El331 Signals and Systems Lecture 22

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

May 14, 2019

Contents

1. Analytic Functions

2. Elementary Analytic Functions

Derivative and Differential of Complex Functions

Suppose w = f(z) is defined on a domain $D \subset \mathbb{C}$ and $z_0 \in D$. If the limit

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

exists, then we call it the derivative of f at z_0 , and write

$$f'(z_0) = \frac{df}{dz}\Big|_{z=z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}.$$

If the increment of f(z) at z_0 can be written as

$$\Delta f(z_0) = f(z_0 + \Delta z) - f(z_0) = A\Delta z + \alpha(z)\Delta z$$

where $A \in \mathbb{C}$ is a constant, and $\alpha(z) \to 0$ as $\Delta z \to 0$, we say *f* is differentiable at z_0 , and call $A\Delta z$ the differential of *f* at z_0 .

Analytic Functions

If *f* is differentiable for every *z* in an open disk $B(z_0, \delta)$, then we say *f* is analytic at z_0 .

If f is differentiable for every z in a domain D, then we say f is an analytic (or holomorphic) function on D.

Example. $f(z) = z^2$ analytic on \mathbb{C} .

Example. $f(z) = \frac{1}{z}$ is differentiable at every $z \neq 0$ with derivative $f'(z) = -\frac{1}{z^2}$, so f is analytic on $\mathbb{C} \setminus \{0\}$.

For a complex function f, the following entailments hold

analytic at $t_0 \implies$ differentiable at $t_0 \implies$ continuous at t_0

Example. $f(z) = \overline{z}$ is continuous on \mathbb{C} but nowhere differentiable. Example. $f(z) = (\operatorname{Re} z)^2$ is differentiable but not analytic at points on the imaginary axis.

Analytic Functions

Example. $f(z) = (\text{Re } z)^2$ is differentiable but not analytic on the imaginary axis.

Proof. Let $z_0 = x_0 + jy_0$, $\Delta z = \Delta x + j\Delta y$ and $z = z_0 + \Delta z$.

1. If $x_0 = 0$, since $\Delta x \le \Delta z$ $\left| \frac{f(z) - f(z_0)}{z - z_0} - 0 \right| = \left| \frac{(\Delta x)^2}{\Delta z} \right| \le |\Delta z| \implies f'(z_0) = 0$

2. If $x_0 \neq 0$, let $\Delta z \rightarrow 0$ along the real and imaginary axes,

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{2x_0\Delta x + (\Delta x)^2}{\Delta x + j\Delta y} \xrightarrow{\Delta z \to 0} \begin{cases} 2x_0 \neq 0, & \text{along } \Delta y = 0\\ 0, & \text{along } \Delta x = 0 \end{cases}$$

So $f'(z_0)$ does not exist if $x_0 \neq 0$.

3. Since any open disk $B(z_0, \delta)$ contains points z with $\operatorname{Re} z \neq 0$, f is not analytic at any point $z_0 \in \mathbb{C}$.

Analytic Functions

The rules for taking derivatives imply the following theorems.

Theorem. If *f* and *g* are analytic at z_0 , then so are $f \pm g$, fg and f/g (if $g(z_0) \neq 0$).

NB. By definition, *f* and *g* are differentiable on some $B(z_0, \delta_1)$ and $B(z_0, \delta_2)$, respectively. For $f \pm g$, fg and f/g, we can always take $B(z_0, \delta)$, where $\delta = \min{\{\delta_1, \delta_2\}}$.

Theorem. If h = g(z) is analytic at z_0 , w = f(h) is analytic at $h_0 = g(z_0)$, then $w = f \circ g(z)$ is analytic at z_0 .

Example. A polynomial $P(z) = \sum_{k=0}^{n} a_k z^k$ is analytic on \mathbb{C} .

Example. A rational function $R(z) = \frac{P(z)}{Q(z)}$ is analytic on $\mathbb{C} \setminus \{z : Q(z) = 0\}$, where *P*, *Q* are polynomials.

Cauchy-Riemann Equations

Recall the continuity of f(z) = u(x, y) + jv(x, y) at $z_0 = x_0 + jy_0$ is equivalent to the continuity of u(x, y) and v(x, y) at (x_0, y_0) .

