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Integration

Recall for f (t) = u(t) + jv(t) of a real variable t,∫ b

a
f (t)dt =

∫ b

a
u(t)dt + j

∫ b

a
v(t)dt

Given a smooth curve γ parameterized by z : [a, b]→ C, and a
function f continuous on γ, the (contour) integral of f along γ is∫

γ

f (z)dz ,
∫ b

a
f (z(t))z′(t)dt∫

γ
f (z)dz is independent of reparametrization.

Proof. If z̃ : [c, d]→ C is a reparametrization of γ obtained from
z by z̃(τ) = z(t(τ)), where t = t(τ) is continuously differentiable
and t′(τ) > 0, then the change-of-variable formula yields∫ b

a
f (z(t))z′(t)dt =

∫ d

c
f (z(t(τ)))z′(t(τ))t′(τ)dτ =

∫ d

c
f (z̃(τ))z̃′(τ)dτ
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Integration

The integral along a curve is essentially two line integrals of
the second kind, which depends on the orientation of the
curve,∫

γ

f (z)dz =

∫ b

a
[u(x(t), y(t)) + jv(x(t), y(t))] · [x′(t) + jy′(t)]dt

=

∫
γ

(udx− vdy) + j
∫
γ

(udy + vdx)

Let −γ (also γ−) be the opposite of γ parametrized by
z̃ : [−b,−a]→ C, where z̃(t) = z(−t). By a change of variable,∫
−γ

f (z)dz =

∫ −a

−b
f (z̃(t))z̃′(t)dt =

∫ a

b
f (z(t))z′(t)dt = −

∫
γ

f (z)dz

The positive orientation of a Jordan curve is such that when
traveling along it the interior of the curve is always to the left.
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Integration

Subdivision of the curve γ

If γ is divided into a finite number of segments, denoted by
γ = γ1 + γ2 + · · ·+ γn, then∫

γ

f (z)dz =

∫
γ1

f (z)dz +

∫
γ2

f (z)dz + · · ·+
∫
γn

f (z)dz

If γ is piecewise smooth, we simply define the integral along γ
to be the sum of the integrals along each smooth segment.

NB. We only consider piecewise smooth curves in this course.

Linearity in the integrand

For a, b ∈ C,∫
γ

[af (z) + bg(z)]dz = a
∫
γ

f (z)dz + b
∫
γ

g(z)dz
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Integration

If |f (z)| ≤ M on γ, then
∣∣∣∣∫

γ

f (z)dz
∣∣∣∣ ≤ ∫

γ

|f (z)|ds ≤ MLγ, where ds

is the infinitesimal arc length, and Lγ is the length of γ.

Proof. Let z : [a, b]→ C be a parametrization of γ.∣∣∣∣∫
γ

f (z)dz
∣∣∣∣ =

∣∣∣∣∫ b

a
f (z(t))z′(t)dt

∣∣∣∣ ≤ ∫ b

a
|f (z(t))| · |z′(t)|dt

Recall ds =
√
|x′(t)|2 + |y′(t)|2dt = |z′(t)|dt, so∫ b

a
|f (z(t))| · |z′(t)|dt =

∫
γ

|f (z)|ds.

Since |f (z)| ≤ M on γ,∫ b

a
|f (z(t))| · |z′(t)|dt ≤ M

∫ b

a
|z′(t)|dt = M

∫
γ

ds = MLγ.



6/22

Examples

Example. Let z : [a, b]→ C be a parameterization of a smooth
curve γ. ∫

γ

dz =

∫ b

a
z′(t)dt = z(t)|bt=a = z(b)− z(a)

∫
γ

zdz =

∫ b

a
z(t)z′(t)dt =

1
2

z2(t)
∣∣∣b

t=a
=

1
2

z2(b)− 1
2

z2(a)

NB. The values of the integrals depend only on the endpoints.

Example. Let C = {z ∈ C : |z− z0| = R} be a circle
parameterized by z(t) = z0 + Rejt, t ∈ [0, 2π]. For n ∈ Z,∫

C

dz
(z− z0)n =

∫ 2π

0

Rjejt

(Rejt)n dt = jR1−n
∫ 2π

0
ej(n−1)tdt = j2πδ[n− 1]

NB. The value is independent of z0 and R.
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Example

x

y

O 1 2

2j

j

γ2

γ1

Let γ be the boundary of the annulus
{z : 1 ≤ |z| ≤ 2} in the first quadrant with
positive orientation.

