EI331 Signals and Systems Lecture 24

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

May 21, 2019

Contents

1. Cauchy's Integral Formula for Derivatives

2. Harmonic Functions

3. Power Series

Theorem. Assume

(a) γ is a piecewise smooth simple (or Jordan) curve

(b) f is continuous on γ

Then the function defined by the following Cauchy-type integral

$$F(z) \triangleq rac{1}{j2\pi} \int_{\gamma} rac{f(\zeta)}{\zeta - z} d\zeta, \quad z \notin \gamma$$

is analytic on $\mathbb{C} \setminus \gamma$. Moreover, it is infinitely differentiable and all its derivatives are analytic on $\mathbb{C} \setminus \gamma$ with

$$F^{(n)}(z) = \frac{n!}{j2\pi} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, \quad n = 1, 2, \dots$$

NB. The formula for $F^{(n)}$ can be obtained by differentiation under the integral sign.

Proof. If γ is a simple curve, then $\mathbb{C} \setminus \gamma$ is a domain. If γ is a Jordan curve, then $\mathbb{C} \setminus \gamma$ is the union of two domains by the Jordan Curve Theorem.

(1). We first show F(z) is continuous on $\mathbb{C} \setminus \gamma$.

- For z₀ ∈ C \ γ, there exists an open disk B(z₀, δ) ⊂ C \ γ, so |ζ − z₀| ≥ δ for ζ ∈ γ.
- Let $z \in B(z_0, \delta/2)$. The triangle inequality yields $|z \zeta| \ge |z_0 \zeta| |z z_0| \ge \delta/2$ for $\zeta \in \gamma$.
- By the definition of *F*,

$$F(z) - F(z_0) = \frac{z - z_0}{j2\pi} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)(\zeta - z_0)} d\zeta \qquad (\star)$$

SO

$$|F(z) - F(z_0)| \le \frac{|z - z_0|}{2\pi} \int_{\gamma} \frac{|f(\zeta)|}{(\delta/2)\delta} |d\zeta| = \frac{|z - z_0|}{\pi\delta^2} \int_{\gamma} |f(\zeta)| d\zeta$$

Proof (cont'd). (2). Next we show

$$F'(z) = \frac{1}{j2\pi} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta, \quad \forall z \in \mathbb{C} \setminus \gamma.$$

• By (*) of the previous slide,

$$\frac{F(z) - F(z_0)}{z - z_0} = \frac{1}{j2\pi} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)(\zeta - z_0)} d\zeta = G(z),$$

where
$$g(\zeta) \triangleq \frac{f(\zeta)}{\zeta - z_0}$$
 and
 $G(z) \triangleq \frac{1}{j2\pi} \int_{\gamma} \frac{g(\zeta)}{\zeta - z} d\zeta$

• g is continuous on γ . By (1), G is continuous on $\mathbb{C} \setminus \gamma$, so

$$F'(z_0) = \lim_{z \to z_0} \frac{F(z) - F(z_0)}{z - z_0} = G(z_0) = \frac{1}{j2\pi} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^2} d\zeta$$

Proof (cont'd). (3). Finally we show the formula for higher order derivatives by induction.

• Assume the formula holds for $1 \le k \le n, n \ge 1$,

$$F^{(k)}(z) = \frac{k!}{j2\pi} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{k+1}} d\zeta.$$
 (†)

• For $z_0 \in \mathbb{C} \setminus \gamma$, and g, G defined on the previous slide,

$$\begin{split} F^{(n)}(z) &= \frac{n!}{j2\pi} \int_{\gamma} \frac{(\zeta - z_0)g(\zeta)}{(\zeta - z)^{n+1}} d\zeta \\ &= \frac{n!}{j2\pi} \int_{\gamma} \frac{g(\zeta)}{(\zeta - z)^n} d\zeta + \frac{n!}{j2\pi} \int_{\gamma} \frac{(z - z_0)g(\zeta)}{(\zeta - z)^{n+1}} d\zeta \end{split}$$

• Since g is continuous on γ , (†) holds with f replaced by g,

$$F^{(n)}(z) = nG^{(n-1)}(z) + (z - z_0)G^{(n)}(z)$$

Derivatives of Cauchy-type Integral Proof (cont'd).