The differentiability of f(z) = u(x, y) + jv(x, y) at $z_0 = x_0 + jy_0$ is **not** equivalent to the differentiability of u(x, y) and v(x, y) at (x_0, y_0) .

Example. $u(x, y) = x^2$ and v(x, y) = 0 are differentiable on the entire \mathbb{R}^2 , but $f(z) = (\operatorname{Re} z)^2 = u(x, y) + jv(x, y)$ is differentiable only on the imaginary axis.

Cauchy-Riemann equations

Let $\Delta z \rightarrow 0$ along the real and imaginary axes, i.e. $\Delta z = \Delta x$ and $\Delta z = j \Delta y$, respectively,

$$f'(z) = \frac{\partial u(x, y)}{\partial x} + j \frac{\partial v(x, y)}{\partial x} = -j \frac{\partial u(x, y)}{\partial y} + \frac{\partial v(x, y)}{\partial y}$$
$$\implies \frac{\partial u(x, y)}{\partial x} = \frac{\partial v(x, y)}{\partial y}, \quad \frac{\partial u(x, y)}{\partial y} = -\frac{\partial v(x, y)}{\partial x}$$

Necessary & Sufficient Conditions for Differentiability

Theorem. A function f(z) = u(x, y) + jv(x, y) defined on a domain *D* is differentiable at $z_0 = x_0 + jy_0 \in D$ if and only if

- 1. u(x, y) and v(x, y) are (real) differentiable at (x_0, y_0)
- 2. the partial derivatives satisfy the Cauchy-Riemann equations at (x_0, y_0) ,

$$\frac{\partial u(x_0, y_0)}{\partial x} = \frac{\partial v(x_0, y_0)}{\partial y}, \quad \frac{\partial u(x_0, y_0)}{\partial y} = -\frac{\partial v(x_0, y_0)}{\partial x}$$

Proof. For necessity, assume $f'(z_0) = a + jb$ exists. By definition,

$$\Delta f(z_0) = f'(z_0)\Delta z + \alpha(\Delta z), \text{ where } \alpha(\Delta z) = o(\Delta z)$$

Let $\alpha(\Delta z) = \alpha_1(\Delta z) + j\alpha_2(\Delta z).$ Then $\alpha_i(\Delta z) = o(\Delta z).$ Note
 $\Delta u(x_0, y_0) = \operatorname{Re} \Delta f(z_0) = (a\Delta x - b\Delta y) + \alpha_1(\Delta z)$
 $\Delta v(x_0, y_0) = \operatorname{Im} \Delta f(z_0) = (a\Delta y + b\Delta x) + \alpha_2(\Delta z)$
so u, v are differentiable and $a = \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, -b = \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$

Necessary & Sufficient Conditions for Differentiability

Proof (cont'd). For sufficiency, assume u, v are differentiable, and the Cauchy-Riemann equations hold. So

$$\Delta u(x_0, y_0) = (a\Delta x - b\Delta y) + \alpha_1(\Delta z)$$

$$\Delta v(x_0, y_0) = (a\Delta y + b\Delta x) + \alpha_2(\Delta z),$$

where
$$a = \frac{\partial u(x_0, y_0)}{\partial x} = \frac{\partial v(x_0, y_0)}{\partial y}$$
, $-b = \frac{\partial u(x_0, y_0)}{\partial y} = -\frac{\partial v(x_0, y_0)}{\partial x}$, and $\alpha_i(\Delta z) = o(|\Delta z|)$, $i = 1, 2$.

Thus

$$\Delta f = \Delta u + j \Delta v = (a + jb) \Delta z + \alpha(\Delta z)$$

where $\alpha(\Delta z) = \alpha_1(\Delta z) + j\alpha_2(\Delta z)$. Note $\alpha(\Delta z) = o(\Delta z)$, since $\left|\frac{\alpha(\Delta z)}{\Delta z}\right| \leq \frac{|\alpha_1(\Delta z)|}{|\Delta z|} + \frac{|\alpha_2(\Delta z)|}{|\Delta z|} \to 0$, as $\Delta z \to 0$.