∫
γ

dz
z̄

=

∫ 2

1

dx
x

+

∫
γ2

zdz
|z|2

+

∫ 1

2

jdy
−jy

+

∫
γ1

zdz
|z|2

= log 2 +
1
4

∫
γ2

zdz + log 2 +

∫
γ1

zdz

(∗)
= log 2 +

1
8

(4j2 − 4) + log 2 +
1
2

(1− j2)

= 2 log 2

In (∗), we have used the first example on the previous slide.
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Example

x

y

O

z0 = 1 + j

1

γ1

γ2

γ3

γ1 has parameterization z1(t) = (1 + j)t, t ∈ [0, 1]∫
γ1

z̄dz =

∫ 1

0
(1− j)t(1 + j)dt =

∫ 1

0
2tdt = 1

γ2 has parameterization z2(t) = t, t ∈ [0, 1]
γ3 has parameterization z3(t) = 1 + jt, t ∈ [0, 1]∫

γ2+γ3

z̄dz =

∫
γ2

z̄dz +

∫
γ3

z̄dz

=

∫ 1

0
tdt +

∫ 1

0
(1− jt)jdt

=
1
2

+

(
1
2

+ j
)

= 1 + j

The value of the integral depends not only on the endpoints
but also on the path.
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Cauchy’s Integral Theorem

Suppose f is analytic in a simply connected domain D and γ a
piecewise smooth Jordan curve in D. Recall∫

γ

f (z)dz =

∫
γ

(udx− vdy) + j
∫
γ

(udy + vdx)

If u, v are continuously differentiable on D, then Green’s
Theorem and the Cauchy-Riemann equations imply∫

γ

(udx− vdy) =

∫
Ω

(−vx − uy)dxdy = 0∫
γ

(udy + vdx) =

∫
Ω

(ux − vy)dxdy = 0

where Ω is the region bounded by γ

Cauchy’s Integral Theorem asserts that
∫
γ

f (z)dz = 0 without
explicitly assuming continuous differentiability of u and v.
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Cauchy’s Integral Theorem

D

γ

Theorem. If f (z) is analytic in a simply
connected domain D, and γ is a
piecewise smooth closed (possibly not
simple) curve in D, then∮

γ

f (z)dz =

∫
γ

f (z)dz = 0.

D

γ = ∂D

Theorem. Let D be the interior of a
piecewise smooth Jordan curve γ and
D̄ = D ∪ γ its closure. If f (z) is analytic
on D and continuous on D̄, then∮

γ

f (z)dz =

∫
γ

f (z)dz = 0.
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Cauchy’s Integral Theorem

−γ2−γ1

D

γ

Theorem. Let γ0, γ1, γ2, . . . , γn be n + 1 positively oriented
piecewise smooth Jordan curves such that
(a) γ1, . . . , γn lie in the interior of γ0

(b) each of γ1, . . . , γn lies in the exteriors of the others
Let D be the multiply connected domain with boundary
γ0, γ1, . . . , γn. If f (z) is analytic on D and continuous on D̄, then∫

γ

f (z)dz =

∫
γ1

f (z)dz +

∫
γ2

f (z)dz + · · ·+
∫
γn

f (z)dz
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Example

a
γ

a

γ1

γ

Compute
∫
γ

dz
z− a

, where γ is a piecewise

smooth Jordan curve and a /∈ γ.

1. 1
z−a is analytic on C \ {a}

2. If a is in the exterior of γ, then∫
γ

dz
z− a

= 0

3. If a is in the interior of γ, pick a small
enough circle γ1 centered at a that lies
in the interior of γ∫

γ

1
z− a

dz =

∫
γ1

1
z− a

dz = j2π
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Example

x

y

C0 C1

γ
Let f (z) =

2z− 1
z2 − z

and γ be any piecewise

smooth Jordan curve containing |z| = 1.

1.
∫
γ

f (z)dz =

∫
γ

1
z− 1

dz +

∫
γ

1
z

dz

2. 0, 1 lie in the interior of γ

3.
∫
γ

1
z− 1

dz = j2π,
∫
γ

1
z

dz = j2π

4.
∫
γ

f (z)dz = j4π

If a, b /∈ γ, int γ and ext γ are the interior and exterior of γ,

1
j2π

∫
γ

dz
(z− a)(z− b)

=


0, if a, b ∈ int γ or a, b ∈ ext γ

1
a−b , if a ∈ int γ, b ∈ ext γ

1
b−a , if b ∈ int γ, a ∈ ext γ
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Path Independence

Theorem. If f (z) is analytic on a simply connected domain D,
then for any piecewise smooth curve γ in D, the integral∫
γ

f (z)dz depends only on the endpoints of γ.

