Example. Log(2ejπ4 ) = log 2 + jπ4 + j2kπ, k ∈ Z, its principal
value is log 2 + jπ4

NB.
• Negative real numbers have logarithms.
• eLog z = z, but Log ez = z + j2πZ 6= z
• log ez 6= z in general, e.g. log ej3π = log(−1) = jπ 6= j3π
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Logarithm

Some properties of real logarithm are still true

Log(z1z2) = Log z1 + Log z2

Log
z1

z2
= Log z1 − Log z2

• Equality should be interpreted as equality of sets
I Log(z1z2) = Log z1 + Log z2 = log |z1z2|+ j arg(z1z2) + j2πZ

• Equality holds for Log, not for log in general
I log(−1) = jπ, log(−1)2 = 0 6= log(−1) + log(−1) = j2π

The following property of real logarithm is no longer true

Log zn 6= n Log z2

• e.g. Log j2 = Log(−1) = jπ + j2kπ 6= 2 Log j = jπ + j4kπ
• Log z2 = Log z + Log z, but Log z + Log z 6= 2 Log z
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Logarithm

For n ∈ N,

Log n
√

z =
1
n

Log z

Let z = rejθ

• n
√

z = n
√

rej θ+2kπ
n , k = 0, 1, . . . , n− 1

• Log n
√

z =
1
n

log r + j
θ + 2kπ

n
+ j2mπ, k = 0, . . . , n−1; m ∈ Z

•
{

k
n

+ m : k = 0, . . . , n− 1; m ∈ Z
}

=

{
k
n

: k ∈ Z
}

• Log n
√

z =
1
n

log r + j
θ + 2kπ

n
, k ∈ Z

• Log z = log r + j(θ + 2kπ), k ∈ Z
• Log n

√
z = 1

n Log z
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Logarithm

Consider the principal branch log z = log |z|+ j arg z

• arg z is discontinuous on the negative real axis

lim
y↓0

arg(x + iy) = π, lim
y↑0

arg(x + iy) = −π

• log z is continuous on
D = C \ (−∞, 0] = {z : z 6= 0, | arg z| < π}
• For z ∈ D, log z ∈ E = {w : |Im w| < π}. Its inverse z = ew is

single valued on E, so

(log z)′ =
1

(ew)′|w=log z
=

1
elog z =

1
z

• Thus log z is analytic on D with derivative 1/z.

The other branches (log z)k = log z + j2kπ are also analytic on
D with derivative (log z)′k = (log z + j2kπ)′ = 1/z.
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Power Function

For α ∈ C, z ∈ C \ {0}, define zα by

zα = eαLog z

Since Log z is multivalued, zα is in general also multivalued.
We can define branches of zα by

(zα)k = eα(log z)k , where (log z)k = log z + j2kπ

• (zα)0 = eα log z is called the principal branch of zα. Note

(zα)k = ejα2kπ(zα)0

• Depending on α, different k may yield identical (zα)k

I If n ∈ Z, zn is single valued. Only one branch (zn)k = (zn)0
I If α = m/n ∈ Q, where gcd(m, n) = 1, zα is n-valued, i.e.

there are n branches, (zα)k1 = (zα)k2 ⇐⇒ k1 − k2 ∈ nZ
I If α ∈ C \Q, zα has infinitely many values. Infinitely many

branches: (zα)k are all different for different k ∈ Z
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Power Function

Example. 1
√

2 = e
√

2 Log 1 = ej2
√

2kπ, k ∈ Z.

Example. jj = ej Log j = ej(jπ2 +j2kπ) = e−(π
2 +2kπ), k ∈ Z.

Analyticity of zα

• Since log z is analytic on D = C \ (−∞, 0] and exp is analytic
on C, the chain rule yields

(zα)′0 = (eα log z)′ = eα log zα

z
= αe(α−1) log z = α(zα−1)0

The principal branch (zα)0 is analytic on D.
• Other branches are also analytic on D with (zα)′k = α(zα−1)k.

I Recall (zα)k = ejα2kπ(zα)0
I (zα)′k = ejα2kπ(zα)′0 = ejα2kπα(zα−1)0 = α(zα−1)k
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