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Derivatives of Cauchy-type Integral
Theorem. Assume
(a) γ is a piecewise smooth simple (or Jordan) curve
(b) f is continuous on γ
Then the function defined by the following Cauchy-type integral

F(z) ,
1

j2π

∫
γ

f (ζ)

ζ − z
dζ, z /∈ γ

is analytic on C \ γ. Moreover, it is infinitely differentiable and
all its derivatives are analytic on C \ γ with

F(n)(z) =
n!

j2π

∫
γ

f (ζ)

(ζ − z)n+1 dζ, n = 1, 2, . . .

NB. The formula for F(n) can be obtained by differentiation
under the integral sign.
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Derivatives of Cauchy-type Integral
Proof. If γ is a simple curve, then C \ γ is a domain. If γ is a
Jordan curve, then C \ γ is the union of two domains by the
Jordan Curve Theorem.

(1). We first show F(z) is continuous on C \ γ.

• For z0 ∈ C \ γ, there exists an open disk B(z0, δ) ⊂ C \ γ,
so |ζ − z0| ≥ δ for ζ ∈ γ.
• Let z ∈ B(z0, δ/2). The triangle inequality yields
|z− ζ| ≥ |z0 − ζ| − |z− z0| ≥ δ/2 for ζ ∈ γ.
• By the definition of F,

F(z)− F(z0) =
z− z0

j2π

∫
γ

f (ζ)

(ζ − z)(ζ − z0)
dζ (?)

so

|F(z)− F(z0)| ≤
|z− z0|

2π

∫
γ

|f (ζ)|
(δ/2)δ

|dζ| = |z− z0|
πδ2

∫
γ

|f (ζ)|dζ
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Derivatives of Cauchy-type Integral
Proof (cont’d). (2). Next we show

F′(z) =
1

j2π

∫
γ

f (ζ)

(ζ − z)2 dζ, ∀z ∈ C \ γ.

• By (?) of the previous slide,
F(z)− F(z0)

z− z0
=

1
j2π

∫
γ

f (ζ)

(ζ − z)(ζ − z0)
dζ = G(z),

where g(ζ) , f (ζ)
ζ−z0

and

G(z) ,
1

j2π

∫
γ

g(ζ)

ζ − z
dζ

• g is continuous on γ. By (1), G is continuous on C \ γ, so

F′(z0) = lim
z→z0

F(z)− F(z0)

z− z0
= G(z0) =

1
j2π

∫
γ

f (ζ)

(ζ − z0)2 dζ
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Derivatives of Cauchy-type Integral
Proof (cont’d). (3). Finally we show the formula for higher order
derivatives by induction.

• Assume the formula holds for 1 ≤ k ≤ n, n ≥ 1,

F(k)(z) =
k!

j2π

∫
γ

f (ζ)

(ζ − z)k+1 dζ. (†)

• For z0 ∈ C \ γ, and g,G defined on the previous slide,

F(n)(z) =
n!

j2π

∫
γ

(ζ − z0)g(ζ)

(ζ − z)n+1 dζ

=
n!

j2π

∫
γ

g(ζ)

(ζ − z)n dζ +
n!

j2π

∫
γ

(z− z0)g(ζ)

(ζ − z)n+1 dζ

• Since g is continuous on γ, (†) holds with f replaced by g,

F(n)(z) = nG(n−1)(z) + (z− z0)G(n)(z)
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Derivatives of Cauchy-type Integral
Proof (cont’d).

• As in (1), let B(z0, δ) ⊂ C \ γ. G(n) is bounded on B(z0, δ/2)

|G(n)(z)| ≤ n!

j2π

∫
γ

|g(ζ)|
|ζ − z|n+1 |dζ| ≤

n!

j2π

∫
γ

|g(ζ)|
(δ/2)n+1 |dζ|

• G(n−1)(z) is differentiable and hence continuous

lim
z→z0

F(n)(z) = lim
z→z0

[nG(n−1)(z) + (z− z0)G(n)(z)] = F(n)(z0)

so F(n) is continuous. Similarly, G(n) is continuous
• Let z→ z0,

F(n)(z)− F(n)(z0)

z− z0
= n

G(n−1)(z)− G(n−1)(z0)

z− z0
+ G(n)(z)

→ (n + 1)G(n)(z0) = F(n+1)(z0)



7/24

Integral Formula for Derivatives of Analytic Functions

z

D

γ

Theorem. If f is analytic on a domain D,
then its derivative f ′ is also analytic on D,
and

f (n)(z) =
n!

j2π

∫
γ

f (ζ)

(ζ − z)n+1 dζ,

where γ is a positively oriented piecewise smooth Jordan curve
encircling z whose interior lies entirely in D.