So f is differentiable with

$$f'(z_0) = u_x(x_0, y_0) - ju_y(x_0, y_0) = v_y(x_0, y_0) + jv_x(x_0, y_0)$$

Example

The Jacobian matrix of *f* viewed as a mapping $(x, y) \mapsto (u, v)$ is

$$J[f] = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}$$

Mnemonics for the sign in the Cauchy-Riemann equations:

- Entries on the principal diagonal are identical, $u_x = v_y$
- Entries on the secondary diagonal differ in signs, $u_y = -v_x$

Exmaple.
$$f(z) = \overline{z} = x - jy$$
 with $u(x, y) = x$ and $v(x, y) = -y$.

$$J[f] = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Since $u_x \neq v_y$, one of the Cauchy-Riemann equations fails everywhere, so *f* is nowhere differentiable.

Examples

Exmaple. $f(z) = e^z = e^x(\cos y + j \sin y)$ with $u(x, y) = e^x \cos y$ and $v(x, y) = e^x \sin y$.

$$I[f] = \begin{pmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{pmatrix}$$

The partial derivatives are all continuous, so *u* and *v* are differentiable on \mathbb{R}^2 . Since the Cauchy-Riemann equations also hold, *f* is differentiable and hence analytic on \mathbb{C} with f'(z) = f(z).

Exmaple.
$$f(z) = z \operatorname{Re} z$$
 with $u(x, y) = x^2$ and $v(x, y) = xy$.
$$J[f] = \begin{pmatrix} 2x & 0 \\ y & x \end{pmatrix}$$

u and *v* are differentiable on \mathbb{R}^2 . Since the Cauchy-Riemann equations hold only if x = y = 0, *f* is differentiable only at z = 0 and nowhere analytic on \mathbb{C} .

Necessary & Sufficient Conditions for Analyticity

Theorem. A function f(z) = u(x, y) + jv(x, y) is analytic on a domain *D* if and only if

- 1. u(x, y) and v(x, y) are (real) differentiable on D
- 2. the Cauchy-Riemann equations hold on D

We will see later analytic functions are infinitely differentiable. Since f'' exists, all partial derivatives are continuous.

Theorem. A function f(z) = u(x, y) + jv(x, y) is analytic on a domain *D* if and only if

1. u(x, y) and v(x, y) are continuously differentiable on D

2. the Cauchy-Riemann equations hold on D

Corollary. If f(z) = u(x, y) + jv(x, y) is analytic on *D*, then *u* and *v* are harmonic functions on *D*, i.e. $u_{xx} + u_{yy} = 0$, $v_{xx} + v_{yy} = 0$.

Corollary. If *f* has vanishing derivative on a domain *D*, i.e. f'(z) = 0 on *D*, then *f* is a constant on *D*.

Analytic Function as "True" Function of z

Recall

$$\begin{cases} x = \frac{1}{2}(z + \bar{z}) \\ y = \frac{1}{2j}(z - \bar{z}) \end{cases}$$

If we view z and \overline{z} as two independent variables, then by the chain rule,

$$\frac{\partial f}{\partial z} = \frac{1}{2} \frac{\partial f}{\partial x} + \frac{1}{2j} \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \frac{\partial f}{\partial x} - \frac{1}{2j} \frac{\partial f}{\partial y}$$

Since $f = u + jv$,
 $\partial f = 1 \left(\frac{\partial u}{\partial v} - \frac{\partial v}{\partial v} \right) \quad j \left(\frac{\partial u}{\partial v} - \frac{\partial v}{\partial v} \right)$

 $\frac{\overline{\partial}}{\partial \overline{z}} = \frac{1}{2} \left(\frac{\overline{\partial}}{\partial x} - \frac{\overline{\partial}}{\partial y} \right) + \frac{\overline{\partial}}{2} \left(\frac{\overline{\partial}}{\partial y} + \frac{\overline{\partial}}{\partial x} \right)$ The Cauchy-Riemann equations are equivalent to $\frac{\partial f}{\partial \overline{z}} = 0$. Thus an analytic function depends only on z and not on \overline{z} .

Analytic Function as "True" Function of z

Theorem. A function f(z) = u(x, y) + jv(x, y) is analytic on a domain *D* if and only if

1. u(x, y) and v(x, y) are (real) differentiable on D

2. $\frac{\partial f}{\partial \bar{z}} = 0$ on D

Example. $f(z) = (\operatorname{Re} z)^2$.

$$f(z) = \left(\frac{z+\bar{z}}{2}\right)^2 \implies \frac{\partial f}{\partial \bar{z}} = \frac{z+\bar{z}}{2} \neq 0 \text{ if } \operatorname{\mathsf{Re}} z \neq 0$$

So f is nowhere analytic.

