EI331 Signals and Systems Lecture 23

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

May 16, 2019

Contents

1. Complex Integration

2. Cauchy's Integral Theorem

3. Cauchy's Integral Formula

Recall for f(t) = u(t) + jv(t) of a real variable *t*,

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} u(t)dt + j \int_{a}^{b} v(t)dt$$

Given a smooth curve γ parameterized by $z : [a, b] \rightarrow \mathbb{C}$, and a function f continuous on γ , the (contour) integral of f along γ is

$$\int_{\gamma} f(z) dz \triangleq \int_{a}^{b} f(z(t)) z'(t) dt$$

 $\int_{\gamma} f(z) dz$ is independent of reparametrization.

Proof. If $\tilde{z} : [c, d] \to \mathbb{C}$ is a reparametrization of γ obtained from z by $\tilde{z}(\tau) = z(t(\tau))$, where $t = t(\tau)$ is continuously differentiable and $t'(\tau) > 0$, then the change-of-variable formula yields

$$\int_a^b f(z(t))z'(t)dt = \int_c^d f(z(t(\tau)))z'(t(\tau))t'(\tau)d\tau = \int_c^d f(\tilde{z}(\tau))\tilde{z}'(\tau)d\tau$$

The integral along a curve is essentially two line integrals of the second kind, which depends on the orientation of the curve,

$$\int_{\gamma} f(z)dz = \int_{a}^{b} [u(x(t), y(t)) + jv(x(t), y(t))] \cdot [x'(t) + jy'(t)]dt$$
$$= \int_{\gamma} (udx - vdy) + j \int_{\gamma} (udy + vdx)$$

Let $-\gamma$ (also γ^-) be the opposite of γ parametrized by $\tilde{z}: [-b, -a] \to \mathbb{C}$, where $\tilde{z}(t) = z(-t)$. By a change of variable,

$$\int_{-\gamma} f(z)dz = \int_{-b}^{-a} f(\tilde{z}(t))\tilde{z}'(t)dt = \int_{b}^{a} f(z(t))z'(t)dt = -\int_{\gamma} f(z)dz$$

The positive orientation of a Jordan curve is such that when traveling along it the interior of the curve is always to the left.

Subdivision of the curve γ

If γ is divided into a finite number of segments, denoted by $\gamma = \gamma_1 + \gamma_2 + \cdots + \gamma_n$, then

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz + \dots + \int_{\gamma_n} f(z)dz$$

If γ is piecewise smooth, we simply define the integral along γ to be the sum of the integrals along each smooth segment.

NB. We only consider piecewise smooth curves in this course.

Linearity in the integrand

For $a, b \in \mathbb{C}$,

$$\int_{\gamma} [af(z) + bg(z)]dz = a \int_{\gamma} f(z)dz + b \int_{\gamma} g(z)dz$$

If
$$|f(z)| \le M$$
 on γ , then $\left| \int_{\gamma} f(z) dz \right| \le \int_{\gamma} |f(z)| ds \le ML_{\gamma}$, where ds is the infinitesimal arc length, and L_{γ} is the length of γ .

Proof. Let $z : [a, b] \to \mathbb{C}$ be a parametrization of γ .

$$\left| \int_{\gamma} f(z) dz \right| = \left| \int_{a}^{b} f(z(t)) z'(t) dt \right| \le \int_{a}^{b} |f(z(t))| \cdot |z'(t)| dt$$

Recall
$$ds = \sqrt{|x'(t)|^2 + |y'(t)|^2} dt = |z'(t)| dt$$
, so
 $\int_a^b |f(z(t))| \cdot |z'(t)| dt = \int_\gamma |f(z)| ds.$

Since $|f(z)| \leq M$ on γ ,

$$\int_a^b |f(z(t))| \cdot |z'(t)| dt \le M \int_a^b |z'(t)| dt = M \int_\gamma ds = ML_\gamma.$$

Examples

Example. Let $z : [a, b] \to \mathbb{C}$ be a parameterization of a smooth curve γ .

$$\int_{\gamma} dz = \int_{a}^{b} z'(t)dt = z(t)|_{t=a}^{b} = z(b) - z(a)$$
$$\int_{\gamma} zdz = \int_{a}^{b} z(t)z'(t)dt = \frac{1}{2}z^{2}(t)\Big|_{t=a}^{b} = \frac{1}{2}z^{2}(b) - \frac{1}{2}z^{2}(a)$$

NB. The values of the integrals depend only on the endpoints.