Proof. Let z0, z1 ∈ D and γ1, γ2 two piecewise smooth curves in
D. Then γ = γ1 + γ−2 is a closed curve in D. By Cauchy’s
Theorem, ∫

γ1

f (z)dz +

∫
γ−

2

f (z)dz =

∫
γ

f (z) = 0

so ∫
γ1

f (z)dz = −
∫
γ−

2

f (z)dz =

∫
γ2

f (z)dz ,
∫ z1

z0

f (z)dz

If we fix z0 and let z1 vary, we can define a function

F(z) =

∫ z

z0

f (ζ)dζ
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Primitive

Theorem. If f (z) is analytic on a simply connected domain D
and z0 ∈ D, then the function F(z) =

∫ z
z0

f (ζ)dζ is analytic on D
and F′(z) = f (z).

NB. As in calculus, a function F satisfying F′(z) = f (z) is called
a primitive of f .

Proof. Fix an arbitrary z ∈ D. When evaluating
∫ z+∆z

z0
f (ζ)dζ, we

can pick a path z0 → z→ z + ∆z. Then

F(z + ∆z)− F(z) =

∫ z+∆z

z0

f (ζ)dζ +

∫ z

z0

f (ζ)dζ =

∫ z+∆z

z
f (ζ)dζ

Since f is analytic, it is also continuous. Given any ε > 0, there
is a δ > 0 s.t. |f (ζ)− f (z)| < ε when |ζ − z| < δ, and B(z, δ) ⊂ D.

When |∆z| < δ, the line segment connecting z and z + ∆z is
contained in B(z, δ).
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Primitive

Proof (cont’d). Note

f (z)∆z =

∫ z+∆z

z
f (z)dζ

Thus

F(z + ∆z)− F(z)
∆z

− f (z) =
1

∆z

∫ z+∆z

z
[f (ζ)− f (z)]dζ

and∣∣∣∣F(z + ∆z)− F(z)
∆z

− f (z)
∣∣∣∣ ≤ 1
|∆z|

∫ z+∆z

z
|f (ζ)− f (z)|ds ≤ ε

This shows F′(z) = f (z). Since z is arbitrary, F is analytic on D.
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Primitive

If F1,F2 are two primitives of f , then F1 − F2 = c for some
constant c ∈ C.

Theorem. If f (z) is analytic on a simply connected domain D
and z0 ∈ D, and F is a primitive of f , then∫ z1

z0

f (z)dz = F(z1)− F(z0)

Proof. Since
∫ z

z0
f (z)dz is primitive of f .∫ z

z0

f (z)dz = F(z) + c

Set z = z0 and use Cauchy’s Theorem, 0 = F(z0) + c. Thus∫ z1

z0

f (z)dz = F(z1) + c = F(z1)− F(z0)
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Examples

Example. Evaluate
∫ j

0
z cos zdz.

z cos z is analytic on C, with a primitive F(z) = z sin z + cos z.∫ j

0
z cos zdz = F(j)− F(0) = j sin j + cos j− 1 = e−1 − 1

Example. Evaluate
∫ j

1

log(z + 1)

z + 1
dz along the arc of the circle

|z| = 1 in the first quadrant. log is the principal branch.

log(z+1)
z+1 is analytic in the first quadrant, with a primitive

F(z) = 1
2 log2(z + 1)∫ j

1

log(z + 1)

z + 1
dz = F(j)− F(1) = −π

2

32
− 3

8
log2 2 + j

π log 2
8
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Cauchy’s Integral Formula

z0

D

γ

Theorem. Assume
(a) f (z) is analytic on a domain D
(b) γ is a positively oriented piecewise

smooth Jordan curve whose interior
lies entirely in D

(c) z0 is a point in the interior of γ
Then

f (z0) =
1

j2π

∫
γ

f (z)
z− z0

dz

Example. 1
j2π

∫
|z|=4

sin z
z

dz = sin z
∣∣∣

z=0
= 0

Example.∫
|z|=4

(
1

z + 1
+

2
z− 3

)
dz =

∫
|z|=4

dz
z + 1

+

∫
|z|=4

2dz
z− 3

2 = j6π
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Proof of Cauchy’s Integral Formula

z0

D

γ

Cδ

Let Cδ be a circle of radius δ centered at
z0 s.t. B̄(z0, δ) is in the interior of γ. Since
f (z)
z−z0

is analytic in the domain D1 bounded
by γ and Cδ and continuous on D̄1,
Cauchy’s Theorem implies∫

γ

f (z)
z− z0

dz =

∫
Cδ

f (z)
z− z0

dz

Since f is analytic, if δ is small enough, then for any z ∈ B(z0, δ),∣∣∣∣ f (z)− f (z0)

z− z0

∣∣∣∣ ≤ M , 2|f ′(z0)|

so ∣∣∣∣∫
γ

f (z)
z− z0

dz− j2πf (z0)

∣∣∣∣ =

∣∣∣∣∫
Cδ

f (z)− f (z0)

z− z0
dz
∣∣∣∣ ≤ 2πδM

Letting δ → 0 yields the desired result.
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