Example. $f(z) = |z|^2$. $f(z) = z\overline{z} \implies \frac{\partial f}{\partial \overline{z}} = z \neq 0 \text{ if } z \neq 0$

So f is nowhere analytic.

Relations: Continuity, Differentiability and Analyticity

f is defined on a domain D and $z_0 \in D$.

1. Analytic Functions

2. Elementary Analytic Functions

Exponential

 $e^z = \exp z = e^x (\cos y + j \sin y),$ (e^z is not e to the power of z)

- $e^z \neq 0$
- $e^{z_1+z_2} = e^{z_1}e^{z_2}$
- $(e^z)^{-1} = e^{-z}$

- $\overline{e^z} = e^{\overline{z}}$
- periodic $e^{z+j2\pi} = e^z$
- e^z is analytic on \mathbb{C} and $(e^z)' = e^z$

Trigonometric Functions

$$\sin z = \frac{e^{jz} - e^{-jz}}{2j}, \quad \cos z = \frac{e^{jz} + e^{-jz}}{2}$$

Many properties of real \sin and \cos remain true

• $\sin z$ and $\cos z$ are analytic on $\mathbb C$

$$(\sin z)' = \cos z, \quad (\cos z)' = -\sin z$$

• $\sin z$ and $\cos z$ are periodic with period 2π

$$\sin(z+2\pi) = \sin z, \quad \cos(z+2\pi) = \cos z$$

• $\sin z$ is odd and $\cos z$ is even

$$\sin(-z) = -\sin z, \quad \cos(-z) = \cos z$$

$$\sin^2 z + \cos^2 z = 1$$
, $\sin(\frac{\pi}{2} - z) = \cos z$

Trigonometric Functions

•
$$\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2$$
$$\cos(z_1 + z_2) = \cos z_1 \cos z_2 - \sin z_1 \sin z_2$$
In particular, for $x, y \in \mathbb{R}$,

$$\sin(x + jy) = \sin x \cos(jy) + \cos x \sin(jy)$$
$$\cos(x + jy) = \cos x \cos(jy) - \sin x \sin(jy)$$

By definition,

$$\sin(jy) = \frac{e^{-y} - e^y}{2j} = j \sinh y, \quad \cos(jy) = \frac{e^{-y} + e^y}{2} = \cosh y$$

S0

$$\sin(x + jy) = \sin x \cosh y + j \cos x \sinh y$$
$$\cos(x + jy) = \cos x \cosh y - j \sin x \sinh y$$

Trigonometric Functions

• $\sin z$ and $\cos z$ are unbounded on \mathbb{C} . In particular, for z = jy, as $y \to \infty$,

 $|\sin(jy)| = |\sinh y| \to \infty, \quad |\cos(jy)| = \cosh y \to \infty$

•
$$\sin z = 0$$
 iff $z = k\pi(k \in \mathbb{Z})$, $\cos z = 0$ iff $z = \frac{\pi}{2} + k\pi(k \in \mathbb{Z})$

▶
$$sin(x + jy) = sin x cosh y - j cos x sinh y = 0$$

▶ $sin x cosh y = 0$ and $cosh \ge 1 \implies sin x = 0 \implies x = k\pi$

• $\cos x \sinh y = 0$ and $x = k\pi \implies \sinh y = 0 \implies y = 0$

Other trigonometric functions

$$\tan z = \frac{\sin z}{\cos z}, \quad \cot z = \frac{\cos z}{\sin z}$$
$$\sec z = \frac{1}{\cos z}, \quad \csc z = \frac{1}{\sin z}$$

Hyperbolic Functions

$$\sinh z = \frac{e^z - e^{-z}}{2}, \quad \cos z = \frac{e^z + e^{-z}}{2}$$

• $\sinh z$ and $\cosh z$ are analytic on $\mathbb C$

 $(\sinh z)' = \cosh z, \quad (\cosh z)' = \sinh z$

• $\sinh z$ and $\cosh z$ are periodic with period $j2\pi$

$$\sinh(z+j2\pi) = \sinh z, \quad \cosh(z+j2\pi) = \cosh z$$

• Many properties are similar to those of $\sin z$ and $\cos z$

$$\cosh(jz) = \cos z, \quad \cos(jz) = \cosh z$$

 $\sinh(jz) = j\sin z, \quad \sin(jz) = j\sinh z$

Logarithm w = Log z is the inverse of exponential.