Proof. By Cauchy’s Integral Formula

f (z) =
1

j2π

∫
γ

f (z)
ζ − z

dz

Since f is analytic on D, it is continuous on γ. By the previous
theorem, f ′ is analytic and the derivatives of f are as given.
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Example

x

y

C0

C1

γ

Let γ = {z : |z| = 2} be positively oriented and r > 1.

Let C0, C1 be positively oriented circles centered at j
and −j that lie in the interior of γ. By Cauchy’s
Theorem,∫

γ

ezdz
(z2 + 1)2 =

∫
C0

ezdz
(z2 + 1)2 +

∫
C1

ezdz
(z2 + 1)2

∫
C0

ezdz
(z2 + 1)2 =

∫
C0

ez

(z+j)2 dz

(z− j)2 = j2π
[

ez

(z + j)2 dz
]′

z=j
=

(1− j)ej

2
π

∫
C1

ezdz
(z2 + 1)2 =

∫
C1

ez

(z−j)2 dz

(z + j)2 = j2π
[

ez

(z− j)2 dz
]′

z=−j
=
−(1 + j)e−j

2
π∫

γ

ezdz
(z2 + 1)2 = jπIm [(1− j)ej] = jπ(sin 1− cos 1)
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Morera’s Theorem

Theorem. If f is continuous on a domain D and
∫
γ

f (z)dz = 0 for
any piecewise smooth Jordan curve γ in D whose interior also
lies in D, then f is analytic on D.

Proof. Fix z0 ∈ D and an open disk B(z0, δ) ⊂ D. It suffices to
show f is analytic on B(z0, δ).

1. Because
∫
γ

f (z)dz = 0 for any piecewise Jordan curves, the
integral

∫ z
z0

f (z)dz is independent of the path in B(z0, δ) that
connects z0 and z. Define

F(z) =

∫ z

z0

f (z)dz, z ∈ B(z0, δ).

2. Since f is continuous, the proof on slides 16-17 of Lecture
23 shows F′(z) = f (z), so F is analytic on B(z0, δ).

3. Thus f = F′ is also analytic on B(z0, δ).
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Cauchy’s Inequality

Theorem. If f is analytic on the open disk B(z0,R), and
|f (z)| ≤ M on B(z0,R), then

|f (n)(z0)| ≤
n!M
Rn , n ∈ N.

Proof. Let γ be the circle |z− z0| = r with r ∈ (0,R). Then

f (n)(z0) =
n!

j2π

∫
γ

f (ζ)

(ζ − z0)n+1 dζ

Thus

|f (n)(z0)| ≤
n!

2π

∫
γ

|f (ζ)|
|ζ − z0|n+1 |dζ| ≤

n!

2π
M

rn+1 2πr =
n!M

r

Letting r → R,

|f (n)(z0)| ≤
n!M
Rn .
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Liouville’s Theorem

A functions that is analytic on C is called an entire function.

Theorem. If f is entire and bounded, then it is constant.

Proof.

1. Since f is bounded, there exists an M s.t. |f (z)| ≤ M, ∀z ∈ C.

2. For any z0 ∈ C and R > 0, Cauchy’s inequality on B(z0,R)
yields

|f ′(z0)| ≤
M
R
.

3. Letting R→∞,
f ′(z0) = 0

4. Since z0 is arbitrary, f ′(z) ≡ 0 on C, so f is constant.
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Fundamental Theorem of Algebra

Theorem. A polynomial P of degree n ≥ 1, i.e.

