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1. Complex Integration



Integration

Recall for f(7) 1) + jv(t) of a real variable ¢,

/f t)dt = / )dt+]/ab v(t)dt

Given a smooth curve v parameterized by z : [a,b] — C, and a
function f continuous on ~, the (contour) integral of f along v is

frows [

Jf(z)dz is independent of reparametrization.

Proof. If 7 : [¢,d] — C is a reparametrization of v obtained from
z by z(7) = z(t(7)), where ¢ = t(7) is continuously differentiable
and 7 (7) > 0, then the change-of-variable formula yields

/ F((0)2 (1)t = / () ()Y (7)dr = / FE)E (r)dr



Integration

The integral along a curve is essentially two line integrals of
the second kind, which depends on the orientation of the
curve,

/f(z)dz = / [u(x(2), y(2)) + jv(x(2), y ()] - [¥' () + ' (1)]dt
= /(udx — vdy) +j/(udy + vdx)

Y v

Let ~ (also v~) be the opposite of v parametrized by
—b —a] — C, where z(t) = z(—1). By a change of variable,

/fdz—/f 02 (0t = [ 1zt /fz

The positive orientation of a Jordan curve is such that when
traveling along it the interior of the curve is always to the left.



Integration

Subdivision of the curve ~

If ~ is divided into a finite number of segments, denoted by
Y=7+7+ -+ % then

[ f(2)dz = / S+ / SRt / Fle)d:

If ~ is piecewise smooth, we simply define the integral along ~
to be the sum of the integrals along each smooth segment.

NB. We only consider piecewise smooth curves in this course.

Linearity in the integrand
Fora,b € C,

/[af(z) +bg(z)ldz=a /f(z)dz + b/g(z)dz



Integration
If |f(z)| < M on ~, then

/f(z)dz‘ < /[f(z)|ds < ML, where ds

Y v
is the infinitesimal arc length, and L, is the length of ~.

Proof. Let z : [a,b] — C be a parametrization of ~.

/f \de| = /v DI 12/ (1)

Recall ds = /[ (1) + |y'(1)|2dt = |/ (¢)|dt, soO

[ o o= | e

Since |[f(z)| < M on ~,

/lf NI 12 (t !dt<M/ |7/ ()|dt = M/a’s—ML.

Hdt| <




Examples

Example. Let z : [a,b] — C be a parameterization of a smooth

curve .
/&—/ b, = 2(b) — 2(a)

[ate= [0 —fm;:%%%éﬂ@

NB. The values of the integrals depend only on the endpoints.

Example. Let C = {z € C: |z — z| = R} be a circle
parameterized by z(t) = zo + Re’', t € [0, 2x]. Forn € Z,

2 Ri it 2T .
/L :/ je dt:jR“”/ Vg = ardin — 1]
c (z2—z0)" o (Re')" 0

NB. The value is independent of z5 and R.




Example

Let v be the boundary of the annulus
{z:1 < [z] <2} in the first quadrant with
positive orientation.

/dz / dx /zdz / ]dy zdz
w127 " - 127

10g2+4/ zdz+log2+/ zdz

"2 M
. 1 1
“ log2 + S —4) +log2+ 5 (1)
=2log2

In (%), we have used the first example on the previous slide.



Example

71 has parameterization z; () = (1 +j)t, t € [0, 1]

1 2o=1+j
/zdz—/ (1 —=)t(1 +j)dt = /thtzl
0 71

€ [0, 1]

v, has parameterization zZ(r .
]t, ref0,1] ol » 1 «x

) =
73 has parameterization z3(r)

/ zdz—/zdz+/ zdz
Y2473 Y2 Y3
:/ tdt+/ (1 — jt)jdr
0 0

i (Sai) =1

The value of the integral depends not only on the endpoints
but also on the path.
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2. Cauchy’s Integral Theorem



Cauchy’s Integral Theorem

Suppose f is analytic in a simply connected domain D and ~ a
piecewise smooth Jordan curve in D. Recall

/7 f(2)dz = A (udx — vdy) + L (udy + vdx)

If u, v are continuously differentiable on D, then Green’s
Theorem and the Cauchy-Riemann equations imply

/7<udx —vdy) = /Q(—Vx — uy)dxdy = 0

/ (udy + vdx) = / (1t — v,)dxdy = 0

o' Q
where (2 is the region bounded by ~

Cauchy'’s Integral Theorem asserts that | f(z)dz = 0 without
explicitly assuming continuous differentiability of « and v.



Cauchy’s Integral Theorem

1110777777777 77

Theorem. If f(z) is analytic in a simply 2727777022227,
connected domain D, and + is a P
piecewise smooth closed (possibly not
simple) curve in D, then

110777777,
777777777,

Theorem. Let D be the interior of a
piecewise smooth Jordan curve ~ and
D = D U v its closure. If f(z) is analytic
on D and continuous on D, then

]{f(z)dz = /Vf(z)dz =0.




Cauchy’s Integral Theorem
Theorem. Let v, 71,72, ..., 7, be n+ 1 positively oriented
piecewise smooth Jordan curves such that
(@) 7,...,7 lie in the interior of ~,
(b) each of ,...,~, lies in the exteriors of the others

Let D be the multiply connected domain with boundary
Y0,715 - - -, Tn- If f(z) is @nalytic on D and continuous on D, then

/f




Example

dz , , .
Compute | ——, where ~ is a piecewise
y2—4a
smooth Jordan curve and a ¢ .

