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1. Cauchy’s Integral Formula for Derivatives



Derivatives of Cauchy-type Integral
Theorem. Assume
(a) v is a piecewise smooth simple (or Jordan) curve
(b) fis continuous on ~
Then the function defined by the following Cauchy-type integral

ro 2o [T ces

is analytic on C \ ~. Moreover, it is infinitely differentiable and
all its derivatives are analytic on C \ ~ with

|
F(n)(z):j;l_%/w(ci(gn—%ldg’ n=1,2,...

NB. The formula for F* can be obtained by differentiation
under the integral sign.



Derivatives of Cauchy-type Integral

Proof. If v is a simple curve, then C\ v is a domain. If v is a
Jordan curve, then C \ ~ is the union of two domains by the
Jordan Curve Theorem.

(1). We first show F(z) is continuous on C \ 7.
e For zy € C\ v, there exists an open disk B(zy,d) C C\ 7,
SO |¢ —z0| > d for ( € .
e Letz € B(zy,0/2). The triangle inequality yields
2= (> Jz0 = (| — [z — 20| > 6/2 for € € 1.
¢ By the definition of F,
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Derivatives of Cauchy-type Integral
Proof (cont'd). (2). Next we show
/ 1 f(¢)
= — d Vze C\~.
F'(z) j27r/y(c—z)2 ¢, VzeC\~y
e By (%) of the previous slide,

F(z) — F(z0) _L/ f(Q)
(¢

Z— 20 - 2n - —2)(¢ — 20)

d¢ = G(2),

L

where g(¢) £ £ and

:sz/c—z

e gis continuous on 7. By (1), G is continuous on C \ v, so
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Derivatives of Cauchy-type Integral

Proof (cont'd). (3). Finally we show the formula for higher order
derivatives by induction.

e Assume the formula holds for 1 <k <n,n > 1,

!
FO() :jlzc—%/v%d@ (t)

e Forz, € C\ v, and g, G defined on the previous slide,

F(z) = n! /(C—Zo)g(é)dC
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e (€= Z)"dC +j27r/7 (¢ — z)m+! d¢

e Since g is continuous on =, (1) holds with f replaced by g,

F(2) = nG" ™V (2) + (z — 20) G (2)



Derivatives of Cauchy-type Integral
Proof (cont'd).

e Asin (1), let B(zy,6) € C\ 7. G™ is bounded on B(z, §/2)

o < [ 18Q [ (O
0@ < - [ o el < i [ i

e G"(z) is differentiable and hence continuous

lim F)(2) = lim(nG"(2) + (2~ )G (2)] = )z

220 =20
so F" is continuous. Similarly, G™ is continuous
* Letz— z,
FM(7) — F) GV (7) — g1
(z) (20) _ (z) () | G )
<—20 <—20

N (n + 1)G(”)(zo) — F(”“)(zo)



Integral Formula for Derivatives of Analytic Functions

Theorem. If f is analytic on a domain D,
then its derivative f’ is also analytic on D,

and
YR f(Q)
f (Z> —]27T /y (C _Z)n-i-ldC;

where ~ is a positively oriented piecewise smooth Jordan curve
encircling z whose interior lies entirely in D.

Proof. By Cauchy’s Integral Formula

f(z) :ﬂiﬂ/vg(—@zdz

Since f is analytic on D, it is continuous on ~. By the previous
theorem, f’ is analytic and the derivatives of f are as given.




Example
Let v = {z: |z| = 2} be positively oriented and r > 1.

Let Cy, C, be positively oriented circles centered at j

and —; that lie in the interior of . By Cauchy’s DO\
Theorem, ‘h
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Morera’s Theorem

Theorem. If f is continuous on a domain D and fwf(z)dz =0 for
any piecewise smooth Jordan curve ~ in D whose interior also
lies in D, then f is analytic on D.

Proof. Fix zo € D and an open disk B(zy,d) C D. It suffices to
show f is analytic on B(z, ).

1. Because f7 f(z)dz = 0 for any piecewise Jordan curves, the

integral [~ f(z)dz is independent of the path in B(z, d) that
connects zp and z. Define

F(z) = /Zf(z)dz, z € B(z0,9).