- By definition, $w = \operatorname{Log} z$ is the root of $e^w = z$
- Since $e^w \neq 0$, $\operatorname{Log} z$ is defined only for $z \neq 0$
- Let $z = re^{j\theta}$, w = u + jv. Then $e^{u+jv} = re^{j\theta} \implies r = e^{u}$, $e^{jv} = e^{j\theta}$ Thus

$$w = \log r + j(\theta + 2k\pi), \quad k \in \mathbb{Z}$$

or

$$\operatorname{Log} z = \log |z| + j \operatorname{Arg} z$$

Log *z* is a multivalued function. Each $z \neq 0$ has infinitely many logarithms that differ by multiples of $j2\pi$.

When $\operatorname{Arg} z$ is restricted to its principal value $\operatorname{arg} z \in (-\pi, \pi]$, $(\log z)_0 = \log z = \log |z| + j \operatorname{arg} z$ is the principal branch of $\operatorname{Log} z$.

The other branches are $(\log z)_k = \log z + j2k\pi$, $k \in \mathbb{Z}$.

Example. Log $2 = \log 2 + j2k\pi$, $k \in \mathbb{Z}$, its principal value is $\log 2$

Example. $Log(-1) = log |-1| + j Arg(-1) = j\pi + j2k\pi, k \in \mathbb{Z}$, its principal value is $j\pi$

Example. Log $j = \log |j| + j \operatorname{Arg} j = j\frac{\pi}{2} + j2k\pi$, $k \in \mathbb{Z}$, its principal value is $j\frac{\pi}{2}$

Example. $\text{Log}(2e^{j\frac{\pi}{4}}) = \log 2 + j\frac{\pi}{4} + j2k\pi$, $k \in \mathbb{Z}$, its principal value is $\log 2 + j\frac{\pi}{4}$

NB.

• Negative real numbers have logarithms.

•
$$e^{\text{Log } z} = z$$
, but $\text{Log } e^z = z + j2\pi\mathbb{Z} \neq z$

• $\log e^z \neq z$ in general, e.g. $\log e^{j3\pi} = \log(-1) = j\pi \neq j3\pi$

Some properties of real logarithm are still true

$$\operatorname{Log}(z_1 z_2) = \operatorname{Log} z_1 + \operatorname{Log} z_2$$

$$\operatorname{Log} \frac{z_1}{z_2} = \operatorname{Log} z_1 - \operatorname{Log} z_2$$

• Equality should be interpreted as equality of sets

• $\operatorname{Log}(z_1 z_2) = \operatorname{Log} z_1 + \operatorname{Log} z_2 = \log |z_1 z_2| + j \operatorname{arg}(z_1 z_2) + j 2\pi \mathbb{Z}$

Equality holds for Log, not for log in general
 log(-1) = jπ, log(-1)² = 0 ≠ log(-1) + log(-1) = j2π

The following property of real logarithm is no longer true

 $\operatorname{Log} z^n \neq n \operatorname{Log} z_2$

- e.g. $\text{Log} j^2 = \text{Log}(-1) = j\pi + j2k\pi \neq 2 \text{Log} j = j\pi + j4k\pi$
- $\operatorname{Log} z^2 = \operatorname{Log} z + \operatorname{Log} z$, but $\operatorname{Log} z + \operatorname{Log} z \neq 2 \operatorname{Log} z$

For $n \in \mathbb{N}$, $\log \sqrt[n]{z} = \frac{1}{z} \log z$ Let $z = re^{j\theta}$ • $\sqrt[n]{z} = \sqrt[n]{re^{j\frac{\theta+2k\pi}{n}}}, k = 0, 1, \dots, n-1$ • $\operatorname{Log}\sqrt[n]{z} = \frac{1}{n} \log r + j \frac{\theta + 2k\pi}{r} + j 2m\pi, \quad k = 0, \dots, n-1; m \in \mathbb{Z}$ • $\left\{\frac{k}{n}+m:k=0,\ldots,n-1;m\in\mathbb{Z}\right\}=\left\{\frac{k}{n}:k\in\mathbb{Z}\right\}$ • $\operatorname{Log}\sqrt[n]{z} = \frac{1}{n}\log r + j\frac{\theta + 2k\pi}{r}, \quad k \in \mathbb{Z}$ • $\operatorname{Log} z = \log r + i(\theta + 2k\pi), \quad k \in \mathbb{Z}$ • $\log \sqrt{z} = \frac{1}{\pi} \log z$