1. - is analyticon C\ {a}
2. If ais in the exterior of v, then

/ dz _ 0
v2—4a
3. If a is in the interior of v, pick a small

enough circle v, centered at a that lies
in the interior of

1 1
/ dz:/ dz =27
v 4d n<—d




Example

Letf(z) =

smooth Jordan curve containing |z| = 1.

1 1 C
1-/f(z)dz—/—dz+/—dz oA
v vz_l v <

2. 0,1 lie in the interior of v

1
3. / dz—]27r /—dz:j27r
v Z
/f )dz = j4m

If a,b ¢ ~, int v and ext v are the interior and exterior of ~,

—1 : .
-—— and v be any piecewise P4
-z

ifa,b €intyora,b € exty

! dz ! ifa €intvy, b € ext
— — = , a € 1nty, ex
p2r ), G-a)z-b)  )® ! !

1
b—a’

| =

|
>

if b €inty, a € exty



Path Independence

Theorem. If f(z) is analytic on a simply connected domain D,
then for any piecewise smooth curve v in D, the integral
fvf(z)dz depends only on the endpoints of .

Proof. Let zo,z; € D and 7,7, two piecewise smooth curves in
D. Then v =, 4+, is a closed curve in D. By Cauchy’s

Theorem,
/W (e + / REIE / f(z) =0

/%f(Z)dzz—/%f(z)dz:/sz(z)dzé/:f(z)dz

If we fix zo and let z; vary, we can define a function

F(z) = / F(O)de

SO



Primitive
Theorem. If f(z) is analytic on a simply connected domain D

and zy € D, then the function F(z) = [ f(¢)d( is analytic on D
and F'(z) = f(2).

NB. As in calculus, a function F satisfying F'(z) = f(z) is called
a primitive of f.

Proof. Fix an arbitrary z € D. When evaluating f” “f(Q)d¢, we
can pick a path zo — z — z+ Az. Then

7+Az z 7+Az
Flz+ A7) — F(z) = / F(O)dC + / F(Q)dC = / F(Q)dC

Since f is analytic, it is also continuous. Given any € > 0, there
isad>0s.t |[f(¢)—f(z)| <ewhen|(—z| <d,and B(z,d) C D.

When |Az| < §, the line segment connecting z and z + Az is
contained in B(z, 9).



Primitive
Proof (cont'd). Note

+Az

f2)Az = f(z)d¢

Thus
F As) — F 1 +Az

(z+ ﬁi @ 4 = A Q- e
and
F(z+ Az) — HAZ
Az |AZ| / =

This shows F'(z) = f(z). Since z is arbitrary, F is analytic on D.



Primitive
If Fi, F, are two primitives of f, then F, — F, = ¢ for some
constant ¢ € C.

Theorem. If f(z) is analytic on a simply connected domain D
and zp € D, and F is a primitive of f, then

/ " f(2)dz = Flzr) — F(zo)
Proof. Since [ f(z)dz is primitive of f.
/?@ﬂ:F@+c

Set z = zo and use Cauchy’s Theorem, 0 = F(zy) + c¢. Thus

/mﬂdﬂszn+c=F&0—F@o



Examples

Jj
Example. Evaluate / Z cos zdz.
0
zcos z is analytic on C, with a primitive F(z) = zsinz + cosz.
j
/ zcoszdz = F(j) — F(0) = jsinj +cosj—1=e¢"' — 1
0
Tlog(z+1)

Example. Evaluate /
Z+

1
|z| = 1 in the first quadrant. log is the principal branch.

dz along the arc of the circle

lglel) is analytic in the first quadrant, with a primitive
F( ): slog?(z +1)

T log(z + 1) , T 3., .mlog2
08T D r— F(j) — F(1) = == — Z1og?2
/l T e=F0)-F) =35 -3 iy




Contents

3. Cauchy’s Integral Formula



Cauchy’s Integral Formula
Theorem. Assume
(@) f(z) is analytic on a domain D
(b) ~ is a positively oriented piecewise
smooth Jordan curve whose interior
lies entirely in D

(€) zo is a point in the interior of v
Then

1 b4
Flao) = — [ L@ 4
27 JyZ2— 20
Example. 1 sin z
— ——dz =sinz =0
]27T lz]=4 < z=0
Example.

/ ( 1 N 2 )dz—/ dz +/ 2dz2—j67r
=4 \Z+1 z-3 =4 2+ 1 =42 — 3



Proof of Cauchy’s Integral Formula
Let Cs be a circle of radius ¢ centered at
20 S-t. B(z0,0) is in the interior of ~. Since
. is analytic in the domain D; bounded
by v and Cs and continuous on Dy, :
Cauchy’s Theorem implies

FCI G

42— 20 cs 220

Since f is analytic, if ¢ is small enough, then for any z € B(zo, 9),

‘M

Z—20

<M 2 2|f'(z0)]

SO

f(Z) _f(Z0>dZ’ < 2w oM

@) gz~ jonf(a0)
-

cs <720
Letting & — 0 yields the desired result.
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