2. Since f is continuous, the proof on slides 16-17 of Lecture
23 shows F'(z) = f(z), so F is analytic on B(z, ).

3. Thus f = F' is also analytic on B(z, 9).



Cauchy’s Inequality

Theorem. If f is analytic on the open disk B(z, R), and
f(z)] < M on B(z, R), then
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lf(”) (ZO)| S o
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Proof. Let v be the circle |z — zy| = r with r € (0,R). Then

f(")(zo) _ ”_'/ f(Q)

———d
]27T o (C - ZO)’H_1
Thus
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Letting r — R,
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Liouville’s Theorem

A functions that is analytic on C is called an entire function.
Theorem. If f is entire and bounded, then it is constant.

Proof.
1. Since f is bounded, there exists an M s.t. |f(z)| < M, Vz € C.

2. For any zp € C and R > 0, Cauchy’s inequality on B(zy, R)
yields

[ (z0)] <

M
R

3. Letting R — o0,
f(20) =0

4. Since z is arbitrary, f'(z) = 0 on C, so f is constant.



Fundamental Theorem of Algebra

Theorem. A polynomial P of degree n > 1, i.e.
P(z)=ay+aiz+---+a, ", a,#0
has exactly » roots in C.

Proof Sketch. First show P has at least one root.

1. If P does not have a root, then Q(z) = 1/P(z) is entire

2. As |z] = 00, Q(z) — 0,50 IR > 0 s.t. |Q(z)] < 1for|z] >R

3. Being continuous, Q is bounded on |z| < R and hence on C
4. By Liouville’s Theorem, Q is constant. So P is also constant,
contradiction.

Let zo be a root of P. Factor P(z) = (z — z0)P:1(z), where P, has
degree n— 1. We can repeat this process until P, has degree 0.
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2. Harmonic Functions



Harmonic Functions

A real function ¢(x,y) of two real variables is called a harmonic
function on a domain D if it satisfies the Laplace equation on D,

¢? 8;452:

a2 gy 0

Theorem. If f(z) = u(x,y) + jv(x,y) is analytic on a domain D,
then u and v are harmonic functions on D.

Proof. Since f is analytic, the Cauchy-Riemann equations hold
Uy =Vy, Uy = —Vy
Since f’ is analytic, u and v are continuously differentiable, so
Uy = Vyx = Vyy = —Uyy

S0 iy, + 1y, = 0. Similarly, v,, + vy, = 0.



Harmonic Conjugate
If f = u+ jvis analytic, v is called a harmonic conjugate of u.

Theorem. A harmonic function on a simply connected domain
has a harmonic conjugate.

Example. u(x,y) = y*> — 3x?y is harmonic on C. For its conjugate,
1. By the Cauchy-Riemann equations
Ve = —Uy = —3y% + 3%, vy = Uy = —0bxy

2. Integrate w.r.t. y,
v(x,y) = / vydy = / (—6xy)dy = —3xy* + g(x)
3. Differentiate w.r.t. x,
ve= =3y +g'(x) = =3y* + 3¢ = g(x) = /3x2dx =x +c

4. v(x,y) = -3+ +¢



Mean-value Property
Theorem. If f(z) is analytic on an open disk B(zy, R), then

1 2 .
f(z0) = —/ flzo+re)dt, 0<r<R.
27T 0

i.e. the mean value of an analytic function on a circle is equal to
the value at the center.

Proof. Use Cauchy’s Integral Formula and the parameterization
z(t) = ré', 1 € )0, 27].

Theorem. If u(x,y) is harmonic on an open disk B(z, R), then

1

u(zo) = .

27
/ u(zo + re')dt
0

Proof. Use the previous theorem and the fact that u is the real
part of an analytic function.
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3. Power Series



Series of Functions

Recall a numerical series ) _z, converges to s if the sequence

n=1
k

of its partial sums s, = Zz,, converges to s.

n=1
Given a sequence of functions f,(z), n = 1,2, ... defined on a

set 2 C C, the infinite series an(z) converges to s(z) on €, if

n=1

its partial sum s;(z an z) converges s(z) at every z € Q, i.e.

lim |s(z) — s(z)| =0, VzeQ.
k—o00

The function s(z) is called the sum of the series.