• As in (1), let $B(z_0, \delta) \subset \mathbb{C} \setminus \gamma$. $G^{(n)}$ is bounded on $B(z_0, \delta/2)$

$$|G^{(n)}(z)| \leq \frac{n!}{j2\pi} \int_{\gamma} \frac{|g(\zeta)|}{|\zeta - z|^{n+1}} |d\zeta| \leq \frac{n!}{j2\pi} \int_{\gamma} \frac{|g(\zeta)|}{(\delta/2)^{n+1}} |d\zeta|$$

• $G^{(n-1)}(z)$ is differentiable and hence continuous

$$\lim_{z \to z_0} F^{(n)}(z) = \lim_{z \to z_0} [nG^{(n-1)}(z) + (z - z_0)G^{(n)}(z)] = F^{(n)}(z_0)$$

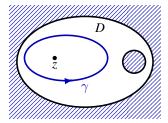
so $F^{(n)}$ is continuous. Similarly, $G^{(n)}$ is continuous • Let $z \rightarrow z_0$,

$$\frac{F^{(n)}(z) - F^{(n)}(z_0)}{z - z_0} = n \frac{G^{(n-1)}(z) - G^{(n-1)}(z_0)}{z - z_0} + G^{(n)}(z)$$
$$\to (n+1)G^{(n)}(z_0) = F^{(n+1)}(z_0)$$

Integral Formula for Derivatives of Analytic Functions

Theorem. If f is analytic on a domain D, then its derivative f' is also analytic on D, and

$$f^{(n)}(z) = \frac{n!}{j2\pi} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta,$$



where γ is a positively oriented piecewise smooth Jordan curve encircling *z* whose interior lies entirely in *D*.

Proof. By Cauchy's Integral Formula

$$f(z) = \frac{1}{j2\pi} \int_{\gamma} \frac{f(z)}{\zeta - z} dz$$

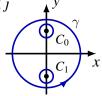
Since *f* is analytic on *D*, it is continuous on γ . By the previous theorem, *f'* is analytic and the derivatives of *f* are as given.

Example

Let $\gamma = \{z : |z| = 2\}$ be positively oriented and r > 1.

Let C_0 , C_1 be positively oriented circles centered at j and -j that lie in the interior of γ . By Cauchy's Theorem,

$$\int_{\gamma} \frac{e^z dz}{(z^2+1)^2} = \int_{C_0} \frac{e^z dz}{(z^2+1)^2} + \int_{C_1} \frac{e^z dz}{(z^2+1)^2}$$



$$\int_{C_0} \frac{e^z dz}{(z^2+1)^2} = \int_{C_0} \frac{\frac{e^z}{(z+j)^2} dz}{(z-j)^2} = j2\pi \left[\frac{e^z}{(z+j)^2} dz \right]'_{z=j} = \frac{(1-j)e^j}{2}\pi$$

$$\int_{C_1} \frac{e^z dz}{(z^2+1)^2} = \int_{C_1} \frac{\frac{e^z}{(z-j)^2} dz}{(z+j)^2} = j2\pi \left[\frac{e^z}{(z-j)^2} dz \right]'_{z=-j} = \frac{-(1+j)e^{-j}}{2}\pi$$

 $\int_{\gamma} \frac{e^z dz}{(z^2 + 1)^2} = j\pi \operatorname{Im}\left[(1 - j)e^j\right] = j\pi(\sin 1 - \cos 1)$

Morera's Theorem

Theorem. If *f* is continuous on a domain *D* and $\int_{\gamma} f(z)dz = 0$ for any piecewise smooth Jordan curve γ in *D* whose interior also lies in *D*, then *f* is analytic on *D*.

Proof. Fix $z_0 \in D$ and an open disk $B(z_0, \delta) \subset D$. It suffices to show *f* is analytic on $B(z_0, \delta)$.