Example. Let $C = \{z \in \mathbb{C} : |z - z_0| = R\}$ be a circle parameterized by $z(t) = z_0 + Re^{jt}$, $t \in [0, 2\pi]$. For $n \in \mathbb{Z}$,

$$\int_C \frac{dz}{(z-z_0)^n} = \int_0^{2\pi} \frac{Rje^{jt}}{(Re^{jt})^n} dt = jR^{1-n} \int_0^{2\pi} e^{j(n-1)t} dt = j2\pi\delta[n-1]$$

NB. The value is independent of z_0 and R.

Example

Let γ be the boundary of the annulus $\{z : 1 \le |z| \le 2\}$ in the first quadrant with positive orientation.

$$\int_{\gamma} \frac{dz}{\bar{z}} = \int_{1}^{2} \frac{dx}{x} + \int_{\gamma_{2}} \frac{zdz}{|z|^{2}} + \int_{2}^{1} \frac{jdy}{-jy} + \int_{\gamma_{1}} \frac{zdz}{|z|^{2}}$$
$$= \log 2 + \frac{1}{4} \int_{\gamma_{2}} zdz + \log 2 + \int_{\gamma_{1}} zdz$$
$$\stackrel{(*)}{=} \log 2 + \frac{1}{8}(4j^{2} - 4) + \log 2 + \frac{1}{2}(1 - j^{2})$$
$$= 2\log 2$$

In (*), we have used the first example on the previous slide.

Example

 γ_1 has parameterization $z_1(t) = (1+j)t$, $t \in [0,1]$

$$\int_{\gamma_1} \bar{z} dz = \int_0^1 (1-j)t(1+j)dt = \int_0^1 2t dt = 1$$

 γ_2 has parameterization $z_2(t) = t$, $t \in [0, 1]$ γ_3 has parameterization $z_3(t) = 1 + jt$, $t \in [0, 1]$

$$\int_{\gamma_2+\gamma_3} \bar{z}dz = \int_{\gamma_2} \bar{z}dz + \int_{\gamma_3} \bar{z}dz$$
$$= \int_0^1 tdt + \int_0^1 (1-jt)jdt$$
$$= \frac{1}{2} + \left(\frac{1}{2}+j\right) = 1+j$$

Contents

1. Complex Integration

2. Cauchy's Integral Theorem

3. Cauchy's Integral Formula

Cauchy's Integral Theorem

Suppose *f* is analytic in a simply connected domain *D* and γ a piecewise smooth Jordan curve in *D*. Recall

$$\int_{\gamma} f(z)dz = \int_{\gamma} (udx - vdy) + j \int_{\gamma} (udy + vdx)$$

If *u*, *v* are continuously differentiable on *D*, then Green's Theorem and the Cauchy-Riemann equations imply

$$\int_{\gamma} (udx - vdy) = \int_{\Omega} (-v_x - u_y) dx dy = 0$$
$$\int_{\gamma} (udy + vdx) = \int_{\Omega} (u_x - v_y) dx dy = 0$$

where Ω is the region bounded by γ

Cauchy's Integral Theorem asserts that $\int_{\gamma} f(z) dz = 0$ without explicitly assuming continuous differentiability of *u* and *v*.

Cauchy's Integral Theorem

Theorem. If f(z) is analytic in a **simply** connected domain *D*, and γ is a piecewise smooth closed (possibly not simple) curve in *D*, then

$$\oint_{\gamma} f(z) dz = \int_{\gamma} f(z) dz = 0.$$

Theorem. Let *D* be the interior of a piecewise smooth Jordan curve γ and $\overline{D} = D \cup \gamma$ its closure. If f(z) is analytic on *D* and continuous on \overline{D} , then

$$\oint_{\gamma} f(z) dz = \int_{\gamma} f(z) dz = 0.$$

Cauchy's Integral Theorem

Theorem. Let $\gamma_0, \gamma_1, \gamma_2, \ldots, \gamma_n$ be n + 1 positively oriented piecewise smooth Jordan curves such that

(a) $\gamma_1, \ldots, \gamma_n$ lie in the interior of γ_0

(b) each of $\gamma_1, \ldots, \gamma_n$ lies in the exteriors of the others Let *D* be the multiply connected domain with boundary $\gamma_0, \gamma_1, \ldots, \gamma_n$. If f(z) is analytic on *D* and continuous on \overline{D} , then

$$\int_{\gamma} f(z)dz = \int_{\gamma_1} f(z)dz + \int_{\gamma_2} f(z)dz + \dots + \int_{\gamma_n} f(z)dz$$

Example

Compute $\int_{\gamma} \frac{dz}{z-a}$, where γ is a piecewise smooth Jordan curve and $a \notin \gamma$.