Power Series
If £.(z) = ca(z — 20)", the infinite series an(z) = Z cn(z —20)" I8
n=1

n=1

called a power series.

By a change of variable, we can focus on the case z, = 0.

Theorem (Abel). If the series Z c,Z" converges at zy # 0, then it

n=1
converges absolutely on the open disk |z| < |z|. If the series
diverges at z, then it diverges for |z| > |z

Proof. If the series converges at z,, then ¢,z — 0 as n — oo, SO
it is bounded, i.e. |c,zi| < M for some M > 0. For |z] < |z|, let

g = |z|/|z0| < 1. Then |c,2"| = |c.zjlq" < Mq". Since ), Mq"
converges, so does ) [c,z"|.

If the series diverges at z, then it diverges for |z| > |z|;
otherwise, it would contradict what has just been proven.



Power Series

Theorem. Y~ ¢,z" has a radius of convergence R s.t. the
series converges for |z| < R and diverges for |z| > R. Moreover,

1
= (lim sup v/ |cn|)

n—oo

NB. If R = 0, the series diverges for every z # 0. If R = oo, the
series converges for every z € C.

NB. As in calculus, the convergence on the circle |z| = R has to
be considered case by case.
Proof. If |z| < R, then limsup, {/|c.z"| = %‘ < 1. Fixpe (%, 1).

For all large enough n, /|c,z"| < p = |c,"| < p". Since ), p"
is convergent, so are ) |c,2"| and > c,Z". If |z| > R, then

lim sup,, \/ | = |Z| > 1, so lim, |¢,2"| # 0 and ), c,z" diverges.

Theorem. If lim,, \le\ = ) exists, then the radius of convergence
iSR=1/\




Examples

Example. For }°° n~3z", the radius of convergence R = 1,

since -
i D7

n—o00 n*3

On the circle |z| = 1, the series is absolutely convergent, since

BEESW

=1

converges.

Example. For Y °° n~'z", the radius of convergence R = 1,

since
1 —1
i DT

n—o00 nil

=1

Atz=1,>7 1 diverges.
Atz=—1,3%~, == converges by the Leibniz test



Properties of Power Series
If £(2) Z a,7" and g(z Z b,2" have radii of convergence Ry

and R,, respectlvely, then for |z| < min{Ry, R, }

o0

 f(2)£g(z) = (an£b,)"

(£2) (£)-£ (B0

Justified by the absolute convergence of the power series.

NB. The series h(z) = > < ,(a. + b,)Z" may have a larger radius
of convergence, but the equality f(z) + g(z) = h(z) makes sense
only for |z| < min{Rf, R,}.

Example. f(z) = > 2" g(z) = > 2o(1 +a") 2" (0 <a < 1),

andh(Z):ZzoOH_aZ Rf Rgzl,Rh:a_1>1.




Properties of Power Series
If f(z) = ) _ a,2" has radius of convergence Ry, and g(z) is

n=0
analytic on |z] < R, and |g(z)| < Ry for |z| < R,, then

fl8@) = alg@)"

. 1 X )
Example. For a # b, find ¢, s.t. o ;cn(z —a)

. 1 - o0
Solution. We know — =" 7"

I | I | i z—a\"
z=b  b—a 1-Z¢  b-a‘=\b-a

so ¢, = —(b — a)"*'. The series converges for |z — a| < |b — al.




Properties of Power Series

If f(z) =) ca(z — 20)" has radius of convergence R, then
n=0

e fis analyticon |z — zo| < R.
e f can be differentiated term by term on |z — zo| < R, i.e.

f1(@) = nealz = 20)""!
n=1
e f can be integrated term by term on |z — zo| < R, i.e.,

[r@a:=Ya [@-wra foryinl—al <R
Y n=0 Y

In particular,

‘ _ - Cn . n+1
[ rce=3 e
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