1. Because $\int_{\gamma} f(z) dz = 0$ for any piecewise Jordan curves, the integral $\int_{z_0}^{z} f(z) dz$ is independent of the path in $B(z_0, \delta)$ that connects z_0 and z. Define

$$F(z) = \int_{z_0}^z f(z) dz, \quad z \in B(z_0, \delta).$$

2. Since *f* is continuous, the proof on slides 16-17 of Lecture 23 shows F'(z) = f(z), so *F* is analytic on $B(z_0, \delta)$.

3. Thus f = F' is also analytic on $B(z_0, \delta)$.

Cauchy's Inequality

Theorem. If *f* is analytic on the open disk $B(z_0, R)$, and $|f(z)| \le M$ on $B(z_0, R)$, then

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}, \quad n \in \mathbb{N}.$$

Proof. Let γ be the circle $|z - z_0| = r$ with $r \in (0, R)$. Then

$$f^{(n)}(z_0) = \frac{n!}{j2\pi} \int_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

Thus

$$|f^{(n)}(z_0)| \le \frac{n!}{2\pi} \int_{\gamma} \frac{|f(\zeta)|}{|\zeta - z_0|^{n+1}} |d\zeta| \le \frac{n!}{2\pi} \frac{M}{r^{n+1}} 2\pi r = \frac{n!M}{r}$$

Letting $r \rightarrow R$,

$$|f^{(n)}(z_0)| \leq \frac{n!M}{R^n}.$$

Liouville's Theorem

A functions that is analytic on $\ensuremath{\mathbb{C}}$ is called an entire function.

Theorem. If f is entire and bounded, then it is constant.

Proof.

1. Since *f* is bounded, there exists an *M* s.t. $|f(z)| \le M$, $\forall z \in \mathbb{C}$. 2. For any $z_0 \in \mathbb{C}$ and R > 0, Cauchy's inequality on $B(z_0, R)$ yields

$$|f'(z_0)| \leq \frac{M}{R}.$$

3. Letting $R \to \infty$,

$$f'(z_0)=0$$

4. Since z_0 is arbitrary, $f'(z) \equiv 0$ on \mathbb{C} , so f is constant.

Fundamental Theorem of Algebra

Theorem. A polynomial *P* of degree $n \ge 1$, i.e.

$$P(z) = a_0 + a_1 z + \dots + a_n z^n, \quad a_n \neq 0$$

has exactly *n* roots in \mathbb{C} .

Proof Sketch. First show P has at least one root.

1. If *P* does not have a root, then Q(z) = 1/P(z) is entire

2. As $|z| \to \infty$, $Q(z) \to 0$, so $\exists R > 0$ s.t. $|Q(z)| \le 1$ for |z| > R

3. Being continuous, Q is bounded on $|z| \leq R$ and hence on \mathbb{C}

4. By Liouville's Theorem, *Q* is constant. So *P* is also constant, contradiction.

Let z_0 be a root of *P*. Factor $P(z) = (z - z_0)P_1(z)$, where P_1 has degree n - 1. We can repeat this process until P_1 has degree 0.

Contents

1. Cauchy's Integral Formula for Derivatives

2. Harmonic Functions

3. Power Series

Harmonic Functions

A real function $\phi(x, y)$ of two real variables is called a harmonic function on a domain *D* if it satisfies the Laplace equation on *D*,

$$\frac{\partial \phi^2}{\partial x^2} + \frac{\partial \phi^2}{\partial y^2} = 0$$

Theorem. If f(z) = u(x, y) + jv(x, y) is analytic on a domain *D*, then *u* and *v* are harmonic functions on *D*.

Proof. Since f is analytic, the Cauchy-Riemann equations hold

$$u_x = v_y, \quad u_y = -v_x$$

Since f' is analytic, u and v are continuously differentiable, so

$$u_{xx} = v_{yx} = v_{xy} = -u_{yy}$$

So $u_{xx} + u_{yy} = 0$. Similarly, $v_{xx} + v_{yy} = 0$.

Harmonic Conjugate

If f = u + jv is analytic, v is called a harmonic conjugate of u.

Theorem. A harmonic function on a simply connected domain has a harmonic conjugate.