P(z) = a0 + a1z + · · ·+ anzn, an 6= 0

has exactly n roots in C.

Proof Sketch. First show P has at least one root.

1. If P does not have a root, then Q(z) = 1/P(z) is entire

2. As |z| → ∞, Q(z)→ 0, so ∃R > 0 s.t. |Q(z)| ≤ 1 for |z| > R

3. Being continuous, Q is bounded on |z| ≤ R and hence on C

4. By Liouville’s Theorem, Q is constant. So P is also constant,
contradiction.

Let z0 be a root of P. Factor P(z) = (z− z0)P1(z), where P1 has
degree n−1. We can repeat this process until P1 has degree 0.
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Harmonic Functions

A real function φ(x, y) of two real variables is called a harmonic
function on a domain D if it satisfies the Laplace equation on D,

∂φ2

∂x2 +
∂φ2

∂y2 = 0

Theorem. If f (z) = u(x, y) + jv(x, y) is analytic on a domain D,
then u and v are harmonic functions on D.

Proof. Since f is analytic, the Cauchy-Riemann equations hold

ux = vy, uy = −vx

Since f ′ is analytic, u and v are continuously differentiable, so

uxx = vyx = vxy = −uyy

So uxx + uyy = 0. Similarly, vxx + vyy = 0.



15/24

Harmonic Conjugate
If f = u + jv is analytic, v is called a harmonic conjugate of u.

Theorem. A harmonic function on a simply connected domain
has a harmonic conjugate.

Example. u(x, y) = y3 − 3x2y is harmonic on C. For its conjugate,

1. By the Cauchy-Riemann equations

vx = −uy = −3y2 + 3x2, vy = ux = −6xy

2. Integrate w.r.t. y,

v(x, y) =

∫
vydy =

∫
(−6xy)dy = −3xy2 + g(x)

3. Differentiate w.r.t. x,

vx = −3y2 + g′(x) = −3y2 + 3x2 =⇒ g(x) =

∫
3x2dx = x3 + c

4. v(x, y) = −3xy2 + x3 + c
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Mean-value Property
Theorem. If f (z) is analytic on an open disk B(z0,R), then

f (z0) =
1

2π

∫ 2π

0
f (z0 + rejt)dt, 0 < r < R.

i.e. the mean value of an analytic function on a circle is equal to
the value at the center.

Proof. Use Cauchy’s Integral Formula and the parameterization
z(t) = rejt, t ∈ [0, 2π].

Theorem. If u(x, y) is harmonic on an open disk B(z0,R), then

u(z0) =
1

2π

∫ 2π

0
u(z0 + rejt)dt

Proof. Use the previous theorem and the fact that u is the real
part of an analytic function.
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Series of Functions

Recall a numerical series
∞∑

n=1

zn converges to s if the sequence

of its partial sums sk =
k∑

n=1

zn converges to s.

Given a sequence of functions fn(z), n = 1, 2, . . . defined on a

set Ω ⊂ C, the infinite series
∞∑

n=1

fn(z) converges to s(z) on Ω, if

its partial sum sk(z) =
k∑

n=1

fn(z) converges s(z) at every z ∈ Ω, i.e.

lim
k→∞
|sk(z)− s(z)| = 0, ∀z ∈ Ω.

The function s(z) is called the sum of the series.
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Power Series

If fn(z) = cn(z− z0)
n, the infinite series

∞∑
n=1

fn(z) =
∞∑

n=1

cn(z− z0)
n is

called a power series.

By a change of variable, we can focus on the case z0 = 0.

Theorem (Abel). If the series
∞∑

n=1

cnzn converges at z0 6= 0, then it

converges absolutely on the open disk |z| < |z0|. If the series
diverges at z0, then it diverges for |z| > |z0|.

Proof. If the series converges at z0, then cnzn
0 → 0 as n→∞, so

it is bounded, i.e. |cnzn
0| ≤ M for some M > 0. For |z| < |z0|, let

q = |z|/|z0| < 1. Then |cnzn| = |cnzn
0|qn < Mqn. Since

∑
n Mqn

converges, so does
∑

n |cnzn|.