1. $\frac{1}{z-a}$ is analytic on $\mathbb{C} \setminus \{a\}$

2. If *a* is in the exterior of γ , then

$$\int_{\gamma} \frac{dz}{z-a} = 0$$

3. If *a* is in the interior of γ , pick a small enough circle γ_1 centered at *a* that lies in the interior of γ

$$\int_{\gamma} \frac{1}{z-a} dz = \int_{\gamma_1} \frac{1}{z-a} dz = j2\pi$$

Example

Let $f(z) = \frac{2z-1}{z^2-z}$ and γ be any piecewise smooth Jordan curve containing |z| = 1. 1. $\int_{z} f(z)dz = \int_{z} \frac{1}{z-1}dz + \int_{z} \frac{1}{z}dz$ **2.** 0, 1 lie in the interior of γ 3. $\int \frac{1}{z-1} dz = j2\pi$, $\int \frac{1}{z} dz = j2\pi$ 4. $\int f(z)dz = j4\pi$

 γ $C_0 C_1$ x

If $a, b \notin \gamma$, int γ and ext γ are the interior and exterior of γ ,

$$\frac{1}{j2\pi} \int_{\gamma} \frac{dz}{(z-a)(z-b)} = \begin{cases} 0, & \text{if } a, b \in \operatorname{int} \gamma \text{ or } a, b \in \operatorname{ext} \gamma \\ \frac{1}{a-b}, & \text{if } a \in \operatorname{int} \gamma, b \in \operatorname{ext} \gamma \\ \frac{1}{b-a}, & \text{if } b \in \operatorname{int} \gamma, a \in \operatorname{ext} \gamma \end{cases}$$

Path Independence

Theorem. If f(z) is analytic on a simply connected domain D, then for any piecewise smooth curve γ in D, the integral $\int_{\gamma} f(z) dz$ depends only on the endpoints of γ .

Proof. Let $z_0, z_1 \in D$ and γ_1, γ_2 two piecewise smooth curves in D. Then $\gamma = \gamma_1 + \gamma_2^-$ is a closed curve in D. By Cauchy's Theorem,

$$\int_{\gamma_1} f(z)dz + \int_{\gamma_2^-} f(z)dz = \int_{\gamma} f(z) = 0$$

SO

$$\int_{\gamma_1} f(z)dz = -\int_{\gamma_2^-} f(z)dz = \int_{\gamma_2} f(z)dz \triangleq \int_{z_0}^{z_1} f(z)dz$$

If we fix z_0 and let z_1 vary, we can define a function

$$F(z) = \int_{z_0}^{z} f(\zeta) d\zeta$$

Primitive

Theorem. If f(z) is analytic on a simply connected domain D and $z_0 \in D$, then the function $F(z) = \int_{z_0}^z f(\zeta) d\zeta$ is analytic on D and F'(z) = f(z).

NB. As in calculus, a function *F* satisfying F'(z) = f(z) is called a primitive of *f*.

Proof. Fix an arbitrary $z \in D$. When evaluating $\int_{z_0}^{z+\Delta z} f(\zeta) d\zeta$, we can pick a path $z_0 \to z \to z + \Delta z$. Then

$$F(z + \Delta z) - F(z) = \int_{z_0}^{z + \Delta z} f(\zeta) d\zeta + \int_{z_0}^{z} f(\zeta) d\zeta = \int_{z}^{z + \Delta z} f(\zeta) d\zeta$$

Since *f* is analytic, it is also continuous. Given any $\epsilon > 0$, there is a $\delta > 0$ s.t. $|f(\zeta) - f(z)| < \epsilon$ when $|\zeta - z| < \delta$, and $B(z, \delta) \subset D$. When $|\Delta z| < \delta$, the line segment connecting *z* and $z + \Delta z$ is contained in $B(z, \delta)$.