Example. $u(x, y) = y^3 - 3x^2y$ is harmonic on \mathbb{C} . For its conjugate,

1. By the Cauchy-Riemann equations

$$v_x = -u_y = -3y^2 + 3x^2, \quad v_y = u_x = -6xy$$

2. Integrate w.r.t. y,

$$v(x, y) = \int v_y dy = \int (-6xy) dy = -3xy^2 + g(x)$$

3. Differentiate w.r.t. *x*,

$$v_x = -3y^2 + g'(x) = -3y^2 + 3x^2 \implies g(x) = \int 3x^2 dx = x^3 + c$$

If $v(x, y) = -3xy^2 + x^3 + c$

Mean-value Property

Theorem. If f(z) is analytic on an open disk $B(z_0, R)$, then

$$f(z_0) = rac{1}{2\pi} \int_0^{2\pi} f(z_0 + r e^{jt}) dt, \quad 0 < r < R.$$

i.e. the mean value of an analytic function on a circle is equal to the value at the center.

Proof. Use Cauchy's Integral Formula and the parameterization $z(t) = re^{it}$, $t \in [0, 2\pi]$.

Theorem. If u(x, y) is harmonic on an open disk $B(z_0, R)$, then

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{jt}) dt$$

Proof. Use the previous theorem and the fact that u is the real part of an analytic function.

Contents

1. Cauchy's Integral Formula for Derivatives

2. Harmonic Functions

3. Power Series

Series of Functions

Recall a numerical series $\sum_{n=1}^{\infty} z_n$ converges to *s* if the sequence of its partial sums $s_k = \sum_{n=1}^{k} z_n$ converges to *s*.

Given a sequence of functions $f_n(z)$, n = 1, 2, ... defined on a set $\Omega \subset \mathbb{C}$, the infinite series $\sum_{n=1}^{\infty} f_n(z)$ converges to s(z) on Ω , if its partial sum $s_k(z) = \sum_{n=1}^{k} f_n(z)$ converges s(z) at every $z \in \Omega$, i.e.

$$\lim_{k\to\infty}|s_k(z)-s(z)|=0,\quad\forall z\in\Omega.$$

The function s(z) is called the sum of the series.

Power Series

If
$$f_n(z) = c_n(z - z_0)^n$$
, the infinite series $\sum_{n=1}^{\infty} f_n(z) = \sum_{n=1}^{\infty} c_n(z - z_0)^n$ is called a power series.

By a change of variable, we can focus on the case $z_0 = 0$.

Theorem (Abel). If the series $\sum_{n=1}^{\infty} c_n z^n$ converges at $z_0 \neq 0$, then it converges absolutely on the open disk $|z| < |z_0|$. If the series diverges at z_0 , then it diverges for $|z| > |z_0|$.

Proof. If the series converges at z_0 , then $c_n z_0^n \to 0$ as $n \to \infty$, so it is bounded, i.e. $|c_n z_0^n| \le M$ for some M > 0. For $|z| < |z_0|$, let $q = |z|/|z_0| < 1$. Then $|c_n z^n| = |c_n z_0^n|q^n < Mq^n$. Since $\sum_n Mq^n$ converges, so does $\sum_n |c_n z^n|$.

If the series diverges at z_0 , then it diverges for $|z| > |z_0|$; otherwise, it would contradict what has just been proven.

Power Series

Theorem. $\sum_{n=1}^{\infty} c_n z^n$ has a radius of convergence *R* s.t. the series converges for |z| < R and diverges for |z| > R. Moreover,

$$R = \left(\limsup_{n \to \infty} \sqrt[n]{|c_n|}\right)^{-1}$$

NB. If R = 0, the series diverges for every $z \neq 0$. If $R = \infty$, the series converges for every $z \in \mathbb{C}$.

NB. As in calculus, the convergence on the circle |z| = R has to be considered case by case.