If the series diverges at z0, then it diverges for |z| > |z0|;
otherwise, it would contradict what has just been proven.
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Power Series
Theorem.

∑∞
n=1 cnzn has a radius of convergence R s.t. the

series converges for |z| < R and diverges for |z| > R. Moreover,

R =

(
lim sup

n→∞

n
√
|cn|
)−1

NB. If R = 0, the series diverges for every z 6= 0. If R =∞, the
series converges for every z ∈ C.

NB. As in calculus, the convergence on the circle |z| = R has to
be considered case by case.

Proof. If |z| < R, then lim supn
n
√
|cnzn| = |z|

R < 1. Fix ρ ∈ ( |z|R , 1).
For all large enough n, n

√
|cnzn| ≤ ρ =⇒ |cnzn| ≤ ρn. Since

∑
n ρ

n

is convergent, so are
∑

n |cnzn| and
∑

n cnzn. If |z| > R, then
lim supn

n
√
|cnzn| = |z|

R > 1, so limn |cnzn| 6= 0 and
∑

n cnzn diverges.

Theorem. If limn
|cn+1|
|cn| = λ exists, then the radius of convergence

is R = 1/λ.
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Examples
Example. For

∑∞
n=1 n−3zn, the radius of convergence R = 1,

since

lim
n→∞

(n + 1)−3

n−3 = 1

On the circle |z| = 1, the series is absolutely convergent, since
∞∑

n=1

|z|n

n3 =
∞∑

n=1

1
n3

converges.

Example. For
∑∞

n=1 n−1zn, the radius of convergence R = 1,
since

lim
n→∞

(n + 1)−1

n−1 = 1

At z = 1,
∑∞

n=1
1
n diverges.

At z = −1,
∑∞

n=1
(−1)n

n converges by the Leibniz test
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Properties of Power Series

If f (z) =
∞∑

n=0

anzn and g(z) =
∞∑

n=0

bnzn have radii of convergence Rf

and Rg, respectively, then for |z| < min{Rf ,Rg}

• f (z)± g(z) =
∞∑

n=0

(an ± bn)zn

• f (z)g(z) =

(
∞∑

n=0

anzn

)(
∞∑

n=0

bnzn

)
=
∞∑

n=0

(
n∑

k=0

akbn−k

)
zn

Justified by the absolute convergence of the power series.

NB. The series h(z) =
∑∞

n=0(an + bn)zn may have a larger radius
of convergence, but the equality f (z) + g(z) = h(z) makes sense
only for |z| < min{Rf ,Rg}.

Example. f (z) =
∑∞

n=0 zn, g(z) =
∑∞

n=0(1 + an)−1zn (0 < a < 1),
and h(z) =

∑∞
n=0

an

1+an zn. Rf = Rg = 1, Rh = a−1 > 1.
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Properties of Power Series

If f (z) =
∞∑

n=0

anzn has radius of convergence Rf , and g(z) is

analytic on |z| < Rg and |g(z)| < Rf for |z| < Rg, then

f [g(z)] =
∞∑

n=0

an[g(z)]n

Example. For a 6= b, find cn s.t.
1

z− b
=
∞∑

n=0

cn(z− a)n

Solution. We know 1
1−z =

∑∞
n=0 zn.

1
z− b

= − 1
b− a

· 1
1− z−a

b−a

= − 1
b− a

∞∑
n=0

(
z− a
b− a

)n

so cn = −(b− a)n+1. The series converges for |z− a| < |b− a|.
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Properties of Power Series

If f (z) =
∞∑

n=0

cn(z− z0)
n has radius of convergence R, then

• f is analytic on |z− z0| < R.
• f can be differentiated term by term on |z− z0| < R, i.e.

f ′(z) =
∞∑

n=1

ncn(z− z0)
n−1

• f can be integrated term by term on |z− z0| < R, i.e.,∫
γ

f (z)dz =
∞∑

n=0

cn

∫
γ

(z− z0)
ndz for γ in |z− z0| < R

In particular, ∫ z

z0

f (ζ)dζ =
∞∑

n=0

cn

n + 1
(z− z0)

n+1
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