Primitive

Proof (cont'd). Note

$$f(z)\Delta z = \int_{z}^{z+\Delta z} f(z)d\zeta$$

Thus

$$\frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) = \frac{1}{\Delta z} \int_{z}^{z + \Delta z} [f(\zeta) - f(z)] d\zeta$$

and

$$\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right| \leq \frac{1}{|\Delta z|} \int_{z}^{z+\Delta z} |f(\zeta)-f(z)| ds \leq \epsilon$$

This shows F'(z) = f(z). Since z is arbitrary, F is analytic on D.

Primitive

If F_1, F_2 are two primitives of f, then $F_1 - F_2 = c$ for some constant $c \in \mathbb{C}$.

Theorem. If f(z) is analytic on a simply connected domain D and $z_0 \in D$, and F is a primitive of f, then

$$\int_{z_0}^{z_1} f(z) dz = F(z_1) - F(z_0)$$

Proof. Since $\int_{z_0}^{z} f(z) dz$ is primitive of *f*.

$$\int_{z_0}^z f(z)dz = F(z) + c$$

Set $z = z_0$ and use Cauchy's Theorem, $0 = F(z_0) + c$. Thus

$$\int_{z_0}^{z_1} f(z) dz = F(z_1) + c = F(z_1) - F(z_0)$$

Examples

Example. Evaluate
$$\int_0^j z \cos z dz$$
.

 $z \cos z$ is analytic on \mathbb{C} , with a primitive $F(z) = z \sin z + \cos z$.

$$\int_0^j z \cos z dz = F(j) - F(0) = j \sin j + \cos j - 1 = e^{-1} - 1$$

Example. Evaluate $\int_{1}^{j} \frac{\log(z+1)}{z+1} dz$ along the arc of the circle |z| = 1 in the first quadrant. log is the principal branch.

 $\frac{\log(z+1)}{z+1}$ is analytic in the first quadrant, with a primitive $F(z)=\frac{1}{2}\log^2(z+1)$

$$\int_{1}^{j} \frac{\log(z+1)}{z+1} dz = F(j) - F(1) = -\frac{\pi^{2}}{32} - \frac{3}{8} \log^{2} 2 + j\frac{\pi \log 2}{8}$$

Contents

1. Complex Integration

2. Cauchy's Integral Theorem

3. Cauchy's Integral Formula

Cauchy's Integral Formula

Theorem. Assume

- (a) f(z) is analytic on a domain D
- (b) γ is a positively oriented piecewise smooth Jordan curve whose interior lies entirely in *D*

(c) z_0 is a point in the interior of γ

Then

$$f(z_0) = \frac{1}{j2\pi} \int_{\gamma} \frac{f(z)}{z - z_0} dz$$

Example.
$$\frac{1}{j2\pi} \int_{|z|=4} \frac{\sin z}{z} dz = \sin z \Big|_{z=0} =$$

Example.

$$\int_{|z|=4} \left(\frac{1}{z+1} + \frac{2}{z-3}\right) dz = \int_{|z|=4} \frac{dz}{z+1} + \int_{|z|=4} \frac{2dz}{z-3} 2 = j6\pi$$

0

Proof of Cauchy's Integral Formula

Let C_{δ} be a circle of radius δ centered at z_0 s.t. $\bar{B}(z_0, \delta)$ is in the interior of γ . Since $\frac{f(z)}{z-z_0}$ is analytic in the domain D_1 bounded by γ and C_{δ} and continuous on \bar{D}_1 , Cauchy's Theorem implies

$$\int_{\gamma} \frac{f(z)}{z - z_0} dz = \int_{C_{\delta}} \frac{f(z)}{z - z_0} dz$$

Since *f* is analytic, if δ is small enough, then for any $z \in B(z_0, \delta)$,

$$\left|\frac{f(z) - f(z_0)}{z - z_0}\right| \le M \triangleq 2|f'(z_0)|$$

SO

$$\left| \int_{\gamma} \frac{f(z)}{z - z_0} dz - j2\pi f(z_0) \right| = \left| \int_{C_{\delta}} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le 2\pi \delta M$$

Letting $\delta \rightarrow 0$ yields the desired result.