Proof. If |z| < R, then $\limsup_n \sqrt[n]{|c_n z^n|} = \frac{|z|}{R} < 1$. Fix $\rho \in (\frac{|z|}{R}, 1)$. For all large enough n, $\sqrt[n]{|c_n z^n|} \le \rho \implies |c_n z^n| \le \rho^n$. Since $\sum_n \rho^n$ is convergent, so are $\sum_n |c_n z^n|$ and $\sum_n c_n z^n$. If |z| > R, then $\limsup_n \sqrt[n]{|c_n z^n|} = \frac{|z|}{R} > 1$, so $\lim_n |c_n z^n| \ne 0$ and $\sum_n c_n z^n$ diverges. Theorem. If $\lim_n \frac{|c_{n+1}|}{|c_n|} = \lambda$ exists, then the radius of convergence is $R = 1/\lambda$.

Examples

Example. For $\sum_{n=1}^{\infty} n^{-3} z^n$, the radius of convergence R = 1, since $(n+1)^{-3}$

$$\lim_{n \to \infty} \frac{(n+1)^{-3}}{n^{-3}} = 1$$

On the circle |z| = 1, the series is absolutely convergent, since

$$\sum_{n=1}^{\infty} \frac{|z|^n}{n^3} = \sum_{n=1}^{\infty} \frac{1}{n^3}$$

converges.

Example. For $\sum_{n=1}^{\infty} n^{-1} z^n$, the radius of convergence R = 1, since $\lim_{n \to \infty} \frac{(n+1)^{-1}}{n^{-1}} = 1$

At z = 1, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. At z = -1, $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converges by the Leibniz test

Properties of Power Series

If
$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$
 and $g(z) = \sum_{n=0}^{\infty} b_n z^n$ have radii of convergence R_f
and R_g , respectively, then for $|z| < \min\{R_f, R_g\}$

•
$$f(z) \pm g(z) = \sum_{n=0}^{\infty} (a_n \pm b_n) z^n$$

• $f(z)g(z) = \left(\sum_{n=0}^{\infty} a_n z^n\right) \left(\sum_{n=0}^{\infty} b_n z^n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) z^n$

Justified by the absolute convergence of the power series.

NB. The series $h(z) = \sum_{n=0}^{\infty} (a_n + b_n) z^n$ may have a larger radius of convergence, but the equality f(z) + g(z) = h(z) makes sense only for $|z| < \min\{R_f, R_g\}$.

Example. $f(z) = \sum_{n=0}^{\infty} z^n$, $g(z) = \sum_{n=0}^{\infty} (1+a^n)^{-1} z^n$ (0 < a < 1), and $h(z) = \sum_{n=0}^{\infty} \frac{a^n}{1+a^n} z^n$. $R_f = R_g = 1$, $R_h = a^{-1} > 1$.

Properties of Power Series

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R_f , and g(z) is analytic on $|z| < R_g$ and $|g(z)| < R_f$ for $|z| < R_g$, then

$$f[g(z)] = \sum_{n=0}^{\infty} a_n [g(z)]^n$$

Example. For $a \neq b$, find c_n s.t. $\frac{1}{z-b} = \sum_{n=0}^{\infty} c_n (z-a)^n$ Solution. We know $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n$.

$$\frac{1}{z-b} = -\frac{1}{b-a} \cdot \frac{1}{1-\frac{z-a}{b-a}} = -\frac{1}{b-a} \sum_{n=0}^{\infty} \left(\frac{z-a}{b-a}\right)^n$$

so $c_n = -(b-a)^{n+1}$. The series converges for |z-a| < |b-a|.

Properties of Power Series

If
$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$$
 has radius of convergence *R*, then

- f is analytic on $|z z_0| < R$.
- *f* can be differentiated term by term on $|z z_0| < R$, i.e.

$$f'(z) = \sum_{n=1}^{\infty} nc_n (z - z_0)^{n-1}$$

• *f* can be integrated term by term on $|z - z_0| < R$, i.e.,

$$\int_{\gamma} f(z) dz = \sum_{n=0}^{\infty} c_n \int_{\gamma} (z - z_0)^n dz \quad \text{ for } \gamma \text{ in } |z - z_0| < R$$

In particular,

$$\int_{z_0}^{z} f(\zeta) d\zeta = \sum_{n=0}^{\infty} \frac{c_n}{n+1} (z-z_0)^{n+1}$$