Consider the principal branch $\log z = \log |z| + j \arg z$

• $\arg z$ is discontinuous on the negative real axis

$$\lim_{y \downarrow 0} \arg(x + iy) = \pi, \quad \lim_{y \uparrow 0} \arg(x + iy) = -\pi$$

- $\log z$ is continuous on $D = \mathbb{C} \setminus (-\infty, 0] = \{z : z \neq 0, |\arg z| < \pi\}$
- For $z \in D$, $\log z \in E = \{w : |\text{Im } w| < \pi\}$. Its inverse $z = e^w$ is single valued on *E*, so

$$(\log z)' = \frac{1}{(e^w)'|_{w=\log z}} = \frac{1}{e^{\log z}} = \frac{1}{z}$$

• Thus $\log z$ is analytic on *D* with derivative 1/z.

The other branches $(\log z)_k = \log z + j2k\pi$ are also analytic on *D* with derivative $(\log z)'_k = (\log z + j2k\pi)' = 1/z$.

Power Function

For
$$\alpha \in \mathbb{C}$$
, $z \in \mathbb{C} \setminus \{0\}$, define z^{α} by
 $z^{\alpha} = e^{\alpha \log z}$

Since $\log z$ is multivalued, z^{α} is in general also multivalued. We can define branches of z^{α} by

$$(z^{\alpha})_k = e^{\alpha(\log z)_k}, \quad \text{where } (\log z)_k = \log z + j2k\pi$$

• $(z^{\alpha})_0 = e^{\alpha \log z}$ is called the principal branch of z^{α} . Note $(z^{\alpha})_k = e^{j\alpha 2k\pi}(z^{\alpha})_0$

- Depending on α, different k may yield identical (z^α)_k
 - ▶ If $n \in \mathbb{Z}$, z^n is single valued. Only one branch $(z^n)_k = (z^n)_0$
 - ▶ If $\alpha = m/n \in \mathbb{Q}$, where gcd(m, n) = 1, z^{α} is *n*-valued, i.e. there are *n* branches, $(z^{\alpha})_{k_1} = (z^{\alpha})_{k_2} \iff k_1 k_2 \in n\mathbb{Z}$
 - If α ∈ C \ Q, z^α has infinitely many values. Infinitely many branches: (z^α)_k are all different for different k ∈ Z

Power Function

Example. $1^{\sqrt{2}} = e^{\sqrt{2} \log 1} = e^{j2\sqrt{2}k\pi}, k \in \mathbb{Z}.$ Example. $j^{j} = e^{j \log j} = e^{j(j\frac{\pi}{2} + j2k\pi)} = e^{-(\frac{\pi}{2} + 2k\pi)}, k \in \mathbb{Z}.$

Analyticity of z^{α}

• Since $\log z$ is analytic on $D = \mathbb{C} \setminus (-\infty, 0]$ and \exp is analytic on \mathbb{C} , the chain rule yields

$$(z^{\alpha})'_0 = (e^{\alpha \log z})' = e^{\alpha \log z} \frac{\alpha}{z} = \alpha e^{(\alpha - 1) \log z} = \alpha (z^{\alpha - 1})_0$$

The principal branch $(z^{\alpha})_0$ is analytic on *D*.

• Other branches are also analytic on *D* with $(z^{\alpha})'_{k} = \alpha(z^{\alpha-1})_{k}$.

• Recall
$$(z^{\alpha})_k = e^{j\alpha 2k\pi}(z^{\alpha})_0$$

• $(z^{\alpha})'_k = e^{j\alpha 2k\pi}(z^{\alpha})'_0 = e^{j\alpha 2k\pi}\alpha(z^{\alpha-1})_0 = \alpha(z^{\alpha-1})_k$